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and the right hand side of this equation is a known number (2 (lX(i),lX(k»/(lX(k),lX(k»)
is known from Dynkin diagram). In this way we obtain q, and if q > O, lX+ lX(k) is

a root of the (n + l)th leveI. With this procedure, by (X), varying lXand lX(k)we
obtain alI the (n + l)th level mots. Since we already lmow the roota of the lth
level from Dynkin's diagram (i.e. the simple mots) and in addition lX(i)- lX(k)is
never a root when lX(i)and lX(k)are simple, this method can be used as a recurrence
proeedure to find aH positive mots of the given algebra.
Let us try with °2' The Dynkin diagram is:

8.8. Compact groups associated to classical simple Lie algebras:

Cartan's
denomination

of .!l'
Compact group G a880ciatedto L

Dimension of G=
dimension of .!l'

A, S UHl: unitary unimodular complex matrices
" in (I+ l)-dimension\i ,

, (),)

°21+1: real orthogonal group in (21 + 1) di-
mensions

1(1+ 2)

B, 1(21+ 1)Ci .
Oli lXZ

0, Sp(21):unitary 21-dimensional matrices leaving
invariant a non singular antiBymmetric
matrix I:

1(21+ 1)
:and from (15) we obtain:

2 (lXl' lX2)

(lXl' lXl)
2 (lXl' lX2) - - 3.1 -

, (lX2' lX2)

UTI U = I

(sympletic group)
1St level: lXl> lX2

2nd level: lXl + lX2

Dj °21: real orthogonal group in 21 dimensions 1(21- 1)

3td level: 2 lXl+ lX2is not a root, because: 9. RepreseotatioD8of SemisimpleLie Algehras

2(lXl + lX2' lXl) = 2 -. 1 =--=r - q'
(lXl' lXd '

but r = 1, so that q = O.

9.1. We recall here that by representation of a Lie algebra into a complex linear
space L we mean a linear mapping x - T(x) where x € .'l, T(x) is a linear
Qperator in L, satisfying the condition:

lXl + 2lX2 is a root. ~r([x,y]) = T(x) T(y) - T(y) T(x).

4th level: 2 lXl + 2 lX2 = 2 (lXl + £X2) is not a root (by V), We will treat here only finite dimensional representatioos, for which the follo-
wing 'Weyl's theorem applies:
L Any finite-dimensional representation of a semisimple Lie algebra is completely
reducible. Rence we can limit ourselves to irredueible representations.
Chosen a basis {h;, e«, e_«}in .1', we will indicate with {H;, E., E_«} the correspon-
ding operators in any given representation.
II. It is possible to choose among equivalent representation, a particular one in a
Rilbert space, in which: H; = H; and E~ = E_«16).

lXl + 3 lX2 is a root

5th level: 2 lXl+ 3 lX2is a root: in fact 2(lXl + 3 lX2'lXI)= -1 = r - q
(lXl' lXl)

and r = O, so that q = 1

lXl + 4 lX2 is not a root: 2 (lXl+ 3lX2' lX2)
(lX )

= 3 = r - q
2' lX2

2 al + 4 lX2 = 2(iXl + 2(2) is not a root;

16) A representation of .1' gives us a representation of the associated compact real Lie algebra,
which in turn generates a representation of the corresponding compact group. Call it W (g).
From what we said in sect. 3.4 we can always change W (g) by an equivalence transformation
(W(g) -7 W'(g) = A W(g) A-l) so to obtain an unitary representation.
Under the same equivalence transformation the operators P;, P"" G", representing the com-
pact basis (16) go iuto the operators:

Pi = A P;A-l etc.

but r = 3 so that q = O.

6th level: 3 £Xl+ 3 £X2 = 3 (£Xl + £x2)is not a root

so that we end with 5th level, and the positive mots are
which are antihermitian, so that Il;, E"" E_", transform into operators satysfying:

(Hi)+ = Hi, (E~)+= E'--",.
£Xl; £X2; £Xl + lX2; £Xl + 2 a2; £Xl+ 3 £X2; 2lXI + 3lX2'

This result is not essential from a mathematical point of view, in that what really matters is
the possibility of diagonalizing the operators H;' s which iB a88ured by the fact that H;' s re-
present a Cartan subalgebra. . (Continued on page 334.)The corresponding root diagram is reported in fig. 1.
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Then the H/ s, being commuting Hermitiau operators, are simultaueously mago-
ualizable, and have real eigenvalues. 1£ M = (MI"" Mr) is a set of eigenvalues
on a simultaneous eigenvector

Hi 1M) = Mi 1M)

Rence weight vectors dispose iuto strings generated by roots and the E / s behave as
usual raising and lowering operators.
With the aid of the tensor gH we introduce a scalar products between weights and
roots, as well as between weights:

M can be thought as an r-dimensional real vector (weight vector) by analogy with
roots. Calling LM the manifold spanned by eigenvectors belonging to the weight M,
we have

(M, /X)= L;gH/XiMi
'ii

(4)

(M M '
) - ~ ii M M '

, -~ 9 i j'
ij

(5)

L = EBLM (the mrect sum runs over all weights). (1)
V. If r and q are the integers defined through (3), we have

The LM's, in generaI, are not one-dimensional, so that H/s do not coustitute a
complete set of commuting operators. Rence some of the weights M cau be de-
generate.
II!. No generaI prescriptions cau be given to construct the operators commuting
with the H/s which remove this degeneracy.
However it can be shown [20] that their number is at most equal to

2(M, /X)= r - q
(IX, IX)

(6)

hence (see 8.3, VI):

n - 3r 17)
"YJ=- 2

n = dimension of .1'
r = rank of .1'

2(M, IX)IX is a weight.
M - (/X, /X)

(7)

9.2. Properties of weights

Let 1M) be a vector belonging to LM, then by the commutation relations between
Hi and E~, we obtain:

We note that the close resemblance between the stated properties of weights, and
the properties of roots listed in sect. 8.3 is not surprising in that roots are simply
the weights of a particular representation of .1', i. e. the regular representation.
We introduce now àn ordering between the weights of an arbitrary representation.
We recall that the r-simple roots constitute a basis in the space of the r-dimensional
real vectors, so that for any weight M we cau write:

HiE~ 1M) = (lXi+ Mi) E~ 1M). (2}
M = L;Mi/X(i)

i
(/X(;) = ith simple root). (8)

Let us suppose E~ 1M) =1=O. Then (2) tells us that M -+-<X= (MI + IXl. . . MT +
+ /XT) is a weight, aud E~ 1M) belongs to LM+~' n E~E~ 1M) 9= o we can l'epeat
the reasoning concluding that M + 2IX is a weight and that E~E~ 1M) belongs
to LM+2~'By recurrence if (E~)k 1M) =1=O, then M + (k IX) is a weight aud
(E~)klM) belongs to LMH~' Being L finite dimensional this procedure must end,
so that there exists an integer q such that (E~)qIM) =1=O, i.e. M + q/X is a weight,
whereas (E~)q+IIM) = O. By analogy we can work with E_~, obtaining an in-
teger r such that

(E-~YIM) 9= O

(E_~Y+l1M)= O.

We will say that M > M' il the first non zero component of the vector .M - M'
is greater than zero. Since there is on]y a finite number of distinct weights for
any representation, among them there is a maximal weight, i. e. a weight which
is greater than alI the others. This definition has the consequence that il /X is a
positive root and lA) an eigenvector belonging to the maximal weight A, then
E~ lA) = O. (Otherwise E~ lA) would be a vector belonging to the weight A + /X

which, since IX > O, is greater than A).
Let R be a representation of.:f in the linear space L, and lA, 1), lA, 2). . . lA, k),
be independent eigenvectors belonging to the maximal weight A. Consider the
subspace Il spanned by vectors

From this folIows that all the vectors
E_~E_pE_y . . . IA, 1) (/X,(l, y,... positive roots) (9}

M - r/X,...M,..., M + q/X (3}

obtained applyiug to IA, 1) all finite products of E~~'s (inoluding repetitions
of the same operators). We claim that Il is invariant and irreducible.
In fact it is invariant under H/s, and E_/s (/X> O) whereas applying some
E~(IX > O) to a vector of the form (9) we can move, using commutation relations,
E~ to the right, until it reaches IA, 1) producing zero, and leaving a combination
of vectors of the form (9). (It may happen that by commuting E~ with some E_p
we obtaiu some E~_p such that /X - (l> O. In this case we begin to move to the
right E~-fJuntil it reaches IA, 1». RencewhenR is irreducible,[1= R. In Il
there is only one independent vector with weight A. In fact any eigenvector of

are weights, but furthermore we have:
IV. these are the only weights of the form

M + klX (k = O, :t 1, :t 2,. 00)'

However beoause we wiII use in physioaI applioations only unitary representations of the OOIIl-
paot group assooiated to L, we have adopted this partioular setting frolIl the beginning.
17) In the case of A2, rl = 1 and we wiII give Iater the explicit expression of this operator whioh
in the physicaI applioations is identified with the square of the isotopio spin operator.
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H;'8 is a linear combination of vectors (9) difl'el'ing only by the order in
E~'8 appear. The corresponding weight is

A - k~IX- kpP - kyy - ... = A - L;k~1X (k. ~ O),
",>0

where k~ is the number of times E_. appears in (9).
An eigenvector belonging to A is obtained when

A - L;k~ IX= A Le. L;k. IX = O,
",>0 ",>0

which implies k~ = O; bence it must be proportional to IA, 1).
From this it follows the irreducibility of li. In fact suppose Il to be reducible.
Weyl's tbeorem (5.1) impliea Il to be completely reducible. For example suppose:

Il = VI EB V2 (VI' V2 invariant irreducible subspaces).

which (The proof of this theorem easily follows from considerations preceeding result
VI, and from property 8.4 X of simple roots).
(10) is quite analogous to X sect. 8.4 and a method similar to that deviaed in
sect. 8.7 d can be based on it in order to construct ali the weights of a given repre-
sentation.
We dispose weights into levels according to the value of L;kj. A is assigned to the
zero level. i
A reliUltanalogous to sect. 8.4 XI holda, i. e.: if M =1= A is a weight then there
is at least one simple root such that M + IX is a weight. This assure&us that
ali the weights of the (n + l)th level are obtained subtracting some simpJe
root to some weight of the nth level and that when we reach an empty level,
aU the succes8ive ones are' unoccupied. Now suppose we know aU the weightl:!
up to the nth level and M be a weight belonging to such leveI. Then M - IXIJ:)

is a weight if thc integer r relative to the IX(J:>'stringcontaining M is greater than
zero. Moreover

Then:

1.1,1) = 1.1, VI) + 1.1, V2)' lA, v,) € V,
snd in addition

Hj lA, l) = A, lA, 1) = Hi 1.1,VI) + Hi lA, 1'2)
2(M, IX(J:») 2 (IX(i),IX(J:)

r - q = (k) (k) = A~I:- Z;k, (J:' ,'....IX ,IX ,IX , IX

Now q is a known nmp,ber (because we know ali the weights up to tbe ntb level)
and so is the right hand side of this equation, so that we can ascertain whether
M - lX(k) is a weight or noto By varying M and IX(J:)we obtain ali the weights
belonging to tbe (n + l)th level.
Rence starting from tbe zero level, i.e. from the maximal weight (there are no
negative levels becauso A + IX(k)is not a weight for any IX(k»)by this recurrence
metbod we can construct ali the weights of the representation. This method does
not provide for each weight M the corresponding multiplicity, i.e. the dimen-
sionality of the manifold L},f appearing in (1). Being the representation determined,
up to an equivalence, by its maximal weight A, these multiplicities must be
derivable from A, M and from the roota, but no simple formula can be given
for them. Instead we will give later for SUa a simple rule which aUows one to
read directly these multiplicities from the weight diagram.
9.2.a) Till now wc have analyzed propertiea which are the same for equivalent
representations (in particular weight diagrams).
In prat'tical calculations it is necessary to pick-up from each equivalence class
a particular represelltative, Le. standard matrix representation of the elements
hi, e~,e-~. It is convenient to choose a representation in which a basis is conatituted
by normalized eigenvectors of H/s aa weU as of the other commuting operators
which are necessary to remo ve degeneracies (sect. 9.1). Of course with this ohoice
the H/s are represented by diagonal matrices, with coefficients determined by
the weight diagram.
Using the commutation relations and the string property of weights, one cali
determine the matrix elements of E~, E_~ up to certain phase f/loptors. The proce-
dure is quite analogous, although considerably more complicated, to that employed
in usual angular momentum theory [8]. It is then necessary to make a definite
phase convention. At the same time this convention fixes phases in the Clebsch-
Gordan coefficients.

i.e.
(Hi - Ai) lA, VI) + (Hi - Ai) lA, V2) = O

(H, - Ai) IA, VI) EVI; (Hi - Ai) IA, V2)EV2 (by invariance of VI' V2)
so that

(H i - Ai) lA, VI) = O

and tbe same for IA, V2)' Rence in li there exist two independent vectors IA, VI)'
IA, V2) belonging to the weight A, which is impossible.
Rence lA, VI) or lA, V2) must vanish. Suppose lA, 1)1)=1=O, then

lA, 1) = lA, VI)

which implies II c VI whereas by hypothesis 'lI:::> VI' We conclude that
Il = VI' V2= O, and li is irreducible.
The great relevance of the concept of maximal weight suggested in part by pre-
vious considerations can be appreciated from the foUowing theorems due to
Carta n.
VI. Two irreducible representations having the same maximal weight are equi-
valent.
VII. An r-component vector A is the maximal weight for some irreducible repre-
sentation of :t if and only if

2 (A, IX(i»)
AGI = (1X(i), IX(i)

is a non negative integer for any simple root IX(i)of :t.
Rence, once we have chosen a set of simple roots IX(i),any coUection of non
negative integers (A~.A~., . . .A~,) ulliquely defines an irreducible representation
of :t and aU representations are obtained in t.hifjway.
VIII. If A is a maximal weight of a given irreducible representation of :t', then
any other weight M has the form

M = A - L;kiIX(i)
i

IX(i) = ith simple root

k, = non negative integer.

(lO)
9.3.a) Weight diagram of SU2

The Lie algebra of S U2 has rank one, so that its irreducible representations are
characterized by a single non negative integer A~, . For any maximal weight A,
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we have:

2(A, a(l»)

(a(l), a(l») = Aa.

1
2 - al.!!l

g
1

- al al
g

al

2AI

Since al = 1 (sect. 8.7 a) we see that Al i. e. the covariant component of the
maximal weight along a(l) is an integer or half integer number which we call

i. There is only one string i.e. the a(l)-string containing A, so that by applying
E-al') to the eigenvector belonging to A, we generate all the vector space of the
representation. There are 2i + 1 independent vectors at all, i.e.

lA), Kal') lA), (E_a(l»)2IA),...,(E_all»)2jIA); (E-al.»)2j+l!A) = O

so that an irreducible representation with Aal = 2i is (2i + 1)-dimensional.
The weight diagram is one dimensional and has the form:

. .. ...
-j -}T1 -j+2 ... j-2 j-l j

so that the eigenvalues of ha = i I a range from i to - 1-

9.3. b) W eigh t diagrams of SUa

Being SUa of rank two, its irreducible representations can be labeled by two non
negative integers (m, n) where, with the notations of fig. 2, we have

2 (A, a~
m = (a2' (2)

2 (A, aa)

n = (iXa,iXa)
(11)

and the corresponding weight diagrams are two-dimensional.
Now a2, aa are linearly independent, so that we can write

A = n2iX2+ naaa

and, by taking the scalar product of both members with iX2and with iXa,we obtain

m = 2n2 - na

n = - n2 + 2na
i.e.

2m +n
n2 = -3 na = m + 2n3

Hence with respect to the basis chosen for roots in sect. 8.7 c) we have

A ==
(
~ m - n

)2Y3 ;-6-'
(12}

,
~
!
,
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These components are respectively the eigenvalues of HI and H2 on the manifold
LA. We will constructnow the weight diagram for an arbitrary irreducible repre-
sentation (m, n) with a graphical method which lead to the resultmore quickly
than the generai one, outlined in sect.
9.2.
i) We draw with respect to two ortho-
gonal axes the vectol' A of components

(m + n/2 Y3, m - nf6) as weli as the two
simple roots iX2'aa of components

(1/2113, 1/2); (1/2 113, - 1/2).

(see fig. 3).
The a2-string containing A consists of the
m + 1 weights .

Mi = A - iiX2; O ~ i ~ m.

r,

The end point of Mi is obtained by repor-
ting i times the vector - a2 starting
from the end point of A. Ali these points
lie on the segment b, spacing between two
consecutive points being equal to Ia21, so
that the lenght of b is equal to m Ia21. By considering the aa,string contai-
ning A we obtain the segment a, of lenght n liXal= n Iaal in an analogoUB way.
ii) There are no weights ending in the dashed region A: in fact all the weights
must be of the form

M = A - k a2 - h lXa,

Fig. 3.

k,h;SO.

iii) From (7) we see that if a is a root, by reflecting a weight through an axis
orthogonal to IXwe obtain another weight, so that the weight diagram goes into
itself by such operation.
Let us indicate with 1"1,1"2'I"athe axes through the origin orthogonal to IXI' a2' aa'
Reflection through I"amust carry a into itself (so that I"aintersects a in its mid-
point) and send b into ba. Hence in the region B there are no weights (by reflec-
ting such weights through I"awe would obtain weights ending in A). Furthermore
ba contains the end points of new weights which are the reflected of those ending
in b.

Segments a2' al' bl are obtained by reflections through 1"2and 1"1'The figure so
obtained has the properties that no weight ends outside it and there are weights
ending on its vertices and on it8 sides, distances between two consecutive end
points being equal to IIXII = 11X21.

Let us see now how we can find all the weights of the diagram.
Consider an arbitrary weight M = A - iIX2- hlXa (i, h non negative integers).
When i ~ m, A - i!X2 is a weight ending on b, so that all weights M with
i:;;;; m can be obtained from strings starting from weights ending on b. When
i ~ m, we write

M = /1 - mùi2 - (i - m) (iX2+ 1X2)- [h - (i - m)]aa,
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and now, being
O~i-m~n

has just these properties. We note that

-$

H' - Y3HT'I.= H ''lo + E' E' + E' E' l - ll l -l -l 1 -

Exl = Y3EH

where H~, E~, E...!lsatisfy the same eommutation relations as the basis elements
of a representation of Al (in faet they eorrespond to tbe elements h., e~, e--1
defined in seet. 8.7b). In any irredueible representation (m, n) of SUa, the ope-
rators H~, E., E-. generate by themselves a representation of SU2, in generaI
redueible. The irredueible subrepresentations of SU8 inside (m, n) are eharae-
terized by tbe eigenvalue T(T + 1) of Tt,(T = integer or baIi integer number).
Considering beside T8 tbe operator 2H2' one ean sbow tbat in any (m, n) represen-
tation, for any pair of intcgers /, g sueh tbat

the veetor
Mi-m = A - mIX2 - (i - m) (IX2+ IXa)

is a weight ending on a2' so that M belongs to the £Xastring eontaining M;-m.
Henee the IXastrings of the weights ending on b and a2generate the whole diagram,

(1.0)
3

(0.1)
:;

( 1.1)
8

m+n~/~m~g~O

there is exaetly one SU a subrepresentation witb

T=/-g
2 '

2
2Ha= / + g -"3 (m + 2n)

(Weyl's branehing law).
For examplein tbe (1, 1) representation tbere are:

(3.0)
10

(Ù)
27

We shall see later that in the eightfold way model tbe operators H., Ti, H2
are identified witb Ts Ta, Y, so tbat this rule gives us a deeomposition 01 eaeb
SUa supermultiplet into isospin multiplets.Fig 4. Weight dlagram8 of 80me SU. repre8elltatloll8

and it is easy to see that tbe end points oi the weights so obtained filI up the whole
bexagon with a triangular pattern as shown in fig. 4. In addition this figure shows
that the point8 are disposed in layers. Now the folIowing rule applies:
Weights of the externallayer are alI simple, i.e. not degenerate.
Starting from the external Iayer, multiplicity increases by one at each layer,
until a triangular path is reached: when this occurs multiplicity does not increase
any more. When n = O or m = O the hexagon degenerates in a triangle and
alI the weights are simple.
When n = m the diagram is a regular hexagon amI multiplicity increases until
one reach the last layer, which is constituted by a I>ingle point. In fig. 4 are given
the weight diagrams of some between the most used representations of S Va,
with the respective multiplicities.
'Ve said befOl'e that in any irredueible representation oi S U2, there is one operator,
commuting with HI and H2' whieh removes ali the degeneracies.
It can be seen that the operator

9.4. Tensor produet of representations

Let el and e'I.be two irreducible representations of :t into tbe linear spaces LI
and L'I.:

X €:t x ~ el (x); el (x) = linear operator in LI

x ~ ea(x); e'I.(x) = linear operator in L'I.

and let MI, M'I.,.. .; NI, N'I.,...; be the weights of the two representa.tions,
IMl), 1M2),... INl), IN'I.),. .. the bases formed witb the eorresponding eigenvectors
(for sake oi simplicity we do not write explieitly tbe eigenvalues of tbe additional
operators needed to remove ali the degeneraeies: tbey are bowever understood):

T'I. = 3(Hf + EIE-l + E-IEJ) (13)

el (hi) IMk) = H~l) IMk) = Mr IMk)

e'I. (hi) IN') = H~8) IN') = N: N').

Tben in tbe tensor produet spaee L = LI <8> L'I. wbieb is spanned by tbe basis'

IMk)IN')

(14)

1 submultiplet witb T = 1 2Ha = O

1 " " T = l/a 2Ha = 1

1 " " T = l/a 2H2 = -1

1 .. .. T=O 2H2 = O.
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the tensor product representation e of :t' is defined as

x -+ (e1 @ ez) (x) = e(x) e(x) = linear operator in L

(e1 @ea) (x) IMk) INI) = e(x) IMk) INI) = «(!l(X)IMk» INI) + 1M")(ez(x) IN!»).

Reealling the definition of tensor produet of two operators given in seet. 5.1
we see that

e(x) = edx) @ l(Z) + 1(1) @ ez(x) (15)

where l(i) is the identity operator in Li, With this definition, the representation
of the eompaet Lie group assoeiated to :t' whieh is generated by e, is just the
tenso!' produet of the representations of the same group generated by e1 and ez,
as defined in seet. 5.1.
For the elements e (h;) we have

e(hi) = H~l) @ 1(1) + 1(1) @ HiZ)
so that

e(hi) IMk) IN!) = (Mt + ND 1M") IN!),

i.e. the weights of e are obtained by adding together the weights of e1 and ez
in all possible ways. In particular for the greatest weight we have

A = Al + AZ

.1«1= A~I + A~"

(for any simple root IX(i» where Al and AZ are the maximal weights of 1?1and ez.
Moreover the eigenspace corresponding to A is always one-dimensional, and it is
spanned by the vector

1.11)1.12).

In generaI e splits up in a direct sum of irredueible components

e = EBeA"
A'

(16)

Each of them, aecording to VI, is charaeterized by its maximal weight A', which
we have ehosen as a label in (16). In generaI in this formula will appear many
irredueible eqnivalent eomponents, i. e. terms with the same A'. Although generaI
formulae ean be given, eharaeterizing whieh are the irreducible eomponents and
how many times they appear in (16) [18] yet these formulae are extremely com-
plicated lS) and are not used in practiee 19).

18) This is not the case of Al(SU2) for which the decomposition (16) is explicity given by
the welI know Clebsch-Gordan formula:

1. +i.

(! = (ej, @ IN.)= EB ei'
i~ li,-i.1

19) In practical calculations we need not only the decomposition (16), but also explicitJy the
matrix connecting the basis 1M"> IN/) to the busis spanning the irreducible components,
Le. we need alI the Clebsch-Gordan coefficients involved. Such coefficients in generaI have not
been calculated; however in the case of SU3 they are tabulated [29, 33] for alI tensor product of
interest in physics.
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Anyway it is a very simple task to isolate a particular term in (16), i.e- the
component eA where A is the greatest weight of e. In fact if we construct the
manifold spanned by the veetors

E_«E_pE_y . . . IA)

(<X,{J,y, . .. = positive roots: E_«,E_p,E_y,. .. lowering operators of e) we obtain
an irreducible invariant subspaee (see seet. 9.2) and obviously if we consider
the restrietion of e to this manifold, we obtain a representation having the maxi-

. mal weight equal to A. Being A simple, /?Aoecurs only once in (16).
Consider now the r-irreducible inequivalent representations ei with maximal
weights A(i),sueh that

2 (A(i), <x(k»

IX(k) I~" = (jit.,IX

Then we have: any irreducible representation e identified by the set 01 non
negative integers (.1«".1«.,. . .A«,) can be obtained by making the tensor produet

e1 @ el . . .,.--
.1«1terms

@ ez @ ez . . .' '

.1«, terms

@ ez @ ez . . .
,

.1«rterms
(17)

and isolating the irredueible component of greatest weight. In faet this eomponent
belongs to the weight

.1= .1«,,1(1) + .1«,A(Z)+... +.1«r.1(r)

whieh is just the maximal weight of e.

9.5. Contragradient representation

Given a representation e of :t in a linear space L, we ean eonstruet another
representation ewhieh is called the eontragradient (or adjoint) of e.
We first fix in L a basis in whieh the operators e (x) are represented by certain
matrices {e (x»)}; then we consider a linear spaee L* having the same dimen-
sionality of L. The representation e in L* is constitnted by the operators e(x)
which, with respect to a basis fixed in L*, are represented by the matriees

{e (x»)j= - {e(x)H = - [e (x)T]j.

Operators e defirred in (18) will be symbolically written as

(18)

l! = -eT.

For the elements of :t': hi, e«,e_«,we have

,

hi - e(hi) = Hi

}
for the representation e

e«- e(e«) = E«

hi- e(hi) = - Hr
}

for the representation (i,
e«-e(e«) ~ -E,!

25 Zeitschrift "l<'ortschritte der Phys!1<", Heft 7
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so that the eigenvalueof (i (hj) are just minus one times the eigenvalues of e (hj),
i.e. the weight diagram of (i is obtained by reftecting through the origin the dia-
gram of e. In partjcular (i is equjvalent to e il and only il jts wejght diagram js
invariant under this reftection.
Consider a vector x E L with components (Xi) and a vector y E L* with com-
ponents (Yj): by definition applying transformations e and (i,we have

X'i = L: elxk
J:

In the case of SUa we note that all weights diagrams are symmetrical for reftec-
tions around y-axis (this axis is in fact orthogonal to the root IXI)so that, to
obtain the diagram of the adjoint representation, we have only to reverse it with
respect to the x-axis.
A glance to figure 5 is sufficient to conclude that if e is the representation (m, n),
then (j is (n, m). In particular e is equivalent to (j if and only il m = n (in thiB case
in fact they have the same maximal weight).

, ~ li:
y, = £.. - el Yk'J:

'Having L and L* the same dimension, there exists always a one-to-one corre-
spondence between their elements. Let

9.6. Explicit construction of SUa representations

The 3 X 3 antihermitian tl'aceless matrices,

e = A(jA-I.

(

O 1 O

) (

O -i O

) (

1

,1.I=-~ 100 ,1.2=-~ i o o ,1.a=-~ o
000 o 00 o

(

O o 1

) (

O O i

) (

O

,1.4= - ~ O O O ,1.5= - ~ O O O ,1.6= - ~ O
100 iOO O

,1.7= - ~
(

~ ~ -~
)

,1.8~ - ~
(

~ ~ ~

)o i O 2 f3 O 0-2

O O

)
-1 O

O O

O O

)
O 1

1 O
(19)

x = A y X E L, y E L*

be such correspondence. If we transform x with e and y with (i, the resu]ting
vectors will not be connected by A, unless e is equivalent to (i

x' = ex, y' = (jy, then

x' = Ay', implies

Renca only if e "" (j we can identily L and L* in a way which is invariant under
e and (j.

satisfy the commutation relations given in sect. 8.7 c so that they are a 3-dimen-
siona] representation of the compact basis of A2' and their real combinations span
a representation (in fact irreducible) of the Lie algebra of SUa. The operators
representing h1 and ha, are (see seet. 8.7 c)

p j5

(

1 O O

)
i,1.a - ~ O -1 O

Hl = f3 - 2 f3 O O O

(

1 O O

)
- i,1.s - -..!:..O 1 O.

H2 = - - 6 .f3 O O -2

Fig. 5. From these we obtain thl'ee weights

We note that the definition of adjoint representation has its analogous if wc
consider thc group associated wjth .1', in that, if

Al =
(

1 1

)2y3'6 ; A2= (- 2~, ~); Aa=(o, - ~).
g -+ T(g) By considering the simple roots IX2and IXawe easily see that Al is the greatest

weight and that .is the representation of this group generated by e, then

g -+ T(g) = (T(g)-I)T
2(AI,IX2) = 1

(IX2' lX2)

is that generated by e. so that this representation is the (1,0) one, whose diagram is reported in fig. 4.

25*
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The adjoint representation is obtained by taking the matrices - Ar, and is the
(0,1) representation, inequivalent to the (1,0) one. These representations which
are the fundamental ones, being the only 3-dimensional representations of A2
will be called 3 and 3.
By taking the matrices

From (15) sect. 9.4 we see that the compact basis of the Lie algebra of SUa is
represented by the operators A(k) acting as

(A(k) X) il'''~m -
(A(kl.b. " b.. ,b. ., b. ., + b.., ]~k),X

. J In - "" '" 'm'." I,h'" ln1n '.'. "i.,.

1.8

T(aloo .aS) = ef.kÀk

(.1;)
X bi.i;. . . bj"jn' + . . . - bi.i; . . . bimin.' Ai;i. X

(ak real numbers), X b. .. - b. ., b.., lk). )X~;...~,,\'1.1. . . . '.', . .. In-. In-' JnIn ],... ln '

I weobtain the set of 3 X 3 unitary unimodular matrices which constitute a group of
operators in a 3-dimensional compiex space. This group is by definition S Va.
Repr-eSentation 3"generates the operators

where ..ljy)are the matrice!> Iisted in (19).

9.7. Let us consider the tensor product representation (reducible when k > 1):

T
- -}:.t ÀkT

(
2..k Àk-

(al...,xl)=e k = ek ).
(3).1;= 3 @ 3 @ 3 @ . . . @ 3.'-

k

, This is the representation which to each matrix of SVa associates the complex
conjugate matrix.
The linear spaces of representations 3 and 3 are

Instead of considering the irreducible subspaces, we focus our attention on the
operators which project on them. Suppose:

Lit = @ L. IX = labels irreducible subspaces.
La: generaI vector x indicated as (Xl, X2, xa)

L *.
a' Y " (Yv Y2, Ya)'

If Y" projects over L,,( Y~ = Y.), then we have:

a) Y.T(k)(V) = T(.I;)(V)Y. forany V E SVa;
b) there exists no Y.-, projecting on a subspace L., cL. commuting with

T(k)( V)'s, i.e. Y. are minimal projections;
c) Y;s are orthogonaI (Y. Yp = O when ,x 9= /1) and constitute a complete

set (~Y. = 1).
To characterize Y., we have to consider the set of alI operators commuting with
T(k)(V)'s.
Let us call p an ar'bitrary permutation of 1,2.. . k:

If Vilt is a matrix of S Va, then for the representation 3 we have

V --+ T(V): x' = T(V)x

X'i = L: Viltxk, .
.I;

whereas for 3

V --+ T(V), y' = T (V) Y
p: 1 --+ 1', 2 --+ 2',...k --+ k',

Y; = L: UiltYIt.
k where 1',2'... k' are again the numbers 1,2 . . . k rearranged in some way speci-

fied by p. We associate to p a Iinear operator p acting on LIt, defined as:The tensor product

Lr:; = La @ La @ . . . La @L; @L; . . . @L:
.~-'

m n

(pX)i ik = Xi.,...it'.

, is just the vector space of the 3m+n components objects (tensors) (sect. 5.1)

Such operators constitute of course a representation of the group of alI permu-
tations of k-objects.
Moreover:

Xi. .. . iml. . . .ln (il,...i..; jl,oo.jn = 1,2,3), (pT(.I;)(V)X}i it = (T(.I;)(V)X}i it' = Vi.'i Vit'Ìk Xi h =

= Vi" i,' . . . Vit,Ìk'Xi., ...h-= V i.' i.' . . . Vit' it' (pX)i it =and the product representation of SVa in this space is constituted by the opera-
tors T~r:;.,>(V) defined as (aum over repeated indices ia underatood)

(T'm) (V)X )~'...~'"= V ,V., V. , il ., U. . , Xi;... ~"J'(n) h .. .ln i,i, '.'.' . . i.".", ""... h.ln h... Jn . (20)

= Vi,;. . . . VitÌk (pX)i...,it = (T(.I;)(V)pX)i ik,

Le. p commutes with T(k)(V). Let us caJl1:/&the set oi aII the operators p and
of alI their linear combinations: clearly alI the elementa oi 1:/&commute with
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T(k)(U)'S, but the importance of 1:l:lies in the fact that the converse is also true,
i.e. [21]:
alI the operators commuting with T(k)(U)'S belong to 1:/l'
Hence Y.'s (which reduce the representation) are in 1:/l.
Their characterization can be achieved using the so called Young tableaux.
Consider an arhitrary partition of k objects into groups of Al' 1.2. . . Ar elements
(Al ~ A2~ ... ~ Ar). This partition is indicated by a tableau made of r rows
containing Al' A2' . .., Ar boxes:

Al

Al + .12 + ... + Ar = k.

Ar

Fili now this tableau with the numbers 1, 2, ... k in alI possible ways consistent
with the rule: numbers must increase, in each row from left and in each colmnn
from above.

Consider for example k = 4. Then we have five tableaux:

To each tableau determined by a partition Al'''' Ar (.11+ .12+ ... = k) and by
a particular arrangement of the numbers 1, 2. . .k consistent with previous rule,
we associate an operator Y (Young symmetrizer) defined as

Y=QP, (22)

p = sum of all operaton; associated to permutations of 1,2... k which leave
unchanged the rows of the tableaux = 2:p, Q = sum over alI permutations q

p

which leave columns unchanged, each being multiplied by its signature Q = 2:bqq.
p

Group Theory and Unitary Symmetry Models 349

Let us indicate permutations (as welI as operators which represent them) in the
cyclic notation: for example:

(1 2 4) (3) or simply (1 2 4)
stands for:

1-72

2-+4

4-71

3-+3
and:

(l 4) (3 2)
stands for :

1-74

4-71

2~3

3 -+2.

Then e.g. tableau (21) f is associated to the operator:

Yf = (e - (12) - (34) + (12) (34»)(e + (13) + (24) + (13) (24»

(e is the identity permutation).
Applied to the gene"'!,l tensor Xi,i,i.i" this operator gives the tensor

x

~
[;G] x = Xi.;.i.i,+ Xi.i,i.i, + Xi.i,i.i, + Xi.i,i.i,

~ - Xi.i.;.i, - Xi.i.i.i, - Xi,i.i,i. - Xi,i.;'i,
[;J;J - Xi.;,i,i. - Xi.i,i,i. - Xi.i,i,i, - Xi,i,i,i.

+ Xi.i.i,i.+ Xi.i.i,i.+ Xi,i.i.i,+ Xi,i,i.i..

(
Il
~

It can be shown that:

i) all Y's are proportional to projections:

h
Y. .,

so t at - 18a prO]ectlOn,c
Y2=cY

ii) Y's are minimal projections, and

YY'=O,

when Y' corresponds to a different tableau than Y (Le. differing forthepartition
Al,A2"" Aror for a different arrangement of the numbers l, 2,.. . k);
iii) for a given k the set of projections Y associated to alI possible Young tableaux
of order k completely reduces the representation (3)1:;

LIIIJ
BTI

12 ao
1,1,1,1.1

Al= 4 Al = 3
A2= 1.3= A4= O A2= 1 1.3= A4= O

1.3= A4= O Al= 2
.12=,.13=1
.14= O

which, filled in alI possible ways, give:

I OEIIIIJ tHE
a 4 b 3 c 2 d 3 4 e

tHE
m; m: r Wl

2 4
2 h

2.
(21)l

f 4 3
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iv) Y's corresponding to the same partition ,11'" . ,l" diftering by the arrangement
oI 1,2... k pl'Oject over equivalent representations.
It can be easily verified that any Young symmetrizer projects over tensors anti-
symmetrical in indices appearing in the same column oI the corresponding tableau.
Now our indices run over 1,2,3 so that each tableau with more than three rows
gives an identically vanishing projection (this if>the case oI the tableau (21)1) and
need not to be considered.

We want to see now how each irreducible (m, n) representation oI SUa can be
ohtained isolating a particular irreducible component in a suitable product
3 @ 3 . . . @ 3 [21].
Consider the tensor product T'm+2n) = (3)'11+2". We claim that the irreducible

. manifold L characterized by the Young tableau

then contract indices il' i2'00' i" ~ith E.,ld,' E..I.i.,'" Using the identity:

EB/iEjii' = tJd{,/i' - tJd'{,/i

as welI as antisymmetry oI tensor X in the indices oI the same column, the wanted
result is obtained.
Moreover a simple but rather tedious calculation leads to tbe relation

T::~ (U) F = T::: eX = Epm+2" (U)X,

where Tf'::/(U) :laany element of tbe representation (3)m X (3)" = 3 (8)3 . ..~0

Il 12"ln' Im+nlm+. + l ... m+2n
(23)

- - m

@ 3 .. .@3 and with Ewe have indicated tbe mapping (24).This sbow14that tbe-----.--" .
image Leof L into L:::\)is an irreducible subspace for tbe representati~n (3)"1X (3)",
whose restriction to L' is equiv~lent to tbe restriction af T<m+2n)to J..
ProoI will be complete if we show that the vector belonging.to tbe maximal weight
of (3)'" X (3)' is contained in L' (see sect. 5.4).
Now, according to the matrices of sect. 9.6, the vector belanging to tbe maximal
weight of tbe representation 3 istransforms as the (m, n) representation.

Let us calI L::~)the vect,or space oI tensor with m upper amI n lower indices; then
the Iollowing mapping: (X)i = {,il = (1; O, O),

F~.+.:ooin+..- E" E' . . XI1100.). - Il'' '.+>IH"la'.'n+mH
~1 ~2 ~"+1

whereas for the representation '3 it is

(Y),= tJ'2= (0,1, O).
~n+m+l ln+m+2' ...

(24)
Rence the tensor oI L:r::/ belonging to tbe maximal weigbt of (3)"1 @ (3)" ÌB

O" In ,hon, l'm ~ '''Hh' X~
(we contract witb Eiil<each pair oi indices belonging to the same column) induces a
one-to-one correspondence between L and a !inear maniIold (which we will specify
later) contained in L~:~~.That (24) is a one-to-one mapping can be seen by showing
directly that iI

(F)~..+>:..ì.+m= oi.+,1 Oi.H l . . . Oi.+..l . {,j 2 . . . Oj 21&00')" . .

and we have to show that ]i belongs to L',
Consider the tensor X (belonging to L) defÌned as

then
p:n~ ',,,,,.,XffiTI~ ''''''''X'ffiTI'

l~Effi
(
-1

)
"

1 ... 1 ...11= 2
3 . .. 3

XI =0,

X~ d'ffiD

~1 i2 in+1

when indices appearing in columns are not permutations oI 1 and 3, and some of
tbe last m indices in first row is different from 1. Then ob, iously we have

(F)a1 ~ 'w'h,XffiTI .
Le. F belongs to D, Q.E.D.

To do this, write explicitly the expression

o = E;,i, ì.+..+.Ei.i. i,,+m+.. . . (X - X')

~n+m+1 ~n+m+2

l .. ... n+m

in+m+1 ..
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For example previOUB theorem allows one to conclude that linear manifolds on
which tableaux (21 b, c, d) project, transform as the (2,1) representation, whereas
those eorresponding to (21 e, f) transform as (0,2).
In the eomposition of the tensor product (3)1:,also tableaux with three rows appear.
To which irredueible representation do they correspond1 We wiIlsee this referring
to an example.
Conaider the manifold of tensors

belonging to the produet (3)' (tableau (2li».
It trunsforms under SUa as

(T(')(U)X) r' = Ui.i.UiliIUi,i,Uiat'xr'

.1 '. 11 1.

ia i2

ia fa

Being 'x antiaymmetrieal in il' ia, ia, we ean write

i.e.

X

r =E" Xr.. ,,/ala
1

.
11 1. 1. '
1, 2
ia 3 '

T(4) (U) Xr' = (Ui.t. UililUi,i, E;,;lil)Uia;ax,.
.1 '. 1.
ia 2
~ 3

= det U Eiai,i,U;,i. X'. = Ui.;.X

r1

' .1, .1 .
2 i2
3 ia

so that the irreducible component (21 i) is equivalent to the representation 3, which
corresponds to the tableau O. This reasoning ean be repeated for tableaux with an
arbitrary number 8 of eolumns with three boxes, leading to the conclusion that:

. I LJ-.:JI ~+-m-+ +-m-+
Un-+ is equivalent to +-n-+
+-8-+

il: Gronp Theory and Unitary Symmetry Models

Using these arguments we find, for example, the decompositions:

353

(3)' = (4,0)+ (2,1) + (2,1) + (2,1) + (0,2) + (0,2) + (1,0) + (1,0) + (1,0)'-- ' ' '. . '

a bcd ef ghi

(3)2 = (0,1)+ (2,0)

(3)a = (3,0) + (1,1) + (1,1) + (0,0).

A formula ean be given for the dimension of the (m, n) representation [21] by
counting independent tensors of a given tableau

dmn = (1 + m) (1 + n) (1 + m ~ n).
(25)

Note that, whenthis produees no ambiguii;y, we wili use d.. to indicate i;he re-
presentation (m, n) (m È';;n) and d",. to indicate its contragradient (n, m) (for
example 10 for (3,0) and 10 for (0,3).
We want now to characterize the manifold L" into which L is mapped by (24).
More definitely we show that L" is the linear manifold of all tensors Ft:k' sym-
metrical in upper and lower indices and traeeless, Le. such that

F~ ~I"£.. - OIl,..i..- . (26)

We show this in two steps:

i) any tensor in LI is a linear eombination of tenso'rB with the stated properties. In
£act we proved before that in La there is the tensor

(F
-

)i...i.. .JI;.l .JIi 1 .JI .JI
i...i" = U ... u" Ut.s" Uj"S'

which of eourse is symmetrieal and traeeless. Consider tensors
'.

F(U) = T::~)(U)F,

where U runs over the whole SUa. We have

F(U) i...im U U U
-

U-.JIi'l.JI; '1 .JI -i...i"= i,i,'... imi..' t,t,'.. i"i,.'u' ... u" ... Ui,,'a-

= Ui,t . . . UimlVi.2. . . V;,,2'

F (U)'S are of eourse symmetrieal in upper and lower indices and. due to unitarity
of the U's, they are traceless. The linear manifold spanned by F(U)'s is eontained
in L" and is obvously invariant for the representation (3)m X (3,>.. Since L" is
irreducible (as we saw before) and this manifold is surely not zero, we eonolude that
it is identical with il; Le. L" eontains tensors symmetrical and traeeless.
ti) Cali L';:the manifold of ali tensors symmetrioal in upper and lower indices and
traceless. From i) L~:=>L". We show now that the dimension al Lr: equals that oi
L",80 that L:' = L".
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(
m + 3 - 1)(

n + 3 - 1

)= ~n+ 2r Jn + 2)!=
m n m! 2! n! 2!

- (m + 2)(m + l)(n + 2)(n + 1)
- 4

(27)

is associated to the representation (kr,..kn-r), and tableaux differing by an arbi-
trary number of columns with n rows characterize equivalent representations. The
dimensionality of the representation (kr,..kn-r) is given by the formula:

on-2r n-l-l

(
k + k + + k

)d(kr,..kn-r) = q 'l! 1 +' 87+ ~. 8+1.

A tensor FJ::j::' symmetrical in upper and lower indices, has

independent components (remember that indices i, j go over 1, 2, 3), and the num-
ber of independent conditions (26) equals the number of independent components
of a tensor symmetrical in (m - 1) upper an (n - 1) lower indices, i.e. it is equal to:

We list here for example some SU 6representations, together with their dimensiona-
lity (the contragradient of (kr . . . kn-r) is (kn-r' k"-2' ..,kr»).

D OIJ

(
m - 1) + 3 - 1)(

n - 1) + 3 - 1)= m(m + 1)n (n + 1).
m-l n-l 4

(28)

Substracting (28) from (27) we obtain:

dim (L::') = (m+l)(n+l)(l + m~~)=dimL.
(1, O, °, °, O)

Dim: 6
(O, °, O, 0,1)

6
(1, O,°, 0,1)

35
(3, °, °, O, O)

56

Because dim LE = dim L being (24) a one-to-one mapping, we conclude:

Le. LE = L~'.

Reduction of tensor product of arbitrary SUa representations.
In finding the irreducible components oi the product (m, n) <8> (m', n') again the
technique of Y oung tableaux can be used. We give here without proof a simple rule
for making thi!! reduction [22]. We illustrate this rule referring to the product
(2,2) @ (1,1).
Wl'ite down the corresponding tableaux, having filled with symbols a and b first
and second row of one of the two, arbitrarily selected:

dinl LE = dim L::'

Hence we ha ve found another possible realization of the (m, n)S Ua re presenta ti on :

the space of tensors FJ::::~::symmetrical in upper apd lower indices and traceless,

transforming as:

Fi,...i", --+ (F, )! i.n,= U. " u.. , U. '.. U. " Fii...i",:h.. .i.. h... i.. '." . .. 1",1", hi" . i..i" h... J.. . ffiTI ~.
A large pal't of the above l'esults can be generalized to representations of an arbi-
trary group SUn. According to the generaI results of sect. 9.2 the irreducible SUn
repl'esentations can be labeled by (n -1) positive integers (kr, k2,.., kn-r). In parti-
cular the representation (1, °, 0,..,0) is always made up with SUn matrices
themselves, and is n dimensional. Results i) ii) applied to the reduction of the ten-
sor product (nl = n <8> n <8> . . <8> n hold unchanged: in this case of course indices

r 2 k

il, . . il<run over 1,2,...n, and we have to consider tableaux containing up to n
rows.
A tableau of the form

Then add to the empty tableau the boxes of the first row of the aecond one in aH
possible ways consistent with the rules:
i) there must never appear two a's in the same column;
ii) for each l'esulting tableau, containing ÀI'À2'À3boxes in first, second, third row,
it must be Àr;S;À2 ;S; À3'
In 0UI'case we have six possible tableaux:

I +--k2--+

+--kn-r--+

EfFIE0 EEff0
(1) (2) (3)

.
(4) (5) (6)
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To all these tableaux we add now, in all possible ways, alI boxes containing b,
again consistently with ii) and with the additional rules;
iii) there must never appear two b's in the same column;
iv) for each tableau so obtained write the sequence of a's and b's obtained reading
first row from right to left, then the second row from right to left and so on: only
tableaux are allowed such that at any stage of this sequence the number of a's
already read is greater than or equal to the corresponding number of b's.
Fromtableau (1) we obtain the following allowed tableaux

The same procedure can be applied to the reduction of the tensor product of arbi-
trary SUn representations, labeling with c, d, ... boxes in third, fourth, .. rows. At
the end of course we will drop tableaux containing more than n rows.
Consider the case of SUe and the product:

~ ?
(~ ;, not allowooby iv))

from (2), (3), (4), (5) we obtain respectively:

(2) -+ ~
~ .h=0tillj

(6) ~ ~'tiliF

bTIfJ
Le. 35 (8) 35 = (2,°, O,O,2) + (2, O,0,1, O) + (1,0,0, 0,1) + (O,1, O,0,2)

+ (O, 1, O, 1, O) + (1, O, O, O, 1) + (O, O, O, O, O),(3) -+

(4) -+ ~ (6) -+ P
fitJ

lO. Eightfold Way

10.1. We are now in position to build up a concrete theory for strongly intera.cting
particles. The first thing to do, after what we have said in sect. 7.5, is to identify
particles with the sa.me spin and the same parity with linea.rly independent vectors
inside certain irreducible representatioIlS oi

8 (8) 8 = 1 + 8 + lO + 10 +27

8 (8)10= 35 + 27 + 10 + 8

8 (8)10 = 8 + 10 + 27 + 35.

G X U1(N),

where G is a Lie group of rank two and U1(N) is the baryonic number gauge group.
This identification fixes the connection between infinitesimal generators of tbe
group and isospin and hypercharge operators.
Of course we must preserve the isospin structure oi the particles, in that particles
belonging to the same isomultiplet must go into the same irreducible represen-
tation.
The procedure is not straightiorward since there are three non isomorphic rank
two groups, and in addition particles do not exhibit any impressive regula.rity,
apart from the isospin multiplet structure.
Hence at a pure classificatory level one has no clear indication on which the un-
derlying symmetry group, actually is. Furthermore, once a group has been chosen,
it is Bot clear which are the correct assignments oi the particles to its irreducible
representations.
In fact many different models have been proposed and in principle the right choice
should emerge irom a comparison oi theoretical predictioIlS with experiments.

Representations corresponding to the so-obtained tableaux are then the irredu-
cible components oi the tensor product considered (as previously observed we have
not to consider tableaux with more than three rows):

(2,2) (8) (1, 1) = 27 (8) 8 = (3,3) + (4, 1) + (4,4) + (2,2) + (2,2) + (3, O) +
+ (0,3) + (1,1).

The dimension oi (2,2) (8) (1, 1) is equal to 27.8 = 216, which using (25) can be
checked with the dimension of the second member.

Reader can easily obtain the iollowing decompositions:

35 (8) 35 = (1,°, °, °, 1)(8)(1, °, °, O,1)

GEJ FFJiliJ
I I la

b I I la-
(8) l...::..t = I + + +

cl

!J cr tfJ "

-. r-r-l
a a a

a b a b b a

+1 c + c + c + r-ti
cl cl
e

e
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Rowever t,he great difficulty is that even large discrepancies could be due not to a
substantial failure of the model, but to t,he effects of the symmetry breaking inter-
actions.

As stressed by A. SALAM[23], it is hoped that a dee per understanding of the latteI'
will finally lead to a non-ambiguous interpretation of many possible tests.
The main informations a symmetry model provides us, are of the following type:
i) whatever the model is, one finds that the known particles alone do not arrange
themselves in complete supermultiplets, and one is then led to assume the existence
of new particles with definite values of Ta and Y. One can even guess their masses
and the most likely production and decay modes.
However there is no a-priori reason to require completely filled supermultiplets.
in fact one can imagine situations in which the symmetry breaking interactions,
which are certainly present (see sect. 7.5), make some members of a supermultiplet

so unstable, that they are not practically ob-
servable. On the contrary the discovery of a
predicted particle provides strong evidence in
favour of the implied model;
ti) from the symmetry scheme one can deduce
relations between amplitudes of different pro-

r+ - cesses; (see the example of iso-spin, sect. 7.4).
tii) by assuming certain transformation pro-
perties of weak and electromagnetic interac-
tion Lagrangians of hadrons under the sym-
metry group, with the aid of Wigner-Eckart
theorem (sect. 6.3), one can derive relations be-

~'ig.6. tween theamplitudesof weakandelectromagne-
, tic processes involving such particles.

In what follows, we will focus our attention o~ the "eightfold way" model pro-
posed by NE'EMAN [24] and GELL-MANN [3], which has proved to be the most
successful one 2°).
10.2. a) In the eightfold way model one chooses SUa as the underlying symmetry
group, and associates the eight "stable" baryans N, 1:, A °, E to the basis vectors of
its (1, 1) eight dimensional representation, as indicated in fig. 6.
We can easily deduce the relations between Ta, Y, and the diagonal elements Hl,
Ha, by remembering (sect. 9.3 b) that in the representation (m, n) of SUa the eigen-
values of Hl and Ha correspanding to the maximal weight A are

-r-

- 3°

'

A =(
m+n m-n

)2y3' 6 .
Rence, with m = n = 1 we have

A == (~~', o).

If we want to associate to IA) the 1:+ particle, we have to put

Ta = V3 Hl (1)

:2°) For a concise discussion concerning the oth6r 8ymmetry models 866 [2,), 26].

I
I

~

.
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and in addition, by requiring p to correspand to IA - /Xal),

359

Y = 2Ha.

The operator T2 defined in sect 9.3b, which remaves alI degeneracies inside a
supermultiplet, is just the square 01the isospin. We will choose normalized simulo
taneous eigenvectors of TI, Ta, Yas a,basis in any irreducible represeni;ation.
The pseudoscalar mesohs also fit very nicely into an octet according to tbe scheme. reported in fig.7.

-Jl-
p+-

JI+- -p-

IC Ro KO- i("°

Fig.7. Fig.8.

i

~

It should be noted that the 11meson, which quite naturalIy completes the octet,
has been discovered after the introduction 01 the eigbfold way.
When we try to arrange the vector mesons into tbe scheme, we get in troubJe.
In fact we would Iike to assign the nine mesons
p(T = 1, Y = O),K*(T = 1/2'Y = 1), K*(T = 1/2'
Y = -1), (ù = (T = O, Y = O), tp(T = O, Y = O)
to the same irreducible representation. However,
since Ta, T2, Yare a complete set 01 commuting
operators inside each irreducible representation, it
is not possible to fit in the BameBupermultiplet two
distinct isosinglets «(ù,'P)with tbe Bamehypercharge.
The usuai assignment is to put eight mesons into
an octet (fig.8) and the remaining one into a singlet
(i. e., in the (O,O)representation), and the question
arises whether the (ù or the tp particie is to be put
in the singlet.

We shall see in the folIowing that this queBtion can be consistently resolved.
In considering the baryon-meson resonances, we have to find a representation
containing an isospin 3/amultiplet with hypercharge equal to one, corresponding
to the well known Nt12' 7t'- N resonance. The Iowest representationa contai-
ning this isomultiplet are 10 and 27. The first one accomodates wery well the
N = 1, JP = 3/a+ resonances Nt12'Yt, E*, Q- (fig. 9).
Whereas Nt'2' Yt, E* were at hand when it was proposed to aS8Ìgn them to
the decuplet, the Q- waSnot yet known : the model predicted its quantum numbers
(N = 1,T = O,Y = - 2) aS well as its mass Mo = 1676 MeV.

N'

'Jr

Fig. 9.

26 Zeltschrift "Fortschrlttc der Physlk", Heft 7
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I

We report a table deduced from [28]: in it we report the quantum numbers (in-
cluding masses) of the particles we have arranged in the scheme. In the same 00-
ference many other particles are listed which we have not considered here mainly
for two reasons: first of alI the quantum numbers of many of them are at this time
not welI established (somet.imes even their existence isdoubtful). Secondly it appears
that the situation is so incomplete to make not very useful an even tentative
grouping of such particles into supermultiplets.
10.2 b) It is convenient for further applications, to identify the eigenstates of

Ta, T~, Y, (to which particles are Rssigned) inside the tensor representations we
have described in sect: 9.6,9.7.

'l'he particular symmetrical tensors T;:::t defined as

[

1 when il . . . im is a permutation of
11 . . . 1 22... 2 33. . . 3 and il . . . iNis

' ' '---'I.-'
. - k k k

T~"'~" - 1 a a1. . .1n-

I

a permutation of 11 .. 1 22. . . 2 33 . . . 3'---'I.-' '---'I.-' ----..-..
hl ha ha

O otherwise

'-t

, On this indications extensive searches for the Q- have been carried out, until a

particle with right mass and hypercharge has been found studying K-p reactions
at 5.0 GeV/c [27].
The positive result of the search has been considered as one of the most brilliant
successeS of the eightfold way mode!.
There is another particle, namely the Yri (mass = 1405 MeV, T = O, Y = O,

I JP = l/a-) which usualIy is !1ssigned to a (0,0) repreElentation.

are, according to Bect. 9.6, eigeustates of Hl, Ha (inside the representation
(3)n! Q9(3)n) with weights

(kl - hl)Al + (ka - ha)A2 + (ka - ha)Aa,

where Al.2.a are the weights of representation 3. Rence they are eigenstates of
Ta, Y with eigenvalues

1 1
T a = - (kl - hl) - - (ka - ha)2 2

112

Y = 3 (kl - hl) + 3 (k2- ha) - 3 (ka - ha).

'l'hey are a basis in the manifold of the tenSOf8 which are symmetrical in upper
and lower indices, so that to obtain a basis in the (m, n) representation, which
diagonalizes Ta and Y, it iO!necessary to take those linear combinations of (1)
which are traceless. Among them we will select those linear combinations, which
correspond to eigenstates of T2.
In what folIows we will be concerned only with the eight and ten dimensional
represen tations.
In the case of the (8) representation we have to consider tensors with two indices.
We have not to impose any particular symmetry property, but only the trace
condition:

T1= O.

'l'hereare nine independent tensors Tj:

(T(l»)} = QilQil

(T(2»)j = QOQia

(T(3»)j = QOQi3

Ta
O

1

l/a

Y

O

O

1

26*

Name of the par- N Jp
Mass

I

y T
tiole (MeV)

N 1 l/a+
(p) 938.2 1 l/a
(o) 939.6

-

AO 1 l/a+ 1115.4 O O
-

+ 1189.4
1 l/a+ -1197.1 O 1

1192.4
- -

8 1 l/a+
- 1321

l/a1314 -1

-

y 1 1/2-1 1405 O O
-- -

N* 1 3/a+ 1236 ::f::2 1 3/2
-

yr 1 3/a+ 1382.1 ::f::0.9 O 1
- -

8* 1 3/2+ 1529.1 ::f::1.0 -1 1/2
- - -

(}- 1 3/2+1 1675 ::f::3 -2 O
-

O 0-
::f::139.6 O 11t 135.0

- -

1) O 0- 548.7 ::f::0.5 O O
-

K O 0-
+ 493.8 1 1/2498.0

-

p O 1- 763::f:: 4 O 1
-- -

(ù O 1- 782.8 ::f::0.5 O O
-

'P O 1- 1019.5 ::f::0.3 O O
-- -- -

K* O 1- 891 ::f::1 1 1/2
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T(I), T(5)' T(9)
combinations

T3 Y

(T(4»)}= d!2dii - 1 °
(T(5»)}= di2dia ° °
(T(6»} = di2dia _1/2 1

(T(7»} = d!3di2 _1/2 - 1

(T(8»)} = d;3di2 1/2 - 1

(T(9»)j = (jia(ji3 O O.

are not traceless. There are only two independet traceless linea

Factors 1/Y2. 1JVB have been introdnced so that our basis tensors are normalized
with respect to the scalar product

(T,T') = 2:Tj (T'» = ',I-'race[T (T')+]. \
il

i) In the same way for pseudoscalar mesons we have thl" IDat~x:
't'

ì
1.1=

1tO 'Yj

yi + YB
no 'Yj--+-
yi Y6

w K+\

K- KO
~'Yj

'-V.r

KO,.-

T(1) - T(5)

T(l) + T(5) - 2T(9) (2)

which span, together with T(a)' T(3)' T(4), T(6)' T(1)' T(8) the (1.1) represen-
tation. It is worth noticing that the generai tensor of (1,1) can be thought as
a three by three traceless matrix, and the transformation law 9.6 (20) can be
written as a matrix product

T -+ T' = UTU-1 U E SUa.

Then the operators representing the S U3 Lie alge.bra act as

., ,

For what concerns the 10-dimensional (3,O)represeriti.i;ioQ,jv~'(itptioe'j;ha~~f.;'ts
spanned by the symmetrical tensors: ,'" ,.p, ,;,1':: :L+,'

"L

{

1 when ijk isa permutation 01 (IX,p,')' = 1,2,3)
(T )""-

.py - ° otherwise

(

01°

)
~+ -+ °O O ;

O O O

AO -+

1

yB ° °
1

O - O
yB

O O -2
yB

111
112
122
222
113
123
223
133
233
333

(AT) = [À,T].

where À is any linear combination of the matrices given in sect 9.6 (19).' It is
then very easy to see that the tensors (2) are eigenstates of T2 with eigenvalues,
respectively, 2 and O.
From this point 01 view, recalling what we said in the previous subsection, we
see that:
i) in the case of stable baryons, we ha ve the following assignments:

IXPr

etc.
10.3. Antiparticle multiplets

So far we have not explicity considered the assigmnents 01 antipartioles.
Il Ia) is a parti cle state, then. the corresponding antiparticle state là) has the
same space-time properties, but the values 01 alI oharges (Q, N, Y, etc.) a.re
reversed. Ia) and la) are connected by the charge conjugation operator oWhich are symbolically summarized in the matrix:

la) = Ola),

(3)

which can be assumed to be a unitary operator satislying:

02 = 1.

It is a well known fact that strong interactions are symmetrical under O, so that
if particles exhibit, the SUn symmetry, relative to strong interactions tbe sa1D8
behaviour must be displayed by tbe corresponding antiparticles. .

. T3 Y Ti

3/a 1 15/.
l/a 1 15/.

-l/a 1 15/.
-8/a 1 1f>/.

1 O 2
O O 2

-1 O 2
l/a -1 8/.

_1/1 -1 8/.
O -2 O

O AO

JI2 + YB
+ p

B=I - o AO

- vt + y6
n

...- 3;°
2Ao-
yif
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In particular for each supermultiplet of baryonic number N, the corresponding
antiparticle states must arrange according, to a supermultiplet with baryonic
number - N. By definition C satisfiei!

The pseudoscalar meson multiplet is mapped into itself by C aince mesons have
baryonic number equal to zero:

CQ + QC = {C,Q}= O

{C,N} = O

{C,Y} = O,

(5)

,

(

;t° -
- -=+~ -

M ~(M)T~ ~.:::~:::::::;::~J.

80 that, using the Gell-Mann-Nishijima formula (Q = Ta + 1/2Y)' we get
In the case of vector mesons a minus sign appears due to the fact that neutral
vectbr mesons have negative charge conjugation.

(C,Ta} = O. (6) 10.4. Mass formulae

Till now we have grouped particles into supermultiplets, without worrying
about the very large mass difference involved. The mass of a parlicle is the mean
value af its Hamiltonian H in its l'est frame: if SUa were a symmetry group in the
strict sense, H would be an invariant operator so that, by Schur's leJQ.Dla,inside
each irreducible repreaentation, H would be a multiple of the unit operator, i.e.
particles inaide the same multiplet would have the same masso This is not the
case and, as atressed before, we are forced to assume that a component of H
violatea unitary aymmetry. We write

Let ua indicate with

L = (I(m, nN), T2, ta, y)}

the linear manifold apanned by the baais vectors of the (m, n) supermultiplet
of particles with baryonic number N particlea and with

Le = (C J(m,n N) T", ta, y)}

the corresponding antiparticle statea. Then by (5), (6), we have

Ta C J(m,n N) T", ta, y) = -ta C I(m,n N) T", ta, y)

Y C I(m,n N) T", ta,y) = -y C I(m,n N) T2 ta, y)

N C J(m,n N) T", ta, y) = -NC I(m,n N) T", ta,y),

H = Ho + HI'

(7) where Ho is invariant under SUa. For what concerna HI' it must be cbarge
independent and hypercharge conserving

i.e. alI the weights oi (C J(m, n N) T", la, y)} are opposite to those of {I(m, n N)
I T2, t, y)}. From what we said in sect. 9.5 we conclude that antiparticles trans-

form under SUa @ U1(N) as members of the (n, m) representation (with baryonic
number-N).
In the tensor formalism we have employed before, it is possible to define the

! C-operation simply as the interchange of lower and upper indices: for example
Tij ~ Tifo

We note that in generaI this is a mapping between two different tensor spacea,
unless the number of upper and lower indices are equal, Ì.e. the representation
is aelf-conjugate.
In the case of antibaryons we have the following assignments:

[HI' Ti) = [HlJ Y] = O, i = 1,2,3

so that HI is constant inside each isomultiplet (we do not consider at this point
electromagnetic and weak contributions to the mass).
Let us label each strongly interacting particle in its l'est frame with the quantum
numbers N, JP, l, Ta, ,T'A,Y, where l is the label of the SUa representation
to which it is assigned. Physical masses are then the eigenvalues of the matrix:

(N', J'p', X, T", T''', Y' JHIN, JP, l, Ta, T2, Y).

We have written N and JP for completeness but obviously H commutes with
them, so that the relevant matrix elements are:

r

"- x:o
~o +-=

~2 1'6 I:' + A~
~+ - V2 V6

1;- 8-
(NJP, l', T~, T'8, Y' IHI N, JP, l, Ta, T", Y) = (l'TaT'''Y' IHI J.TaTl'Y) =

= (l'T~T'2Y' IHollTaT"Y) + (l' TaT'''Y' IHII lTaTl'Y). (D)

B= 80 (8) To simplify notations we assume that particles with the partic\ùar values of
N and JP considered, group together in only two supermultiplets J. ànd l'. Th.is
case easily extends to the generaI one, and in addition this is tbe most complicated
situation that bas been found till now.

Using tbe assumptions made on Ho and HI' the matrix element (9) writes as:

2Ao
p n

Vif

I(tbe bar indicates that tbese particles have baryonic number - 1). mo(l) ~H' ~TIT" ~YY' ~T,T,. + ml(T", Y)H' ~T'T" ~yy. dT,T'.' (10)
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Rence HO is diagonal as it has to be. Ma.trix element.s of Hl do not depend on Ta
so that we wiIl not menti on it further on. Moreover H1 can connect only states
belonging to isolUuItiplets with the same 'l'2 and Y. Recalling what we said in
sect. 9.3 b, we see that in ). as well as in ).' isomultiplets with given values of T2
and Y can occur at most once, so that the matrix representing Hl' has the form:

T2, Y T2, Y

Group Theory and Unitary Symmetry Models . 367

+.,y

A'{ T', Y

With this proviso we can obtain the generaI form of matrix elements (13), usingWigner-Eckart theorem (sect. 6.3.).
We write H1 as ~b~b.oand introduce the notation

C()., T2, Ta, Y; 8, °, O,O; pyT2TaY)

for the CIebsch.Gordan coefficient connecting the vectors

..... (11)

/).,T2TaY) 18,°, °, O); jp,T2TaY),

where the latter vectors span the standard basÌB which decoJJlpose~th~ tensor
product ). <8>8. The suffix y distinguishes between equiva.Ient reptesenta.tions
appearing in the decomposition. .

Then, according to Wigner-Eckart theorem, we have:

: ml(T2Y)ll'ml(T2 Y)H !

.. l..~~~.!.~!)~:~ ..:..

To diagonalize this matrix is equivalent to diagonaIize each submatrix

(
ml(T2, Y)H m1(T2, Y)H'

)ml(T2, Yh'l ml(T2, Y)Jol'

for each value of T2 and Y occurring both in ). and ).'.
In the case of stable baryons, pseudoscàlar mesons, and decuplet resonances,
foreach value of N and JP, only one representation is present, so that HI has
the form

(12)

m = mo + mI (T2, y) = mo + ~ C()., T2, Ta, Y; 8, °, °, O;pyT2TaY) . ()./ITI8)Up,).
y (14)

Consider stable baryons. In this case). = 8, and 8 <8>8 = 1 + 8 + 8 + 10 +
+ 10 + 27, so that the regular representation appears twice in this reduction,and we have two reduced matrix elements.
Using the Clebsch-Gordan coefficients reported in [29] one finds:

l ).'

H, ~ CCT"~ y)

ml(T2, Y')

°)
(13)

'15 1
mN = mo- E (8 /IT(B)/I81)+ - (8 U T(a) /I8a)lO 2

'15 1
mE = mo - -ili (8 IlT(8) /I81) - 2" (8 IlT(8) /I8a)

}"5.
mI\.= mo - -(811 T(8) /I81)5

m~ = mo + ~5 (8 /IT(8) 1181),

(15)

and each isomultiplet has the mass

m = mo + ml(T2, Y).

We have found nothing else but tha.t particles with same T2, Y have the same masso
Significant results are obtained by assuming H 1 to be the Y = °,Ts = °,
T2 = O member of a set of tensor irreducible operators transforming as the
regular 8 Us representation.
In a field theoretical treatment one would describe the symmetry breaking inter-
actions by adding to the symmetrical Lagrangian 1'0 a term l' MSwhich is required
to be hypercharge and isospin conserving:

l' =1'0 +1'MS'

We have four masses and three unknown parameters. Their eIimination leads
to the relation (firstly given by GELL-MANN):

3 1

mN + mE = "2 mI\. + "2 m~

(2256 Me V) (2268 Me V) .
The values of the masses bave been taken from the table listed before.
We apply the same procedure to the decuplet resonances. Since in the reduction
8 <8>lO = 8 + 10 + 27 + 35 the 10 representation appears only once, in thc
formula (14) we have only one reduced matrix elemento
Using again Clebsch-Gordan coefficients, one obtains:

(16)

Using perturbation theory in 1'MSone, would write mass corrections as the expec-
tation value of a power serie in l'MB. If we assume 1'MB to transform like the
T2 = Ts = Y = ° member of an octet, we are led in first order approximation
to our assumption on H1.

1 1
MN* = Mo - -= (101/T81/10); My,* = Mo; Ms* = MO+ 1/0 (1011T(8)111°);

Y8 . f8
2

Mo- = Mo + -= (1011T(8)//1O).
y8
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Since there are two unknown parameters and four masses, one can obtain:

MN>- My> = M'S>- Mo-

(146:!: 3 MeV) (146:!: 4 MeV)

2M'S> M = y,> + Mo-
(2058:!: 2 MeV) (2057:!: 3 MeV).

(17)

These formulae simply state that masses in the decuplet are equally spaced.
The masa of Q- can be obtained from the known massea oi N* and Y;. This
predicted value, as we said, iHamazingly close to the experimental one.
For the octet of the pseudoscalar mesons the argument is the same as that made
for the stable baryons. Thus we get a formula analogous to (16):

3 1
mK +mi(= 2 m'li + 2m",

'.

(992 MeV) = (891 MeV). (18)

Two remarks are in order:

1) mK = mi( by charge-conjugation invariance of stl'ong interactions.
2) (18) is in very poor agreement with experiment.
Substantial improvement can be achieved if we put in (18) the squared masses
instead of the masses:

3 1
2m2 = -m2 + -'m~

K 2 'li 2"""

{49.2. 104 (MeV)2) {46.2. 104 (MeV)2).

An argument given by Feynman to support this substitution is that in any field
theoretical model, corrections to bare boson masses affect directly m2.
The same remarks apply to the vector mesons which will be treated in next
section.

(19)

10.5. (ù - ~ mixing

We have previously assigned eight vector mesons to an octet and the ninth to
an S Va singlet; but we had no way to decide whether the (ù or the ~ had to be
'placed in the singlet. With the aid of the mass formula for the octet, which has
of course the same form al; (19), we find:

2 2_3212
mK' - 2ms + 2mp (20)

(mB= mass of the isosinglet Le. of the T2 = Y = O membel'of the octet)
Inserting the known values for mK>,mp,one obtains mB= 930 :!: 3 MeV. This
value is intermediate between m'P= 1019,5 :!: 3 MeV and m",= 782. :!: 0.5
MeV; however both differences m~ - m§ = 18 . 104MeV2, m§ - m~= 25 .
. 104 Me V2 are very large.

If we insist that the mass formula must hold even in this case to an accuracy
<Jomparable to that obtained for the three other cases considered, we must con-

I

i
,

,

I
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clude that neither (ù noI' cpcan be identified sic et simpliciter with the isosinglet
of the octet.

However physica~ particles are eigenstates of:

H = Ho + H1.

And H in the representation 8 EB 1 to which the vector mesons are assigned
is represented by the matrÌx:

H==

(M5 + (K* IHII K*) O O O
O M8 +(p IHIlp) O O
O O M8 + (K*IHIIK*) O

O O O Mg +(8IHII8)
O O O (1IHII8)

O

O

O

(8IHlI1)

MI + (lIRI!)

1£ now Mo is nearly equal to MI' we can expect that the off-diagonal elements
of H are important, so that the T = O, Y = O eigenstatel:1 of H which we want
to identify with (ù and q;, are considerably different from the corresponding eigen-
states of Ho.
We have then to diagonalize the submatrix

(M5+ 811 812 )82} Mi + 822
(21)

where

811 = (8 IH118), 812= (8IHlll) etc.
.Changing, if necessary, phases of the states 18), Il) we can take 812real so that
from the hermiticity of H l' 812= 82l'
We write:

I(p)= cos O 18) + sin O Il).

1(ù)=-sin°18)+cosO Il).
(22)

The angle Omust be determined requiring I~) and I(ù) to be eigenstates oi (21)
with eigenvaluesequal to their physicalmassessquared [30].
From this one finds:

2 - 2

(tan 0)3 = m", ms = 0,69; O= 39Q50'
m§ - m~

(23)

where m§ = M5+ 811 is the value given by the mass formula for the octect.
According to these results ~ and (ù appear to be superpositions of pure S Va states,
in contrast to alI the other particles we ha ve considered [31].
It is important to note that, in contrast to the other cases, the introduction oi
the mixing angle O rises to four the number af parameters needed to describe
the vectar mesons mass spectrum (O,Mo, MI, (8IHII 8». Having four masses
at our dispasal mK>, mp, m"" m", it is not passible in this context to have any test
oi the theary. The possibility af determining O in an independent way will be
.discussed l;I,ter.
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Our derivation of the slIm rulea (16), (17), (19),20), waS based on the knowledge
of the Clebsch-Gordan eoefficients involved.

Alternatively one ean find the generai structurc inside eaeh irreducible represen-
tation of an operator, such aa HI, commuting with TI' T2' T3' Y and transforming
according to the regular representation of S V 3'
Sue h an operator must have thc fOl'm:

HI = j(T2, Y) = a 1 + b Y + CT2 + dY2 +""

The stated transformation property further restricts HI to the form

HI=bY+C(T2~.~ Y2) +a'.1,

80 that in each irreducible representation the Hamiltonian is

H = Ho + HI = a . 1 + b Y + c (T2 - ~ Y2).
(24)

I For fermions (24) gives the mass formula:

M=a.1+bY+C(T(T+1)- ~ Y2).
(25)

For bosons, taking into account conditions C H C-l = H, C Y C-l = - Y (where
C is the charge-conjugation operator), b must vanish:

m2 = a + c (T(T + 1) - ~ Y2).
(26}

I For the decuplet resonance one has the relation T = 1/2Y + 1, which reduces
(26) to

m = a' + b Y, (27)
giving the equal spacing rule.
The generai formula (24) has been given by S. OKUBO[32]

10.6. Baryon-meson Yukawa couplings

It is interesting to find out alI the Yukawa-type couplings between baryons and
pseudoscalar mesons which are invariant under S V3, In fact we will find that
these couplings involve only two constants so that writing them in the usual

,isotopic spin form, one can derive relations between coupling constants such
as gNNn,g:EAn,gN:EKetc.
In a field-theoretical model one assumes baryons and mesons fields to behave
under S V3 as tensor operators (see sect. 6.3) belonging to the eight dimensional
representation.

,The Yukawa-type interaction Lagrangian has the form

:t = J; g~pyB~yo Bp My
~Pr
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where Bp and B~ are, respectively, baryon and antibaryon fields specified by
the labels fJ and IX (i.e. p, n,.. .p, il,...) and My is a meson field specified by y
(i.e. 1t+,1t-,.. .).
Invariance un del' S V3 demanda :t to transform as a scalar operator. Now the
operators

B~yoBpMy

transform like members of the 8 (8)8 (8)8 representation, and obviously the same
holds for .'l. Coefficients g~Prhave to be determined by requiring .t to be one
of tlfose vectors which in the decomposition of 8 (8) 8 (8) 8 belong to the irredu-
cible (O,O) components. Using the method described in seot. 9.7 one oan see that
there are two (O, O) oomponents, i.e. only two possible invariant Yukawa-ooup-
lings.
According to sect. 10.3, antibaryon fields transform as

(B) -+ VB V-l V E S V3

i.e. just like baryons, due to the faot that the 8-representation is selfconjugate.
It is then easy to verify that the tensor operator

Trace (Byo BM) (28)

!
!
I
I
I

t

(trace involves summation only over S V3 indices, so that Yomust be treated as
a number) is invariant. In the same way one can see that also the operator

Trace (BYoM B) (29)
is invariant.

Instead of (28) and (29) we wiIl use the so called F and D combinations defined as

(F) Traee (BYo[B, M)); (D) Trace (Eyo {Il, M}),

which are obviously linearly independent invariant operators. Recalling that
in the product 8 (8)8 (8)8 there are exactly two operators of suoh kind, we
conclude that the most generaI invariant trilinear operator in mesons, baryons
and antibaryons fields is a linear combination of F and D. In particular:

:t = J; g~PrE.yo BpMy = gF TI' (Eyo [B, M]) + Yn TI' (Byo {B, M}). (30)~fJr
To deduce couplings in terms of isomultiplets one has merely to substitute (3),
(4), (8) into (30), to carry out the trace and to rearrange terms in order to have

a combination of isospin couplings (for example of the form gNNnN-r:Nn, 1:E'I)
etc.).
If we define :

gNNn = Y = gn - YF
]12

IX = - gF

]l2g'

then alI coupling constants can be expressed in terms of IXand g. 'Ve refer the
reader to [33] for a complete list of these relations.
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The experimental situation does uoì. allow a precise determination of IX. The
value IX = 1 (i.e. pure .Ji'-type couplillg) semns t.o ve excluded by hyperfragment.s

binding, which l'equires gAErc = 2/y3 g (1 - IX)=FO. The dynamical calculat.ians
of MARTINand W.ALI[34] indicate 0.15 ~ IX ~ 0.56 Le. a prevalence of the
D-type coupling. With this set of values gNAKt.urns out. t.o be of the same order
of magnitude than UNNrc'This Beems to be in contrast wit.h K-photoproduction
data, which suggest UNAKan order of magnit.ude Bmaller than gNNrc'
These discrepancies can be in principle accounted for by symmetry breaking
interactionB. One other pOBsibility has been pointed out in [36].
Same considerationB can be applied to the baryon-vector meson couplingB,leading
to two possible Lagrangians: one !(-type, and the other D-type.
If one writes the .Ji'-type coupling in terms of isospin multiplets, [36] the p appears
to be coupled to the isospin current (i.e. to terms like N'fN,I:xE,etc.)and the
6)8 (i.e. the Ta = Y = T = O member of the vector meson-octet) to the hyper-
charge current (Le. to the term NN + aE) whereas in the D-type these peculiar
cOUplingB do not appear. Now we know (for example from the isovector part af
the electromagnetic form factors of the nucleon) that p is actually coupled to the
isospin current, so that in this case we nave to assume only F-type coupling.
The interaction Lagrangian then is

:t -= UBBVTr (Byl' [B, VI']) ,

: where VI' is a matrix analogoUBto (4), with the substitutions:

n -+ Pl'

K -+ K;

7j -+ (6)8)1'

We have now only'one parameter.
The vector meson Binglet (i.e. the <Po)is coupled with the baryonic number
current:

:t = gBBV (<Po)1'Tr (BYI'B)

Consider now the pseudoscalar-vector meson couplings: also in this case we may
have two invariant combinations of terms like

(.~M. )Mp (VI')y
axI'

.[a, (l, Y, are SUa indices which label the various mesons.),

. namely

Trace (VI'M (°l'M) - VI' (°l'M) M) = Tr (VI'[M, ol'M])

Trace (Vl'M °l'M + VI'°I'M M) = Tr (VI' {.bI,°l'M}).

,Efowever the second term, by virtue of the condition:

°l'VI'=O,

! .
~
\
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is equivalent to a divergence, Le. it adds a divergence to the Lagrangian, so that
it can be assumed to vanish. In fact:

VI'M(oI'M)+ VI'(oI'M)M = VI'°,.(MM) = °1'(VI'MM) + (oI'VI')MM =

= ol'(VI'MM).

Rence also this coupling is pure F. In contrast with the previous case the vector
me!j,onsinglet cannot be coupled to pseudoscalar meSOD8:in fact the only possible
coupling would be

(<Po)1'Tr«oI'M)M),

but under charge conjugation M -+ MT, °l'M -7 oI'MT,({iO!'-7 -({iO!'(charge conju-
gation of Po'6), and <pis - l) so that this coupling is not invariant under O. This
has the consequence that the decay .

«fio-+ K + K
is forbidden, whereas

6)8 -+ K + K

is allowed, i.e. only the componend of the <pparticle on the octet can decay in
in K lE This fact can be used in principle to determine the 6)- <pmixing indepen-
dently from mass formulae [37].

10.7 Decuplet decays

The decays of the baryon decuplet reSonances allowed by energy, Ta, TI and Y
conservation are

{

AOn

N. -+ N + n; Yt -+ :I: n; E* -+ En

(0- is stable against electromagnetic and strong decays because of its mass,
which is less than the threshold of the EK channel which is the only open for
these interactions). These decays, in the limit of exact SU a. are described by a
Bingleamplitude. In fact in this case the matrix element.8involved are of the type

M(N* -+Nn) = (N* ISI Nn), (31)

where S is scalar under SUa. By reducing the product 8 <8>8, with Clebsch.
Gordan coefficientB, we can write (31) as the matrix element of a scalar operator
between vectors of irreducible representations.
Such matrix elements are zero for vectors belonging to irreducible componente
of 8 @ 8 different from 10, whereas they are equal to

a(jT''1'" (jT,T; (jyy'
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for vectors of tbe 10 component. Rence we bave

1

M(N*++ --+p + 1t+)= - y"2a;

1

M(yt+ --+~01t+) = f12 a;

1
M(Yt+ _A1t) = - 2" a

1
+ O

) - a
M (yt+ --+ ~ 1t = - fi2

(32)

1

M (8*° - 8- + 1t+) = - y6" a;

1

M (8*°- 8°1t°)= 2t3 a,

(aH tbe otber amplitudes can be obtained from tbese by isotopic spin symmetry)
wbere faotors multiplying a are tbe proper Clebscb-Gordan coefficients.
If we want to compare (32) witb experiments we bave to take into account mass
differences. The most simple tbing to do is to introduce masS differences into tbe
pbase space factors which multiply IM l'I in tbe expression for rates, leaving un-
touohed relations (32).
Predictions so obtained are in an unpleasant disagreement witb experiments.
For example one has:

Rate (yt+ --+~1t) . 4 P1 2
Rate (Yt+ --+A1t) = (pbase space ratlO) X 6" = P~ . 3"~ 12%

(PE..1= momentum of ~ or A particle) ,

wbereas experimentelly tbe ratio is consistent with zero (,,",2 :I: 2%).
This discrepancy can be tbought as due to large non symmetrical interactions,
wbicb must be properly accounted foro '

In fact it has been shown by V. GUPTA and V. SINGH [38] and by C. BECCHI,
E. EBERLE, G. MORPURGOthat inserting a symmetry breaking interaction of tbe
type used for masS formulae, one can derive relations between decuplet decay
amplitudes whicb agree weH witb tbe experimental data.
10.8. Tbe main test of tbe unitary symmetry model in strong interactions would
be to cbeck experimentally tbe relations which one can derive between ampli-
tudes of different scattering processes. Rowever relations obtained assuming
full SUa symmetry widely disagree witb experimental data [23] and again one
bas to take into account tbe role of symmetry breaking interactions. Tbis role
bas not been till now satisfactorily understood so tbat, partly for this reason,

partly for lack of experimental data, we do not know at present bow to make
meaningful tests of tbe eigbtfold way witb scattering proceeses.

n. ElectromagneticIoteractioo8

11.1. We know tbat tbe electromagnetic field interacts with hadrons in such a
way to conserve Ta and Y; moreover, due to the smallnel:!sof the coupling
constant, we can deRcribe such interaction with a pertubative method, starting
from an interaction Lagrangian of the form:

.tlnt = eil' (x) AlI (x).
(1)
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Here il' (x) il:!the electromagnetic currènt of hadrons. Thestructure of this operator
depends upon the dynamics of strong interactions themselves, which we at
present do not know in detai!.
Hence tbe Lagrangian (1) has to be considered as a pbenomenological device
which aUows us to explicitly consider the dependence on electromagnetic field
of these interactions, whereas unknown effects of strong interactions are lumped
into the local operator il' (x). We note that the matrix elements of il' (x) between
physical states are connect.ed to measurable quantities (form factors).
By definition we have

fi.(x) dax = Q (2)

and by charge, Y, Ta conservation:

ol'il' (x) = O

[il'(x), Ta] = [il'(x), Y] = O. (3)

In tbe context of the eightfold way model, relations between matrix elements
of il' (x) can be obtained by the knowledge of the commutation relations between
i (x) and the generators of S Us,
Jhom the Gell-Mann Nisbijima relation we bave:

fi.(x) dax = Q = Ta +} Y = 3Hl + H2.

This suggests il, (x) to be composed of two parts: the current of the third com-
ponent of total isospin plus one balf the hypercharge current

il' (x) = UT.)(x) + ~ UY) (le), (4)

and now il.<7'a)(x)and il'(Y) (x) bave the same transformation properties (under
SUa) as Ta and Y. From this it is easy to see that il' (x) commutes with EH and
the same for .l'lnt. If :we put (see sect. 8.7.c)

3 1 3 Y3
Ua = - Y - - Ta = - Ha - - Hl4 2 2 2

Vz = y3 E'fa,

,I
I

I

we see that Ua, U:I:bave the same commutation relations of the isotopic spin
generators, and are caUed the U-spin generators. Rence electromagnetio inter-
actions at all perturbative orders conserve cbarge and U-spiu, wbicb in this
case play tbe same role as bypercbarge and I-spin for medium strong interactions.
From tbe previous analysis we see that everything we said for medium strong
,interactions can be applied to electromagnetic interactions, substituting tbe
partition iuto I-spin and. Y-multiplets of irreduoible SUa representatioll8 witb
a partition into U-spin and Q-multiplets.
We give for reference tbe decomposition of tbe pseudoscalar mesons octet into
U.spiu multiplets (Fig. 10).

27 Ze!tschrift ,,1!'ortsehrltte der Physik". Heft 7
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One seeS that '/t+,K+ and K-, '/t- constitute two U-spin doublets whereas Ko and

Ko are members of an U-spin triplet. '/t° and 1) are eigenstates of Ua. with eigen-
value zero, but they are not eigenstates of ua. Instead the combinations

I Il )
1 '13

'/t = 2" j'/t°)- % l'I)

1<+

-J!- J!+-

1"1)")= V; l'/t°) + ~ !"I)

are eigenstates of ua with eigenvalues 2 and O,
so that '/tu,KO,KO constitute an U.spin trip-
let and "l)uis an U-spin singlet.
Aa a generaI rule in the weight diagram U-spin
multiplets are directed along the (Xaroot.

Fig. lO. U-8111umultlvlets in the pseuùusku- F h t
.d d

.1
lar mesoll.8octet rom w a we sal, we can raw very easl y

a certain number of consequences:

a) Eledrorftagnetic 111a888plitting8 - In calculating masa splittings due to aymmetry
breaking interactions we negleuted the eleotromagnetic effeota, whioh we want
now to take illto aooount.
We start from a situation in whioh, apart from S Us-invariallt strong interaotions,
only eleotl'Omagnetio interactions are presento In this case the masses of the
particles inside an SUa multiplet split up according to U-spin multiplets, being
(1) invariant under U-spin. Rence masseS obey a law of the form

'1ft = mo + m(Q, U) (mo= oommon masa of thc S Va multipJet\.

In the cat:!e af stable baryons wc get in particular the relations:

1<- RO

mp = 11/,1;+

ntn = 1ft:='0 (5)

1ft:=.-= mi;.-.

Relationt:! (5) are of course not satisfied by the actual massel:!; this is natural
because we have neclected the important contribution of medium strong inter-
actions. We can howevcr deduce from (5) the relation:

1ftn - lIIp = (m:='0-- m=.-) (1nl:+ -+ "lltI;--)
(6)

which has been given firstly by H.COLEMANand S. L. GLASHOW[41]. .
If we now turn on the medium strong symmetry breaking interactiono;, masseS
of particlet:llying inside tbe aame I.spin multiplct are shifted of the same amount,
so that we way expect relation (6) to be left unohanged, sinoe it compares masS
differences for particles with same Ta. In fact inserting the experimental values
(6)reads: I

(rnI;- - rn:E+)- (rnn - mp) = 6.38 :l: 0.3 MeV

m:=.- - m:;;:o= 6.5 :l: 1.2 MeV (data from [28]).

!'

I

l
I
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The agreement is excellent. One sbould remark that the previous deriva.tion of
(6) rests on tbe possibility of treating in an independellt way tbe medium strong
and electromagnetic effects. Tbis seems not to be in generaI a legitimate procedure.
In a field tbeoretical treatment we would write a Lagrangian ma.de up of tbree
terms:

:t = :to +:tH8 + :te.m.

:f° is tbe symmetrical part, whereas :tH8 and :te.m. are responsible of medium
strong and electromagnetic interactions. Uaing perturbative methods, tbe correo-
tion to the symmetrioal maBSmois expressed a.Sthe expecta.tion value of a. power
series in :tMs + :te.m.. Rence we see tbatCoLJllMANand GLASHOWrelation foHows
if we neg]eot aH terms which contain powers of tbe product :tH8:te.m.,retaining
all orders in :t MBand :t e.m.'

From this point of view tbe validity of (6')is quite unexpeoted (see however [23]).
b) Magnetic moments - Just in tbe same way, neglecting medium strong
interactions and assuming only U -spin and charge oonservations, we obtain the
following relations between magnetio moments of stable baryons [39,40] (the
same relat.ions apply to the eleotric and magneti c form factors)

,u(:E+)= ,u(p)

,u(:E-) = ,u(~:-)

,u (EO)= ,u(n)
1 .

- V3,u(:E°A) = ,u(n) - ,u(A)

- V3 ,u(A:E°) = ,u(n) - ,u(~0),

(7)

,I

wbere ,u(:E°A) is called the transitian magnetic moment between :E° and A, and
appears for example in the amplitude of the deoay :E°--+A + y.
The experimental information available up to now does not allow to test any-one
of the relations (7).
For pseudosoalar mesons we obtain easily the results [40] tbat tbe form fsctors

of K + and '/t+are equal, whereas tbe forin faotors of KO and j(o are zero.
In faot:

form factor (KO) =, form factor ([(°) by U-spin
form factor (KO) = - form factor (KO) by Cbarge-conjugation

o) 1) and 7t° - two photons decay - We said previously tbat the Ua = Q = O
eigenstates of U2 are (in the pseudoscalar meson octet)

1 '13
I"ft")= - l'/t°)- E 1"1)2 2

'/3 1
1"1)")= L l'/t°)+ - !"I)2 2

(U = 1)

(U = O),

oonversely one has:

1 V3
l'/t°)= - l'/tu) + -- 1"1)")2 2

'13 1
1"1) === - T l'/t") + 2"I"I)U).

27*
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Observe now that In") cannot decay, by U-conservation, into two photons (which
have U = O) so that the amplitudes for (nO,7) --+2y are equal to

Y3
A (nO--+2y) = - A (7)"--+2y)2

1
A (7) --+ 2y) = 2 A (7)" --+ 2y),

i.e.

A (nO--+2y) = V3 A (7)--+2y).

l' After phasc space corrections, assuming the lifetime of nOto be equal to 1.5 . 10-16S.
we obtain a width for 'Y)--+2y of 140 eV [41], which is not inconsistent with
present data.
d) First order relations - Up to this point wc have only used U-spin in-
variance. More detailed informations can be obtained if we retain in the pertur-
bative expansions considered only first order terms (in the electromagnetic coup-
ling) i.e. terms coutaining the elctromagnetic current only once.
In this case we can exploit the assumption contained in formula (4), i.e. the
fact that jl'(x) transforms as a member of the eight-dimensional representation
of 8 Us' By using Wigner-Eckart theorem, for example, we can express all magne-
tic moments of stable baryons in terms of only two magnetic moments; (the same
applies to electric form factors). For example we find

1
}tA = 2" }tn = - 0.95 nuclear magnetons,

whereas experimentally

}tA = - 0.66 ::!::0.35 nuclear magnetons.

AlI the other explicit relations are contained in [40].
Finally, let us consider the electromagnetic decays:

(,) --+ e+ + e-(fL+ + fL-)

ep --+ e+ + e- (p.+ + fL-).

Both decays can be thought to go through the one-photon channel [37]

e-+

~e--'
(8)

In the amplitude for the proces8 (8) the matrix element of the electromagnetic
CUITent between the (,)(or ep) state and the vacuum is involved. Now if we write
(sect. 10.5 (22»

. lep)= cos (18) + sin (11)

1(,»= sin O18) + cos O Il),

we see that we have to evaluate the matrix elements:

(lljl'(x) IO)

(81 jp(x) IO).
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jp(X) transforms as the 8 representation and, whereas the product 8 @ 8 con-
taina the singlet representation (to which the vacuum is assigned) this represen-
tation is not contained in the product 8 @ 1. Rence, by Wigner-Eckart theorem,
the first matrix element vanishes. We conclude that an 8Us singlet cannot decay
through the one photon channel, so that only the components of (,) and cpover
the octet can go (at first order) into e+ + e- (fL++ fL-).
Tbe ratio

r(ep --+e+e-)
) = (phase space corrections) tan2 O

(,) --+ e+e- .

provides in principle a measure of tan20 independent from mass formulae.
Up to now however only the (,) --+ e+ + e- decay has been observed, so that we
cannot make any comparison of the theory with experiment.

12. Leptonic Decays of HadroDs

12.1. Very exciting results have been obtained by the application of 8 U 3 sym-
metry to the field of weak interactions of hadrons. We will not give here an
extensive discussion of all the topics involved, limiting ourselves to sketch the
theory for leptonic decays21). These processes have the generaI form

A --+ l + VI + B + B' + ...
A--+l+vr,

where A, B, B' . .. are strongly interacting particles, l is a Iepton (e, fL),v, tbe
correspondingneutrino. A fewsignificantexamplesare:

I

f

All these proccsses can be described starting from an interaction Lagrangian of
the form:

:t'I = V~ [Jp(jp)++ R. C.]

JI' and jp are the weak currents associated to hadrons and Ieptons, and G is the
weak coupIing constant determined from fL-decay.

(2)

21) For a more detailed treatment oi weak interactions see [42, 43, 44].

,1T ,18 ,1Q

f .' '"+ é h

-1 O -1
n+ --+fL+ + V -1 O -1

L1S = O /' -
1 O 1n --+ p + e- + Vt

+ --+ A + e+ + Ve -1 O -1

f K' .' + " + v,

_1/2 -1 -1 (1)

K+ --+ fL+ + V _1/2 -1 -1
,18=0 p -

A --+p + e- + Ve 1/2 1 1

- --+ n + e- + Ve 1/2 1 1
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For wbat concerns il" expermental findings agree witb tbe form (in terms of
lepton fields)

i,,=eYp(l +Y6)v.+"i:i:Yp(1 +Y6)Vp, (3)

wbereas tbe structure of J1" wbicb is tbougbt to be determined by stronginter-
actions, is not, known in detai\. Tbe amplitudes of the prooesseRwe are consider-
ing are expressed as matrix elementB of (2)

-& [(B + B' +.. IJpl A) (l VIli; IO)+ (BB'.. IJ~I A) (lvllil.1 O)];

the matrix elementBof il' can be calculuted, so tbat tbe actual difficultyis consti-
tuted by tbe other terms.
For wbat ooncerns space-time properties, experiments indioate tbat JI. oan be
splitted up in two terma: one transforming as a vector and the otber aS a pseudo-
veotor: we will refer to them as to tbe vector and arial-vector currents:

Jp = Jr + J~ .

The firet one is responsible e.g. for tbe ~-decay of 1t+:

1t+ -+- 1t° + e+ + Ve,

and tbe other for the usual1t decay:

1t+ -+- (L+ + VI"

Let u!! defioe ,1S, ,1Ta, ,1Q respectively as tbe cbanges of strangeness, isospin,
cbarge suffered by badrons22) (see (l)). Tben we can divide leptonic decays into
two classes: ,1S = O, and ,1S =+=O decays. Experiments indicate [43] tbat the
following selection l'ules are satisfied within errors (whiob are bowever rather
large) :

i) for ,1S = O decays, 1,1Tal = 1 (hence ,1Q = :!: l)

ii)forLlS=+=O decays ,1S = ,1Q, I,1SI = l (hence lATa I = 1/2).

This selection rulc forbids for example the process:

1;+-+-n + 0+ + Ve

which actually has not bcen seen [45].
We are then led to write Jp as:

JI' = J1~"OI+ J::m + J~W) + J~(lJ ,

wherc J/~"O)is the strangencss conserving ami J1~'\) is the AS = 1 part of thc
vector current, and the same for arial currents.

~2) 'l'hese changes ace not independent. From the GeJl-Mann Nishijima focmula:
1

,1Q = L1'J'a+ 2,18.

(4)
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In the context of isotopic spin symmetry one could attempt to explain selection
rule i), assuming tbe L1S = O current to tranform under S U2 as a tensor operator,
belonging to the isospin one representation.
'fbe eve (conserved vector current) tbeory of FEYNMANNand GELL-MA.NN[46]
embodies this assumption in a much stronger statement; tbey identify the LIS = O
vector ourrents Jj.W), (Jj.'OI)+ with the Ta = :!: 1 components of tbe isospin
currt!nt, i.e. of the current wbicb arises from SUa invariance (see sect. 7.3.).
The Ta = O component is tbe isovector part of the electromagnetic current. As
a consequence, insofar we neglect electromagnetic effects, J:(O) and (J:;IOI)+are
cOlH:!erved ;

°1.J1~'IO) = O, 01'(JX'O')+ = O.

Wc quote threc significant examples of predictions made by eve thcory [42]:
a) the agreement between tbe Fermi constant in ~-decay of nuclei and tbe Fermi
constant in (L-decay;
b) the rate of tbe pion ~-decay can be calculated from the neutron ~-decay obta-
ing a result in agreement with experiments:
c) using Wigner-Eckart tbeorem one can express tbe matrix elements of J::(O),
(J::'O»+,for example between nucleon states, in terma of tbe electromagnetic
current matrix elements, i.e. of nucleon e. m. form factore wbicb are known from
e - N scattering experiments. Preliminary data on neutrino experiments seem
to support tbis prediction.
Tbe ,1S = O arial current is also assumed to transform as an isovector, but in
contrast to J~'!O)it is not conserved.
Tbe simplest generalization to include strange partioles decays is to assume J:
and J~ to possess well-defioed transformation properties under SU a' In parti-
cular if we assume JJ: and J~ to belong to octets of tensor operators, it.is obvious
that selection rules i), ii) are fulfilled (of course tbe converse is not true: i) ii) do
not imply octet currents).
Now SUa symmetry provides us an octet of vector ourrents (see aect. 7.3) whicb,
in absence of symmetry breaking interactions, are conserved. We could tben iden-
tify various pieces of Jj. with suob currents. This bowever would imply eaob ourrent
to be coupled to leptons witb the same strengbt, i.e. with tbe same coupling
constant as tbe ,1S = O part: On the contrary experiments give coupling con-
stants for strange particle decays which are smal1er of an order of magnitude than
tbe ,1S = O couplings.
N. eA.BIBBObas assumed [47-48] tbat the vector ourrent coupled to leptons
has tbe form

J1~' = COI:! O J1~.IO) + sin () J1~'w,

whcl'e JJ:W),(JJ:IO»+,J::IU, (JXIU)+, are the Ta = :I: 1,

(5)

Y = O, l'a = :!: 1/2,

I

I

Y = :!: 1 members of tbe octet of cUl'rents deriving from SUa invariance (to
which electromagnetic current belongs, sect. 11.1). 8 is an angle whiob cbarac-
terizes weak interaotions of ali hadrons. Moreover tbe arial current is assumed
to bave the form

JA = cos (JJA(o) + sin (J JA<1Jl' p l' (6)

with tbe same 8 as (5). J~(O), (J1.(OI)+,J~(/), (J~(1)+ are tensor operators trans-
forming as thc 113 = :!: 1, Y = O, T3 = :!: 1/2, Y = :!: 1 members of an ootet.
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We give here a brief accoullt of predictions which can be obtained from this
theory in the case of baryons decays. For a detailed discussion see [43, 49].
Matrix elements of JX between baryon states can be expressed in terms of O
and of two reduced matrices (8 @ 8 contains the eight representation twice).
By analogy with sect. 10.6 let us call them Fr, Df" In the limit of zero momentum
transfer, they can be written as:

(Fy)1' = u(Pj)Y1. Fv(k2)U(p;)

(Dy)1' = u(pj)YI'Dv(k2) u(p;) (7)

Pi, Pj: baryons initial and final momentum
le = Pj - Pi, le2--+O.
And in the limit in which such currents are conserved

Fy(O) = 1, Dy(O)= O,

so that the matrix elements of J: are determined by O.
For what concerns axial currents, again we have two reduced matrices, F, D
which in the same limit as (7) can be written as

FI' = ii(pj)F(k2)Yl<f6U(P;) (k2 --+O)

DI' = ii(pj) D (k2)YI<ì'6U(Pi), (8)

but now the lack of conservation of J: does Ilot allow to obtain additional con-
ditions on F(O), D(O).
Concluding we see that the baryons decays (in the limit k2 --+ O, absence of
symmetry breaking interactions 23)are described in terms of three numbers:
F(O), D(O), O.
H. COURANTet al. (45] find two sets oI parametertl 'Consistent with data, both
with near the same value of O,but differing for the ratio FID.
It is remarkable that near the same value of O(O~ 0.25) has been given by
CABIBBOin the paper previously quoted, comparing the decays:

K+ --+ [1.++ vI'.'
7t+ --+ [1.+ + vI"

In these decaytl only axial ~urrents contribute «J~(1»)+and (J;~(()})+)respectively)
so that the branching ratio:

is proportional to

R(K+ --+ [1.++ v)

R(7t+ --+ [1.++ vI<)

I

(K+ I(JA<II)+ IO)

1

2

(7t+I(JA!o')+ IO) ,
i.e. to tan2 O.

, 23) When the Bymmetry breaking interaction iBtaken iuto accollnt at the firBt order, it cau be
I Bhownthat our concluBionson the vector current remain correct (50].
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13. Concluding Remarb

13.1. The idea of a higher symmetry, in the concrete formulation of the eightfold
way model, undoubtely greatly improves the phenomenological description of .
the behaviour of strongly interacting .particles. However the very fact that it
wotks rises the need of understanding at a deeper, dynamicallevel, how the sym-
metry is brought about (as welI as its partial violation).
For an up-to-date discussion of the varioU8attempts made in this direction, uaing
bootstrap technique 8,SwelI as field theoretioal methods, see [Zii]. To the lattaI'
class belongs SOHWINGER'SWa model [51] as welI as1;be popular "quarks" or
"aces" model (proposed by ZWEIGand GELL-MANN].
Another intaresting problem is that of the connection between internaI and
space-time symmetries.
In this context very promising is the SU6 model proposed by GtmSEY,RADI<JATI
and PAIS [52]; see also [53]) who treat on the same footing spin, Ì80spin and
hypercharge.
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