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. and the right hand side of this equation is a known number (2 (a(?, x®)/(ax®), x(1))
is known from Dynkin diagram). In this way we obtain ¢, and if ¢ > 0, & - a® ig
a root of the (n 4 1)* level. With this procedure, by (X), varying « and «® we
obtain all the (n + 1) level roots. Since we already know the roots of the 1th
level from Dynkin’s diagram (i.e. the simple roots) and in addition &) — x® jg
never a root when a!? and a® are gimple, this method can be used as a recurrence
procedure to find all positive roots of the given algebra.

Let us try with @,. The Dynkin diagram is:

G——==
%y %
and from (15) we obtain:
20 | 2ene) _
(01, &%y) " (g, otg)

18 Jevel: ay, oy
2md Jlevel: o + &g

3t level: 2 o, + a4 is not a root, because:

2(0y + oy, ) &

B R e e | =r—gq,;

but r = 1, so that ¢ = 0.
%; + 2a, is a root.
4 Jevel: 2 a; + 2 &y = 2(a; + «,) i8 not a root (by V),
oy + 3 &y i8 a root
2(xy + 3 &, o) _

5th level: 2 &; + 3 &, is a root: in fact —1l=r—gq

(“19 ':xl.)
andr = 0, so that ¢ = 1
&, +4asianotar00t;:2[ﬁ+—sﬁf-o—55} =8 = y—ig

(0¢g, o)

but r = 3 o that ¢ = 0.
6th level: 3 o, + 3 &y = 3 (&, + &,) is not a root
2a; 4+ 40y, =2(x; + 2x,) is not a root;
so that we end with 5% level, and the positive roots are
Oy; 6 0y + &p; oy + 2oy + 3oy 26y - 3.

The corresponding root diagram is reported in fig. 1.
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8.8. Compact groups associated to classical simple Lie algebras:

Cartan’s Di . £ —
denomination Compact group ¢ associated to L (;:;?3;:;:1 c:)f @
of &
A 8Upyy: unitary unimodular complex matrices i+ 2)
il in (I+ l}-dimensionp.
B Oyy4y: real orthogonal group in (214 1) di- 1214 1)
mensions
(oh 8p(21) :unitary 2I-dimensional matrices leaving 12l + 1)
invariant & non singular antisymmetric
matrix I:
UTIU =1
(sympletic group)
D, O, real orthogonal group in 2! dimensions 21— 1)

9. Representations of Semisimple Lie Algebras

9.1. We recall here that by representation of a Lie algebra into a complex linear
space L we mean a linear mapping x — T'(z) where z¢ £, T(x) is a linear
operator in L, satisfying the condition:

T(z,y) =T@@)T(@y) — Ty T ().

We will treat here only finite dimensional representations, for which the follo-
wing Weyl’s theorem applies:

I. Any finite-dimensional representation of a semisimple Lie algebra is completely
reducible. Hence we can limit ourselves to irreducible representations.

Chosen a basis {k;, ¢,, e_,} in ¥, we will indicate with {H;, E,, E_,} the correspon-
ding operators in any given representation.

I1. Tt is possible to choose among equivalent representation, a particular one in a
Hilbert space, in which: H{ = H; and E} = E_,1%).

16) A representation of ¥ gives us a representation of the associated compact real Lie algebra,
which in turn generates a representation of the corresponding compact group. Call it W(g).
From what we said in sect. 3.4 we can always change W (g) by an equivalence transformation
(Wig)— W'(g) = AW (g) A"} so to obtain an unitary representation.

Under the same equivalence transformation the operators Fy, F,, G, representing the com-
pact basis (16) go into the operators:

F; = AF; A" ete.
which are antihermitian, so that H{;, E,, E_, transform into operators satysfying:
(it = HY, (Bl = B”.,.
This result is not essential from a mathematical point of view, in that what really matters is

the possibility of diagonalizing the operators H;’s which is assured by the fact that H;’s re-
present a Cartan subalgebra. - (Continued on page 334.)
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Then the H,'s, being commuting Hermitian operators, are simultaneously diago-
nalizable, and have real eigenvalues. If M = (M,,...M,) is a set of eigenvalues
on a simultaneous eigenvector

Hi|My = M |M)

M can be thought as an r-dimensional real vector (weight vector) by analogy with
roots. Calling Ly the manifold spanned by eigenvectors belonging to the weight M,
we have

L = @ Ly (the direct sum runs over all weights). (1)

The L,,’s, in general, are not one-dimensional, so that H;’s do not constitute a
complete set of commuting operators. Hence some of the weights M can be de-
generate.

II1. No general prescriptions can be given to construct the operators commuting
with the H;'s which remove this degeneracy.

However it can be shown [20] that their number is at most equal to
o 3r 1) n = dimension of ¥

2 r = rank of ¥

9.2. Properties of weights

Let | M) be a vector belonging to Ly, then by the commutation relations between
H; and E,, we obtain:

H(E, |M) = (x; + M) B, |M). (2)

Let us suppose E, | M) == 0. Then (2) tells us that M + o = (M, + «, ... M,
+ &,) is a weight, and E, | M) belongs to Lyy,. If E,E,|M)= 0 we can repeat
the reasoning concluding that M + 2« is a weight and that E,E, |M) belongs
to Lagys.. By recurrence if (E,)¥ |M)==0, then M 4 (kx) is a weight and
(E,)¥|M) belongs to Ly, . Being L finite dimensional this procedure must end,
so that there exists an integer ¢ such that (E,)4| M) ==0,i.e. M + g« is a weight,
whereas (B,)#| M) = 0. By analogy we can work with E_,, obtaining an in-

teger r such that
(B_) | M)+ 0

(B_ )+ |M)y=0.
From this follows that all the vectors
M—ra,..M,.... M + gx (3)

are weights, but furthermore we have:
1V. these are the only weights of the form

MAka (k=0,41,42,...).

However because we will use in physical applications only unitary representations of the com-
pact group associated to L, we have adopted this particular setting from the beginning.

17) Tn the case of A,, 5 = 1 and we will give later the explicit expression of this operator which
in the physical applications is identified with the square of the isotopic spin operator.
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Hence weight vectors dispose into strings generated by roots and the £,’s behave as
usual raising and lowering operators.
With the aid of the tensor g7 we introduce a scalar products between weights and

roots, as well as between weights:

(M, o) = 3 g0 M (4)
i
(M, M') = ;‘ g M; Mj. (8)

V. If r and ¢ are the integers defined through (3), we have

2(M, x)
w1 ®)
hence (see 8.3, VI):
M — 2o is a weight. (7)
(o, &)

We note that the close resemblance between the stated properties of weights, and
the properties of roots listed in sect. 8.3 is not surprising in that roots are simply
the weights of a particular representation of .7, i.e. the regular representation.
We introduce now an ordering between the weights of an arbitrary representation.
We recall that the r-simple roots constitute a basis in the space of the r-dimensional
real vectors, so that for any weight M we can write:

M = > M9 (a4 = 4th gimple root). (8)

We will say that M > M if the first non zero component of the vector M — M’
is greater than zero. Since there is only a finite number of distinct weights for
any representation, among them there is a maximal weight, i.e. a weight which
is greater than all the others. This definition has the consequence that if « is a
positive root and |A) an eigenvector belonging to the maximal weight A, then
E,|A) = 0. (Otherwise E,|A) would be a vector belonging to the weight A + «
which, since « = 0, is greater than A).

Let R be a representation of £ in the linear space L, and |4, 1), |4,2) ... |4, k),
be independent eigenvectors belonging to the maximal weight A. Consider the
subspace ! spanned by vectors

E_ E E_,...|A,1)(a,p,y,... positive roots) (9)

obtained applying to |4, 1) all finite products of E_,’s (including repetitions
of the same operators). We claim that {! is invariant and irreducible.

In fact it is invariant under H;'s, and E_’s (x > 0) whereas applying some
E.(a =0) to a vector of the form (9) we can move, using commutation relations,
E, to the right, until it reaches | A, 1) producing zero, and leaving a combination
of vectors of the form (9). (It may happen that by commuting E, with some E_,
we obtain some F,_g such that & — f>0. In this case we begin to move to the
right K, ; until it reaches |4, 1)). Hence when R is irreducible, ' = R. In I
there is only one independent vector with weight A. In fact any eigenvector of



336 G. pE Francescur and L. Marant

H}'s is a linear combination of vectors (9) differing only by the order in which
E.’s appear. The corresponding weight is
A — ko —kifp—kyy— - =4—3kax(k, =0),
az0
where k, is the number of times _, appears in (9).
An eigenvector belonging to A is obtained when
A—Dhk,oau=4 ie Jkoa=0,
az0 a=0
which implies k, = 0; hence it must be proportional to |4, 1).
From this it follows the irreducibility of #!. In fact suppose {! to be reducible.
Weyl’s theorem (5.1) implies I' to be completely reducible. For example suppose:

I = v, @ vy (v,,vy invariant irreducible subspaces).
Then:
A4, 1) = [A,v) + |4, 0), |4,0) €0,
and in addition
. HI'IA, l>:AI|Ar 1)=IIiIAlvl)+H(|Aat'2>
ie.
(Hi — Ai) [A, 0y) + (Hy — A)) |4, 99) =0
(H; — Ay) | A, vy) € vy; (Hy — Ag) | A, vy) € vy (by invariance of vy, v,)
so that
(Hi — A4;) [A,v,) =0
and the same for |4, v)). Hence in I! there exist two independent vectors |4, v,),
|4, vy) belonging to the weight A, which is impossible.
Hence |, v,) or |A,v,) must vanish. Suppose |4, v,) =4 0, then
14, 1) = |4, v,)
which implies ! — v, whereas by hypothesis ' > »,. We conclude that
D = v, v, =0, and P! is irreducible.
The great relevance of the concept of maximal weight suggested in part by pre-
vious considerations can be appreciated from the following theorems due to
Cartan.
VI. Two irreducible representations having the same maximal weight are equi-

valent.
VII. An r-component vector A is the maximal weight for some irreducible repre-

sentation of ¥ if and only if
2(A4, «l)

o= (X0, x(0)
is a non negative integer for any simple root al?) of .
Hence, once we have chosen a set of simple roots &, any collection of non
negative integers (/, 4,,,...4,) uniquely defines an irreducible representation
of £ and all representations are obtained in this way.
VIIL If A is a maximal weight of a given irreducible representation of ¥, then
any other weight M has the form

M=A4-3 k) (10)
() = ¢ gimple root
k; = unon negative integer.
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(The proof of this theorem easily follows from considerations preceeding result
VI, and from property 8.4 X of simple roots).

(10) is quite analogous to X sect. 8.4 and a method similar to that devised in
sect. 8.7 d can be based on it in order to construct all the weights of a given repre-

sentation.
We dispose weights into levels according to the value an' k. Ais assigned to the

zero level.
A result analogous to sect. 8.4 XI holds, i.e.: if M == A is a weight then there
is at least one simple root such that M + « is a weight. This assures us that
all the weights of the (n -+ 1)t level are obtained subtracting some simple
root to some weight of the n'" level and that when we reach an empty level,
all the successive ones are unoccupied. Now suppose we know all the weights
up to the ntt level and M be a weight belonging to such level. Then M — &®
is a weight if the integer r relative to the a®-string containing M is greater than
zero. Moreover ; -
2(M, atk) 2 (oD, o
ree=Gwa® e~ 2k GE Lmy

Now ¢ is a known number (because we know all the weights up to the 2'h level)
and so is the right hand side of this equa.tlon so that we can ascertain whether
M — a® is a weight or not. By varying M and «®) we obtain all the weights
belonging to the (n + 1)t level.

Hence starting from the zero level, i.e. from the maximal weight (there are no
negative levels because A + ol®) is not a weight for any «®) by this recurrence
method we can construct all the weights of the representation. This method does
not provide for each weight M the corresponding multiplicity, i.e. the dimen-
sionality of the manifold L,, appearing in (1). Being the representation determined,
up to an equivalence, by its maximal weight A, these multiplicities must be
derivable from A, M and from the roots, but no simple formula can be given
for them. Instead we will give later for SU; a simple rule which allows one to
read directly these multiplicities from the weight diagram.

9.2.a) Till now we have analyzed properties which are the same for equivalent
representations (in particular weight diagrams).

In practical caleulations it is necessary to pick-up from each equivalence class
a particular representative, i.e. standard matrix representation of the elements
hi, e,, e_,. It is convenient to choose a representation in which a basis is constituted
by normalized eigenvectors of H;’s as well as of the other commuting operators
which are necessary to remove degeneracies (sect. 9.1). Of course with this choice
the H’s are represented by diagonal matrices, with coefficients determined by
the weight diagram.

Using the commutation relations and the string property of weights, one can
determine the matrix elements of E,, E_, up to certain phase factors. The proce-
dure is quite analogous, although considerably more complicated, to that employed
in usual angular momentum theory [8]. It is then necessary to make a definite
phase convention. At the same time this convention fixes phases in the Clebsch-

Gordan coefficients.

9.3.a) Weight diagram of SU,

The Lie algebra of S U, has rank one, so that its irreducible representations are
characterized by a single non negative integer A, . For any maximal weight A,
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we have:
1
2
2(dA, a®) _ T g Ut 24,
i;?n) ;(i')} . P T
g
q

Sinece «, = 1 (sect. 8.7a) we see that A, i.e. the covariant component of the
maximal weight along «® is an integer or half integer number which we call
j. There is only one string i.e. the aD-string containing A, so that by applying
E_,u to the eigenvector belonging to A, we generate all the vector space of the
representation. There are 2§ 4 1 independent vectors at all, i.e.

iA); E—u{" |A)’ (E—ai'}}g |A>s-“’(E--“3)2jIA>; (E—ni‘l)2j+l }A> =0

go that an irreducible representation with A,, =25 is (2§ + 1)-dimensional.
The weight diagram is one dimensional and has the form:

5 &

-F jrrger ottt §2 j1§
so that the eigenvalues of hy = iI; range from jto —j.

9.3.b) Weight diagramsof SU,

Being S U, of rank two, its irreducible representations can be labeled by two non
negative integers (m, n) where, with the notations of fig. 2, we have

24,00 _ 2(4, )

= (o2, oa) T (g )

m

and the corresponding weight diagrams are two-dimensional.
Now a,, &, are linearly independent, so that we can write

A = nyxy + nzoy
and, by taking the scalar product of both members with «, and with a3, we obtain

m = 2n, — Ny

n = —ny + 2ny
ie.
_2m +n _m 4 2n
3 8

A= ("?‘—T_—?‘. oS “), (12)

(11)
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These components are respectively the eigenvalues of H; and H, on the manifold
L,. We will construct now the weight diagram for an arbitrary irreducible repre-
sentation (m, n) with a graphical method which lead to the resultmore quickly
than the general one, outlined in sect.
9.2.

i) We draw with respect to two ortho-
gonal axes the vector /A of components
(m +n/2 /3, m —n[6) as well as the two
simple roots «,, x3 of components

(112 V3. 112); (112 V5, — 12).

(see fig. 3).
The ay-string containing /A consists of the
m -+ 1 weights

iy

M;=A—ing;0<i<m.

The end point of M, is obtained by repor-
ting ¢ times the vector — «, starting
from the end point of A. All these points .
lie on the segment b, spacing between two Fig. 3.

consecutive points being equal to |«,], so

that the lenght of b is equal to m |«,|. By considering the ag-string contai-
ning /1 we obtain the segment a, of lenght n|xy| = n|ay| in an analogous way.
ii) There are no weights ending in the dashed region 4: in fact all the weights
must be of the form

M=A—kay—hag, kkh=0.

iii) From (7) we see that if « is a root, by reflecting a weight through an axis
orthogonal to » we obtain another weight, so that the weight diagram goes into
itself by such operation.

Let us indicate with »,, ry, ry the axes through the origin orthogonal to a;, ay, .
Reflection through r, must carry a into itself (so that ry intersects a in its mid-
point) and send b into by. Hence in the region B there are no weights (by reflec-
ting such weights through r, we would obtain weights ending in A4). Furthermore
b, contains the end points of new weights which are the reflected of those ending
in b.

Segments a,, a,, b, are obtained by reflections through r, and r,. The figure so
obtained has the properties that no weight ends outside it and there are weights
ending on its vertices and on its sides, distances between two consecutive end
points being equal to |oy| = |oy].

Let us see now how we can find all the weights of the diagram.

Consider an arbitrary weight M = A — ia, — hag (i, h non negative integers).
When i <m, A — ix, is a weight ending on b, so that all weights M with
i =m can be obtained from strings starting from weights ending on b. When
i = m, we write

M=A—may — (i —m) (g + o) — [b — (1 — m)]ag,
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and now, being
. 0==i—m=n
the vector
Mig=A4—may— (i —m) (xg + o)

is a weight ending on a,, so that M belongs to the «y string containing M, ,,.
Hence the a4 strings of the weights ending on b and a, generate the whole diagram,

VA B

(10) (0a) (1.1)
3 8

(3.0) . (2.2)
10 27

Fig 4. Weight diagrams of some SU, representations

and it is easy to see that the end points of the weights so obtained fill up the whole
hexagon with a triangular pattern as shown in fig. 4. In addition this figure shows
that the points are disposed in layers. Now the following rule applies:

Weights of the external layer are all simple, i.e. not degenerate.

Starting from the external layer, multiplicity increases by one at each layer,
until a triangular path is reached : when this occurs multiplicity does not increase
any more. When n = 0 or m = 0 the hexagon degenerates in a triangle and
all the weights are simple.

When n = m the diagram is a regular hexagon and multiplicity increases until
one reach the last layer, which is constituted by a single point. In fig. 4 are given
the weight diagrams of some between the most used representations of SU,,
with the respective multiplicities.

We said before that in any irreducible representation of S U, there is one operator,
commuting with H,; and H,, which removes all the degeneracies.

It can be seen that the operator

T* = 3(H? + E,E_, + E_,E)) (13)
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has just these properties. We note that
H| = {3H
T = H\* + BB, + B, E, ' 'C '
Eyj = Y3Ey,

where H{, E{, E_| satisfy the same commutation relations as the basis elements
of a representation of A; (in fact they correspond to the elements hj, e}, e}
defined in sect. 8.7b). In any irreducible representation (m, n) of SU,, the ope-
rators H{, E{, E_| generate by themselves a representation of SU,, in general
reducible. The irreducible subrepresentations of SU, inside (m, n) are charac-
terized by the eigenvalue T(T' -+ 1) of T*T = integer or half integer number).
Considering beside 7' the operator 2H,, one can show that in any (m, n) represen-
tation, for any pair of integers f, g such that

mAynzfzmzgz0

there is exactly one SU, subrepresentation with
- 2
T=L;i 2H,=f +9 — 3 (m + 2n)

(Weyl’s branching law).
For example in the (1, 1) representation there are:

1 submultiplet with 7' =1 2H, = 0

1 i 1] Tzlj"lﬁ 2HB=1
1 ” s Tl=l!s 2Hg= —1
1 . , T=0 2H,=0.

We shall see later that in the eightfold way model the operators H{, 1%, H;
are identified with 7' 7%, ¥, so that this rule gives us a decomposition of each
SUg supermultiplet into isospin multiplets.

9.4. Tensor product of representations

Let g, and g, be two irreducible representations of £ into the linear spaces L,
and L,:
xef x->p,(x); py(x) = linear operator in L,

x — p4(x); pa(x) = linear operator in L,

and let M, M?,...; N}, N ...; be the weights of the two representations,
[MY), | M2),... |NY, | N%),... the bases formed with the corresponding eigenvectors
(for sake of simplicity we do not write explicitly the eigenvalues of the additional
operators needed to remove all the degeneracies: they are however understood):

01(hi) |M¥) = HY |M¥) = M} |M*) (14)
0y (hi) [Ny = HP |N') = N} NY.
Then in the tensor product space L = L, ® L, which is spanned by the basis
| M¥) | NY)
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the tensor product representation g of ¥ is defined as
x — (0, ® 0y) (¥) = o(x) g (x) = linear operator in L
(01 @ es) () | MF) |NY) = p(x) | M¥) | NY) = (¢, () | M¥)) | N') + | MF) (05 () | NY)).

Recalling the definition of tensor product of two operators given in sect. 5.1
we see that

o(z) = o) (2) @ 1® + 10 ® gy(x) (1)

where 1() is the identity operator in L;. With this definition, the representation
of the compact Lie group associated to ¥ which is generated by p, is just the
tensor product of the representations of the same group generated by g, and g,,
as defined in sect. 5.1.

For the elements g (k;) we have

o(hy) = HY @ 10 4 lti) ® HY
so that
o(h) | M¥) | N') = (M} + NY) | MY) | N,

i.e. the weights of p are obtained by adding together the weights of p, and p,
in all possible ways. In particular for the greatest weight we have

A=A 4 A2
Au‘ - Ai[ + Agp

(for any simple root &) where A! and A2 are the maximal weights of g, and g,.
Moreover the eigenspace corresponding to A is always one-dimensional, and it is

spanned by the vector
| A% | A%).

In general p splits up in a direet sum of irreducible components

e=@®ex- (16)
yl

Each of them, according to VI, is characterized by its maximal weight A’, which
we have chosen as a label in (16). In general in this formula will appear many
irreducible equivalent components, i.e. terms with the same A’. Although general
formulae can be given, characterizing which are the irreducible components and
how many times they appear in (16) [18] yet these formulae are extremely com-
plicated 1®) and are not used in practice!?),

18) This is not the case of 4,(SU,) for which the decomposition (16) is explicity given by
the well know Clebsch-Gordan formula:
Jitis
e=(ej®ei) = @ -
j=Ih—hl

19) In practical calculations we need not only the decomposition (16), but also explicitly the
matrix connecting the basis |M¥) |N') to the basis spanning the irreducible components,
i.e. we need all the Clebsch-Gordan coefficients involved. Such coefficients in general have not
been calculated ; however in the case of SU, they are tabulated [29, 33] for all tensor product of
interest in physics,
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Anyway it is a very simple task to isolate a particular term in (16), i.e. the
component g4 where A is the greatest weight of . In fact if we construct the
manifold spanned by the vectors

E_EE_,...|4)
(%, B, y,... = positive roots: E_,, E_, E_,,... lowering operators of g) we obtain

an irreducible invariant subspace (see sect. 9.2) and obviously if we consider
the restriction of g to this manifold, we obtain a representation having the maxi-

" mal weight equal to /. Being / simple, p4 occurs only once in (16).

Consider now the r-irreducible inequivalent representations p; with maximal
weights A, such that

2(AWD, x®))
(oa®7, oy~ — Tk

Then we have: any irreducible representation o identified by the set of non
negative integers (A, 4,,,...4,) can be obtained by making the tensor product

®0 ®0y... @0a®0s...
A,, terms A,, terms

91@91--_-_

: 5 % (17)
A,, terms

and isolating the irreducible component of greatest weight. In fact this component
belongs to the weight .

A =4, AD 4 A...A(s) 4 - A, A

which is just the maximal weight of p.

9.5. Contragradient representation

Given a representation p of ¥ in a linear space L, we can construct another
representation g which is called the contragradient (or adjoint) of p.

We first fix in L a basis in which the operators g (x) are represented by certain
matrices (¢(z))i; then we consider a linear space L* having the same dimen-
sionality of L. The representation g in L* is constituted by the operators p (x)
which, with respect to a basis fixed in L*, are represented by the matrices

(@@)f = —(e@) = —[e@)T]. (18)
Operators g defirred in (18) will be symbolically written as
g =—o".
For the elements of ¥: ky, ¢,, e_,, we have
hi — o (hy) = H;
e, —ole,) = B,
hi g (b)) = —HT

€y "*E(ﬂn) s _EaT

} for the representation g

} for the representation p,

95 Zeitschrift ,,Fortschritte der Physik*, Heft 7
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so that the eigenvalue of g (k;) are just minus one times the eigenvalues of g (4;),
i.e. the weight diagram of p is obtained by reflecting through the origin the dia-
gram of p. In particular p is equivalent to g if and only if its weight diagram is
invariant under this reflection,

Consider a vector x ¢ I, with components () and a vector y ¢ L* with com-
ponents (y;): by definition applying transformations g and g, we have

"t = 3ot
3
Y= % — of Y-
‘Having L and L* the same dimension, there exists always a one-to-one corre-
spondence between their elements. Let
x=Ay xzel,yelL*

be such correspondence. If we transform x with ¢ and y with p, the resulting
vectors will not be connected by A, unless g is equivalent to o

z' = px,y = py, then
x' = Ay', implies
o= ApA1,

Hence only if ¢ ~p we can identify L and L* in a way which is invariant under
e and p.

-

We note that the definition of adjoint representation has its analogous if we
consider the group associated with ¥, in that, if

k-
‘o1

Fig. 5.

g—>T(9)
is the representation of this group generated by p, then
9T =(T@YH"
is that generated by p.

Cad
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In the case of S U, we note that all weights diagrams are symmetrical for reflec-
tions around y-axis (this axis is in fact orthogonal to the root «,) so that, to
obtain the diagram of the adjoint representation, we have only to reverse it with

respect to the x-axis.

A glance to figure 5 is sufficient to conclude that if ¢ is the representation (m, n),
then p is (n,m). In particular g is equivalent to p if and only if m = (in this case
in fact they have the same maximal weight).

9.6. Explicit construction of SU, representations

The 3 ¥ 3 antihermitian traceless matrices

/010 /0 —i 0 1 00
413—5100 Ag=—%i 00 =—--2‘-~0—10
000 0 00 0 00
/0 0 1 /00 i /000
14=—%0_00 35z~%000 A.,:-% 00 1) (19
100 i 00 010
/00 0 /10 0
T 1
e A 0 =i] == 01 0
2 SRl
0i O 213 \o 0 —2

satisfy the commutation relations given in sect. 8.7¢ so that they are a 3-dimen-
gional representation of the compact basis of 4,, and their real combinations span
a representation (in fact irreducible) of the Lie algebra of SUs. The operators
representing A, and h,, are (see sect. 8.7¢)

S L[t 00

B b b oy )

3 213\, oo

o k€ 0

Hi= e to1 o)
3 6

00 —2

From these we obtain three weights

1) 11 1
Pl Lot DN AWl A= 0
s s) #=(aws) #=0-)
By considering the simple roots «, and xg we easily see that A! is the greatest
weight and that

204 &)

(o%g, oxg) - (oxg, )

2% a) _ o

5o that this representation is the (1,0) one, whose diagram is reported in fig. 4.

25%
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The adjoint representation is obtained by taking the matrices — A7, and is the
(0,1) representation, inequivalent to the (1,0) one. These representations which
are the fundamental ones, being the only 3-dimensional representations of 4,

will be called 3 and 3.
By taking the matrices

1.8
T(xq...00) = e‘} e (a Teal numbers),

- we obtain the set of 3 X 3 unitary unimodular matrices which constitute a group of
- operators in a 3-dimensional complex space. This group is by definition S U,.

Representation 3 generates the operators

S — X ap 4T D ag dgy
T(xg...o00) = & P :(8" it).

- This is the representation which to each matrix of SU, associates the complex
conjugate matrix. _
- The linear spaces of representations 3 and 3 are

Ly : general vector x indicated as («1, 2, 2%)
e, - W s o (Y1 Yo Ya)-
If U, is a matrix of SU,, then for the representation 3 we have
U—-TU):2 =T(U)=x
z'i= %‘U“;ﬂ. ;
whereas for 3
U-~TU), y=TWU)y
¥ = é‘ﬁik Y-
The tensor product
D =L,®L®...L,eL ®L... ©L

m n

- is just the vector space of the 3™ +" components objects (tensors) (sect. 5.1)

| X;:”:;: (ilﬂ"'im;jl.!"'jll= 1:293)=
~and the product representation of SUj in this space is constituted by the opera-
tors 79" (U) defined as (sum over repeated indices is understood)

{n)

)

(T (U)X ;:;: = U Uit sos Tiaas g _ﬁ,-”,-n- X;:;:‘ (20)
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From (15) sect. 9.4 we see that the compact basis of the Lie algebra of 8U, is
represented by the operators A® acting as

k)

L, N k)
(ABXY: i = (A B - - Bumi B + - 1y + Bis Ak X
1 (k
* (5;.,;" . s 63;“,-; + .0 — 0,;',;; s (s,;”,’m' :‘1‘.};’-}' X

(k) i g
X Bpgie oo — Oiii - o Oy gu s M) X3,

where A are the matrices listed in (19).

9.7. Let us consider the tensor product representation (reducible when k > 1):

B)f=33®3®...®3.
k

Instead of considering the irreducible subspaces, we focus our attention on the
operators which project on them. Suppose:

Ly = ® L, « = labels irreducible subspaces.

It ¥, projects over L (Y?= Y,), then we have:
a) Y, T U) = T (U)Y, forany U ¢ SU,;
b) there exists no Y, projecting on a subspace L, — L, commuting with
T®(UY’s, i.e. Y, are minimal projections;
c¢) Y,’s are orthogonal (Y,Y; =0 when o= ) and constitute a complete
set (Z'Y‘, = 1).
To characterize Y,, we have to consider the set of all operators commuting with
TH(UY's.
Let us call p an arbitrary permutation of 1,2 . . . k:

p: 11,252,  k—>F,

where 1',2"...k" are again the numbers 1,2 ...k rearranged in some way speci-
fied by p. We associate to p a linear operator p acting on Ly, defined as:

{px}ﬁ...l} — _Xi.‘...ig"

Such operators constitute of course a representation of the group of all permu-
tations of k-objects,
Moreover:

(pT(*J(U}X)iI---fi it (T“’}{U)X)fl'--»"g' =i Ul’ui. . Ut‘yr’g Xhede =
=Usjuo v o Uy Xl = U, o2 Uy, (pX)evit =
= Uy} .+« Uyjp (pX Yt = (P®(U) pX )i,

ie. p commutes with T®(U). Let us call X the set of all the operators p and
of all their linear combinations: clearly all the elements of X, commute with
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T®(U)’s, but the importance of X lies in the fact that the converse is also true,
ie. [21]:

all the operators commuting with 7™ (U)’s belong to X.

Hence Y.’s (which reduce the representation) are in Z,.

Their characterization can be achieved using the so called Young tableaux.
Consider an arbitrary partition of k objects into groups of A, 4, . .. A, elements

(44 =4, = ... = 4). This partition is indicated by a tableau made of r rows
containing A,, 4,, .. ., 4, boxes:
IS
Ay h+2++A==t
I A

Fill now this tableau with the numbers 1, 2, ... & in all possible ways consistent
with the rule: numbers must increase, in each row from left and in each column
from above.

Consider for example k = 4. Then we have five tableaux:

RN [ ] ]

L| = A= Ay=Ay=A=
1, 1.1 Jot
L=l 4 =1 da=14, =0 —
A=y =0 4=t
dg =1y =1
=0
which, filled in all possible ways, give:
[1]2]3]4] 1{2]3] 1]2]4] 1/3]4] 1B
a &) B 3] o d 3[4 e
1]3 1] 2] 1] 3] 1]4] 1]
2 f4 L il B =] 2| ] (1)
5 4 3 3
4
To each tableau determined by a partition 1,,...4, (4; + 4, + --- = k) and by

a particular arrangement of the numbers 1, 2...% consistent with previous rule,
we associate an operator Y (Young symmetrizer) defined as

Y=0p, (22)

P = sum of all operators associated to permutations of 1,2 ... %k which leave
unchanged the rows of the tableaux = 3" p, @ = sum over all permutations ¢

»
which leave columns unchanged, each being multiplied by its signature @ = 34,q.
»

Group Theory and Unitary Symmetry Models 349

Let us indicate permutations (as well as operators which represent them) in the
cyclic notation : for example:

(1 2 4)(3) orsimply (1 2 4)

stands for:
12

2 >4
4 1
3—+3

and:

(1432

stands for:
1—+4

4 —»>1
23
352

Then e.g. tableau (21) f is associated to the operator:
Y, = (e — (12) — (34) + (12) (34)) (e + (13) + (24) + (13) (24))

(e is the identity permutation). ]
Applied to the general tensor Xiisisis, this operator gives the tensor

X
f ta
ia.l 2 5.6 — Xivisiaia f Xivisivie . Xinivisis 4 Yisishria
i | g _ Xisiia _ Xisishiie . Xidaisis . Yisiairia
talta _ iisids _ Xisisidy _ Xirisisis _ Xisidisis

+ Xf;ilf;fa + Xfll‘;l‘a!‘; + Xl‘qilt‘:l‘& + Xl‘al'ﬂ'al'l.
It can be shown that: o
i) all ¥’s are proportional to projections:

Y2=1¢Y do that {: is a projection,

ii) ¥’s are minimal projections, and
¥¥ =0,

when ¥’ corresponds to a different tableau than Y (i.e. differing for the partition
Ay, Ag, ... A, or for a different arrangement of tl.le numbers 1, 2’, s ) ;

iii) for a given k the set of projections ¥ assoc_la.ted to all possible Young tableaux
of crder k completely reduces the representation (3)%:
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iv) Y’s corresponding to the same partition 4,,... 4,, differing by the arrangement

of 1,2 ...k project over equivalent representations.

It can be easily verified that any Young symmetrizer projects over tensors anti-

symmetrical in indices appearing in the same column of the corresponding tableau.

Now our indices run over 1, 2, 3 so that each tableau with more than three rows

gives an identically vanishing projection (this is the case of the tableau (21)1) and

need not to be considered.

We want to see now how each irreducible (m, n) representation of SU; can be

obtained isolating a particular irreducible component in a suitable product

3®3...®3[21]

Consider the tensor product 7T"m+# — (3)ym+2,  We claim that the irreducible
" manifold L characterized by the Young tableau

1 2 n m -+ n

(23)

m-4n-+1 m-42n

transforms as the (m, n) representation.

Let us call L{" the vector space of tensor with m upper and n lower indices ; then

the following mapping:

l:n-l-l:-'il-im — X
Fh---?q = Ejindnymir Flatainsmes

X

h iz eie tntq tntm

tn+m+ 1 bnimte

(24)

or, in short, Fif) = &) e X| :

k|1 |
e
(we contract with &;; each pair of indices belonging to the same column) induces a
one-to-one correspondence between L and a linear manifold (which we will specify
later) contained in L. That (24) is a one-to-one mapping can be seen by showing
directly that if

F = e X =1 I = E(iyke) X | Bl
€ [
then o
X —. ;
kf i) k||
e e

To do this, write explicitly the expression

——— !
0= Ejvtiinpmer Einia Tngmys*"* (X —-X }

4 iy cee | b | e s s | taim

"n+m+1 Ly +m+2
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then contract indices jy, ja, .. . ju With &,¢,j,, €4,1,5,,--- Using the identity:
Eatjejiiv = OpiOrir — By By

ag well as antisymmetry of tensor X in the indices of the same column, the wanted

result is obtained.
Moreover a simple but rather tedious calculation leads to the relation

T (U)F = T™ eX = e T8 (U)X,

in)

where T (U) is any element of the representation (3)" x (§)" =3®3...3®

®3...®3 and with ¢ we have indicated the mapping (24). This shows that the

—ﬂ,—-——' .
image L¢ of L into L™ is an irreducible subspace for the representation (3)* > (3),

[H3]
whose restriction to I* is equivalent to the restriction of 7'm+2) to L.

Proof will be complete if we show that the vector belonging to the maximal weight

of (3)" x (3)* is contained in L* (see sect. 5.4).
Now, according to the matrices of sect. 9.6, the vector belonging to the maximal
weight of the representation 3 is

@) =6 = (1;0,0),
whereas for the representation it is

¥)i = 0 = (0, 1, 0).
Hence the tensor of L{™' belonging to the maximal weight of (3)" @ (3)" is

. {F ;:‘+‘j",‘ b Sl §lasal | §atml . ,5}-[2 s e 61'_2

and we have to show that F belongs to Le.
Consider the tensor X (belonging to L) defined as

iy v oot fam

bnim+1

when indices appearing in columns are not permutations of 1 and 3, and some of
the last m indices in first row is different from 1. Then obviously we have

{f_‘)iji = &) o) Xj AR I 8

e

i.e. F belongs to L¢, Q.E.D.
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For example previous theorem allows one to conclude that linear manifolds on
which tableaux (21b, ¢, d) project, transform as the (2,1) representation, whereas
those corresponding to (21e, f) transform as (0,2).

In the composition of the tensor product (3)¥, also tableaux with three rows appear,
To which irreducible representation do they correspond? We will see this referring
to an example.

Consider the manifold of tensors

iy | i

belonging to the product (3)* (tableau (21i)).
It transforms under SU, as

TNU) XY = Uiy, U4, Uiy, Uiy, X—1-
( 1y ‘:I ’ hen ‘ h ?4]
L /2
4] 7a]
Being ‘X antisymmetrical in j,, j,, js, we can write
X - . e E-I’I £ ] X .
h hl o 1]174]°
7 2]
ie.
TO(D) X, =(Up; Ut U pia Y Usis X
( ) il El { Gy Y Y ehhh) uJa 1 ?5|
%3 2
iy 3]
=det U &4, Uiy, Xr—1— = Uyj, X—
A ix] 4]
2 ¥s
3] B

so that the irreducible component (211) is equivalent to the representation 3, which
corresponds to the tableau []. This reasoning can be repeated for tableaux with an
arbitrary number s of columns with three hoxes, leading to the conclusion that:

~m—> |+_ m—
Ifn—* is equivalent to <n— .

-8
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Using these arguments we find, for example, the decompositions:
(3)* = (4,0) + (2,1) + (2,1) + (2,1) + (0,2) + (0,2) + (1,0) + (1,0) + (1,0)
a bed ef ghi
@) =(0,1) + (2,0
@) = 3,0) + (L1) + (1,1) + (0,0).

A formula can be given for the dimension of the (m, n) representation [21] by
counting independent tensors of a given tableau

d,..,,:{l—i—m}(l—{—n)(l—}-m;:ﬂ). (25)

Note that, when this produces no ambiguity, we will use d,,, to indicate the re-
presentation (m,n) (m = n) and d,, to indicate its contragradient (n,m) (for

example 10 for (3,0) and 10 for (0,3). . .
We WI;.nt now to characterize the manifold L¢ into which L is mapped by (24).

: f1oes
More definitely we show that L* is the linear manifold of all tensors F,:___}:' sym-
metrical in upper and lower indices and traceless, i.e. such that

Fijufn =o0. (26)
We show this in two steps:

i) any tensor in L* is a linear combination of tensors with the stated properties. In
fact we proved before that in L there is the tensor

(F)fge = 8i .. 01 8, . 8y,
which of course is symmetrical and traceless. Consider tensors
F(U)=T@ () F,
where U runs over the whole SU;. We have
FON S =Upe oo Upgr Upgr o+ Uy 801 8818y =
= Upe o U U . 0

F(U)’s are of course symmetrical in upper and lower indices and, dlfe to unjt.a:rity
of the U's, they are traceless. The linear manifold spanned by F(Ll} 8 i8 cont.a.me.d
in L* and is obvously invariant for the representation (3)" x (3)*. Since L* is
irreducible (as we saw before) and this manifold is surely not zero, we conclude that
it is identical with L¢; i.e. L* contains tensors symmetrical and tracele:sa. )

ii) Call L* the manifold of all tensors symmetrical in upper and lower indices and
traceless. From i) L" > L¢*. We show now that the dimension of L equals that of
L#, so that L™ = L&
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A tensor Fj'j" symmetrical in upper and lower indices, has

(m+3~1)(?1—}—3—1)_[-?{1—1—2]! (n +2)!

n T Tml2l al2t

_ (m -+ 2)(m =+ 1)(n + 2)_(?1 + 1)
4

m

(27)

independent components (remember that indices i, j go over 1, 2, 3), and the num-
ber of independent conditions (26) equals the number of independent components
of a tensor symmetrical in (m — 1) upper an (n — 1) lower indices, i.e. it i8 equal to:

((m-—l)-—|—3—l)((n—l)—|—3—l) m(m + 1) n (n 4 1) .
- . (28)
m— 1 n— 1 4

Substracting (28) from (27) we obtain:
g m -+ n 4
dim (L) = (m + 1) (n + 1) (1 4 — 2———) = dim L.

Because dim L¢ = dim L being (24) a one-to-one mapping, we conclude:
dim Le = dim L
ie. L = L.

Hence we have found another possible realization of the (m, n)SU, representation:
the space of tensors Fj:.:1j" symmetrical in upper apd lower indices and traceless,
transforming as:

Flrob g gt U Uy Opge . Dyge B30
A large part of the above results can be generalized to representations of an arbi-
trary group SU,. According to the general results of sect. 9.2 the irreducible SU,
representations can be labeled by (n — 1) positive integers (ky, kg, .., ky—y). In parti-
cular the representation (1,0,0,..,0) is always made up with SU, matrices
themselves, and is n dimensional. Results i) ii) applied to the reduction of the ten-
sor product (n)f =7 @ n ® .. ® n hold unchanged: in this case of course indices
1 2 k

iy...% run over 1,2,..n, and we have to consider tableaux containing up to n

TOWS.
A tableau of the form
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is associated to the representation (k,,..k,_), and tableaux differing by an arbi-
trary number of columns with n rows characterize equivalent representations. The
dimensionality of the representation (k,,..k,-,) is given by the formula:

0,n-2 1,n-I-1 .
dlkydws) = [ T1 (1 +ke+kh}li-i +k,+,).

We list here for example some SU representations, together with their dimensiona-
lity (the contragradient of (k, . .. ky_y) i8 (kn_y, kn-z, ... k1))

[ | CLT]

b

(laO; 05 0: 0} {0) 0:9:0) l} (1) 0} 0: 0! ]) (31 0} 0! 0’ 0)
Dim: 6 6 35 56

Reduction of tensor product of arbitrary SU, representations.

In finding the irreducible components of the product (m, n) ® (m’, n’) again the

technique of Young tableaux can be used. We give here without proof a simple rule

fgrg;u%kjilgl }thiﬂ reduction [22]). We illustrate this rule referring to the product
L ( L] ks

Write down the corresponding tableaux, having filled with symbols @ and & first

and second row of one of the two, arbitrarily selected :

[] An|

b

Then add to the empty tableau the boxes of the first row of the second one in all
possible ways consistent with the rules:

i) there must never appear two a’s in the same column;

%i) for each resulting tableau, containing 4,, 4,, 4, boxes in first, second, third row
it must be A, = 1, = ;. ,
In our case we have six possible tableaux:

| [afa] [a] [ Ta]

(1) (2) 3)

4) 6) (6)
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To all these tableaux we add now, in all possible ways, all boxes containing b,
again consistently with ii) and with the additional rules;

iii) there must never appear two b’s in the same column;

iv) for each tableau so obtained write the sequence of a’s and b’s obtained reading
first row from right to left, then the second row from right to left and so on: on ly
tableaux are allowed such that at any stage of this sequence the number of @’s
already read is greater than or equal to the corresponding number of b’s.

From tableau (1) we obtain the following allowed tableaux

[a]a] [a]a
|

]

( ' I“I‘I[?I is not allowed by iv))

from (2), (3), (4), (5) we obtain respectively:

al [a]

2) - lalb a
b
@~ [_Io
a alb

4) > i,'“l“ (6) — alb“| ® > [

b

Representations corresponding to the so-obtained tableaux are then the irredu-
cible components of the tensor product considered (as previously observed we have
not to consider tableaux with more than three rows):

2,2)0(1,1)=27Q@8=(,3) + (4, 1)+ (4,4 + (2,2) + (2,2) + (3,0) +
+(0,3) + (1,1).

The dimension of (2, 2) ® (1, 1) is equal to 27 - 8 = 216, which using (25) can be
checked with the dimension of the second member.
Reader can easily obtain the following decompositions

8®8=1+4+8+410 4 10 + 27
8®10 =35 +27 +10 8
8 ®10 =8 -+ 10 + 27 -+ 35.
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The same procedure can be applied to the reduction uf_ the F.ensor product of arbi-
trary SU, representations, labeling with ¢, d, ... boxes in third, fourth, .. rows. At
the end of course we will drop tableaux containing more than n rows.

Consider the case of SU; and the product: :

36 ® 35 = (1,0,0,0,1) ® (1,0, 0,0, 1)

| | [a]a] alal alal a|
b b b a

. I _ c c + b +
2 '&J N d i d ¢
e | P d

a a aI

alb al|b b a

¢ c c + b

+ d e d £z d c

e € d

E | a | ale

i.B. 35 @ 35 = {2, 0, 0, 0, 2} + (2! 0: 0’ 1» 0) + (lr 0’ 0: 0’ 1) + (0: -lv 0: 0! 2)
+(0,1,0,1,0) + (1,0,0,0,1) + (0,0,0,0,0),

10. Eightfold Way

10.1. We are now in position to build up a concrete theory for strongly interacting
particles. The first thing to do, after what we have sal'd in secft.. 7.5, is to identify
particles with the same spin and the same parity with linearly independent vectors
inside certain irreducible representations of

G x Uy(N),

where @ is a Lie group of rank two and U,(N) is the baryonic number gauge group.
This identification fixes the connection between infinitesimal generators of the
roup and isospin and hypercharge operators. ) ) .
%f cc?urse we mﬂsb preserjv(rle the igsospin structure of the partlc!es, in T,ha.t. particles
belonging to the same isomultiplet must go into the same irreducible represen-
tation. ) )
The procedure is not straightforward since there are three' non m?morplnc r?.nk
two groups, and in addition particles do not exhibit any impressive regularity,
apart from the isospin multiplet structure. o ]
Hence at a pure classificatory level one has no clear indication on which the un-
derlying symmetry group, actually is. Furthermore, once a group ha{; belan chogen,
it is not clear which are the correct assignments of the particles to its irreducible
representations. o ) _
In fact many different models have been proposed and in prmclple the rlght choice
should emerge from a comparison of theoretical predictions with experiments.
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However the great difficulty is that even large discrepancies could be due not to a
substantial failure of the model, but to the effects of the symmetry breaking inter-
actions.

As stressed by A. Sanam [23], it is hoped that a deeper understanding of the latter
will finally lead to a non-ambiguous interpretation of many possible tests.

The main informations a symmetry model provides us, are of the following type:

i) whatever the model is, one finds that the known particles alone do not arrange
themselves in complete supermultiplets, and one is then led to assume the existence
of new particles with definite values of 7'y and Y. One can even guess their masses
and the most likely production and decay modes.

However there is no a-priori reason to require completely filled supermultiplets.
in fact one can imagine situations in which the symmetry breaking interactions,
which are certainly present (see sect. 7.5), make some members of a supermultiplet
go unstable, that they are not practically ob-
servable. On the contrary the discovery of a
predicted particle provides strong evidence in
favour of the implied model;

ii) from the symmetry scheme one can deduce
relations between amplitudes of different pro-
cesses ; (see the example of iso-spin, sect. 7.4).
iii) by assuming certain transformation pro-
perties of weak and electromagnetic interac-
tion Lagrangians of hadrons under the sym-
metry group, with the aid of Wigner-Eckart
theorem (sect. 6.3), one can derive relations be-
tween the amplitudes of weak and electromagne-
tic processes involving such particles.

In what follows, we will focus our attention on the “eightfold way” model pro-
posed by Ne'EMaN [24] and GELL-MANN [3], which has proved to be the most
successful one??),

10.2. a) In the eightfold way model one chooses SU, as the underlying symmetry
group, and associates the eight “‘stable” baryons N, X, A°, E to the basis vectors of
its (1, 1) eight dimensional representation, as indicated in fig. 6.

We can easily deduce the relations between 7'y, Y, and the diagonal elements H,,
H,, by remembering (sect. 9.3 b) that in the representation (m,n) of SU, the eigen-
values of H, and H, corresponding to the maximal weight A are

A= (m;“+fn, it n)
2Y3 6

Fig. 6.

Hence, with m = n = 1 we have

A= (?15 0).

If we want to associate to |A) the X+ particle, we have to put
Ty= ﬁ H, (1)

#0) For a concise discussion concerning the other symmetry models see [25, 26].
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and in addition, by requiring p to correspond to | A — ay|),
Y =2H,.
The operator T defined in sect 9.3b, which removes all degeneracies inside a
supermult'.lplet, 18 just the square of the isospin. We will choose normalized simul-
taneous eigenvectors of 7%, Ty, Y as a basis in any irreducible representation.

The psendoscalar mesons also fit very nicely into tet i
b ] y y an octet according to the scheme

K° K*
n
S o \ n* - —_—p
K~ K

Fig. 7. Fig. 8.

It should be noted that the 7 meson, which quite naturally co
{?ﬁ been ciiscovered after the introduction ofqthe eighfold zray.mpleteﬂ e
en we try to arrange the vector mesons i i

In fact we would likeag to asgign the nine mggotll;e ieitag R i Bbn
pl=LY=0),KT=1,Y=1),Ks(T=1,
YZ-—I),L.}Z{TEO,Y:O),@(T:U,Y=0) L\
t-_u the same irreducible representation. However,
since Ty, 7', ¥ are a complete set of commuting
operators inside each irreducible representation, it
18 not possible to fit in the same supermultiplet two
distinct isosinglets (e, @) with the same hypercharge.
The usual assignment is to put eight mesons into

N-

an octet (fig. 8) and the remaining one into a singlet n-
(1..e., in the (0, 0) representation), and the question
arises whether the w or the ¢ particle is to be put Fig. 9.

in the singlet.

We shall see in the following that this question can be consgistently resolved

In considering the baryon-meson resonances, we have to find a representx;.tion

containing an isospin 3/, multiplet with hypercharge equal to one, corresponding

to the well know_vn N3,, = — N resonance. The lowest representations contai-

R;ng this stomult:plet are 10 and 27. The first one accomodates wery well the

Wh:-l’ J¥ = 3/.+ resonances N3, Y3, E%, Q- (fig. 9).

by ereas N3., Y!, E* were at hand when it was proposed to assign them to
e decu lflet, the Q- was not yet known : the model predicted its quantum numbers

N=1,T=0¥=—2) aswell as ita mass Mq = 1676 MeV.

26 Zeitschrift ,,Fortsehritte der Physik®, Heft 7
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On this indications extensive searches for the Q- have been carried out, until a
- particle with right mass and hypercharge has been found studying K-p reactions

at 5.0 GeV/e [27].

The positive result of the search has been considered as one of the most brilliant
. successes of the eightfold way model.

There is another particle, namely the Y§ (mass = 14056 MeV, T =0, Y =0,
| JP = 1/;-) which usually is assigned to a (0,0) representation.

Name Eliltﬂhﬁ Par_ JV Jp (‘i“&:s‘?) Y T
v | e |mm ]
A° 1|yt 11154 0 0

B + 1189.4
z 1 1.+ —1197.1 0 1
1192.4
2 t | Tiste —1 | %
v: 1| Yt 1405 0 0
N* 1| oy 1236 4 2 1|y,
Y? 1| 3y 1382.1 + 0.9 0 1
a* 1| 9t 15201 + 1.0 |—1 | 1,
Q- 1| 3+ 1675 + 3 —2 | o
e e e s |
7 0o | o 548.7 -+ 0.5 0 0
R
0 o | | 76344 o | 1
w 0 1~ 782.8 + 0.5 M_“_(.)u“m _0 -
cp e 1019.5 + 0.3 0 0
K* 0 _ i~ - T l o _;2__
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We report a table deduced from [28]: in it we report the quantum numbers (in-
cluding masses) of the particles we have arranged in the scheme. In the same re-
ference many other particles are listed which we have not considered here mainly
for two reasons: first of all the quantum numbers of many of them are at this time
not well established (sometimes even their existence isdoubtful). Secondly it appears
that the situation is go incomplete to make not very useful an even tentative
grouping of such particles into supermultiplets.

10.2b) It is convenient for further applications, to identify the eigenstates of
T Y, (to which particles are assigned) inside the tensor representations we
have described in sect. 9.6, 9.7.

The particular symmetrieal tensors Tij_‘ :i" defined as

1 when i, .. .1, isa permutation of

Pfiocd 9% TN R, oo
¥ ¥y Ty N

a permutationof 11.. 1 22...233...3

e
hy hy hy

Beim
T =

0 otherwise

are, according to sect. 9.6, eigenstates of H,, Hy (inside the representation
(3)" ® (3)*) with weights
(ky — hy) A + (kg — hg) A% + (kg — hg) A%,

where /4123 are the weights of representation 3. Hence they are eigenstates of
T,, Y with eigenvalues

1

i

2

1
by — by) — 5 (ks — Ba)

1 1 2
YZE(k1_k:)'f’g(ks“hs}“‘g(ks_"s)-

They are a basis in the manifold of the tensors which are symmetrical in upper
and lower indices, so that to obtain a basis in the (m, n) representation, which
diagonalizes 7'y and Y, it is necessary to take those linear combinations of (1)
which are traceless. Among them we will select those linear combinations, which

correspond to eigenstates of 72,
In what follows we will be concerned only with the eight and ten dimensional

representations.
In the case of the (8) representation we have to consider tensors with two indices.

We have not to impose any particular symmetry property, but only the trace

condition :
=1,

There are nine independent tensors 7'
T
(Tw); =06, 0
(T)) = 070j3 1
(T(s))} =4 djg s

26%
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T, ¥

(Tg)i = 628, —1 0

(T's))§ = 6204 0 0

{T(sl)j: - é“d,—, ~~Llg 1

(T{n}} =0%0;, —'y —1

(T(a))j: == é"séis lfn =4

(T)j = 604 0 0.

Ty Tsp» Ty are not traceless. There are only two independet traceless linea
combinations

Ty — T

Toy + T — 270 (2)

which span, together with 7'y, T'w) T4y T Ty T's) the (1.1) represen-
tation. It is worth noticing that the general tensor of (1,1) can be thought as
a three by three traceless matrix, and the transformation law 9.6 (20) can be
written ag a matrix product

T-T =UTU? UelSU,.
Then the operators representing the S U, Lie algebra act as
(AT) = [4, 1.

where 1 is any linear combination of the matrices given in sect 9.6 (19).'It is
then very easy to see that the tensors (2) are eigenstates of T2 with eigenvalues,
respectively, 2 and 0.

From this point of view, recalling what we said in the previous subsection, we
see that:

i) in the case of stable baryons, we have the following assignments:

1
0, 0
Y6
010
1
+>{000); A |0 —= O} ete.
10
000
00”—_?
V6

Which are symbolically summarized in the matrix:

LA
TR £
o A0
B = Z_ s —V'z_ —i— IT(_i n (3}
=- p 2
1
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Factors 1/ V2_, IWB_ have been introduced so that our basis tensors are normalized
with respect to the scalar product

(1Y = 2; /4 (T’g) = Trace [T'(7")*]. '

i) In the same way for pseudoscalar mesons we have the matrix:

n'; -} A + K+
TR
_I- ﬂo .n {.‘-___.:- 1 oo FERE R
M= —_——_— 4 = :
27

For what concerns the 10-dimensional (3,0) representatlon, we notme that 1t. is
spanned by the symmetrical tensors: '

(T, )% { 1 when ijk is a permutation of («,8,y = 1,2,3)
apy) T =

0 otherwise
xfly T ¥ Ve
111 3 1 5/,
112 A 1 1/,
122 | =Y, | 1 ),
222 | —3, 1 5/,
113 1 0 2
123 0 0 2
223 -1 0 2
133 Yy =1 3
o33 [ g 1 ) Y,
333 0 | -2 | o

10.3. Antiparticle multiplets

So far we have not explicity considered the assignments of antiparticles.
If |a) is a particle state, then the corresponding antiparticle state |a) has the
same space-time properties, but the values of all charges (Q, N, Y, etc.) are
reversed. |a) and [a) are connected by the charge conjugation operator C

la) = Cla),
which can be assumed to be a unitary operator satisfying:
Ci=1.

It is a well known fact that strong mteractlons are symmetrical under C, so that
if particles exhibit, the SU, symmetry, relative to strong interactions the same
behaviour must be dmplayed by the corresponding antiparticles.
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In particular for each supermultiplet of baryonic number N, the corresponding
antiparticle states must arrange according, to a supermultiplet with baryonic
number — N. By definition C satisfies

CQ +QC={CQ =0
{C.N}=0 (5)
{C,Y} =0, '

so that, using the Gell-Mann-Nishijima formula (Q = T'; + 1/,Y), we get

. (C.T5} = o. ©
Let us indicate with
L = {|(m, nN), T2, t,, y)}

the linear manifold spanned by the basis vectors of the (m, n) supermultiplet
of particles with baryonic number N particles and with

Le = {C|(m, n N) T*, ty, y)}
the corresponding antiparticle states. Then by (5), (6), we have
TyC|(m,n N)YT? by, y) = —1t3C |(m, n N) T2, ty, 3)

YCHm,“N)'F"my):—yol{m,“N)T”s,?D {7)
N C|(m,n N)T? by, y) = —NC |(m,n N) T2, ty, y),

~i.e. all the weights of {C |(m, n N)T?, t,, y)} are opposite to those of {|(m, n N)

T t, y)}). From what we said in sect. 9.5 we conclude that antiparticles trans-
form under SU; ® U,(N) as members of the (n, m) representation (with baryonic
number-N).

In the tensor formalism we have employed before, it is possible to define the
C-operation simply as the interchange of lower and upper indices: for example
We note that in general this is a mapping between two different tensor spaces,

unless the number of upper and lower indices are equal, i.e. the representation

is self-conjugate.
In the case of antibaryons we have the following assignments:

o A0 » =

= —_— 2 =~

iz Ve

- 0 A0 =

z+ . o (8)

=
il
hﬁ_
|
-
=

]
=]

|

|

(the bar indicates that these particles have baryonic number — 1).
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The pseudoscalar meson multiplet is mapped into itself by C' since mesons have
baryonic number equal to zero:

m° n -
M——r(zﬁ)i"z K2 VB
gt misener R

..........................

In the case of vector mesons a minus sign appears due to the fact that neutral
vectbr mesons have negative charge conjugation.

10.4. Mass formulae

Till now we have grouped particles into supermultiplets, without worrying
about the very large mass difference involved. The mass of a particle is the mean
value of its Hamiltonian H in its rest frame: if SU; were a symmetry group in the
strict sense, H would be an invariant operator so that, by Schur’s lemma, inside

each irreducible representation, H would be a multiple of the unit operator, i.e.
particles inside the same multiplet would have the same mass. This is not the
case and, as stressed before, we are forced to assume that a component of H

violates unitary symmetry. We write
H=H, + H,,
where H, is invariant under SU,;. For what concerns H,, it must be charge
independent and hypercharge conserving
[Hy, T =[H,Y]=0, i=1,2,3

so that H, is constant inside each isomultiplet (we do not consider at this point

electromagnetic and weak contributions to the mass).

Let us label each strongly interacting particle in its rest frame with the quantum
numbers N,JP, 4, Ty, T* Y, where 1 is the label of the SU, representation
to which it is assigned. Physical masses are then the eigenvalues of the matrix:

(N JIE N T Y\ RN, JF, 1, T, T2, X
We have written N and JF for completeness but obviously H commutes with
them, so that the relevant matrix elements are:
NJP, X, T4, T, Y |H N, JF, 4, Ty, T2, Y) = (AT3TY’ |H| AT, T*Y) =

= (N'TT?Y' |Ho| ATyT?Y) + (X' T 1Y’ |H,| AT, T?Y). (9)
To simplify notations we assume that particles with the particular falues of

N and J? considered, group together in only two supermultiplets 2 and A’. This
case easily extends to the general one, and in addition this is the most complicated

situation that has been found till now.
Using the assumptions made on H, and H;, the matrix element (9) writes as:

mo(4) 012 Ogages Oyy- Or,1yy + My (T2, X )20 Oups Syy Oy, (10)
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Hence H is diagonal as it has to be. Matrix elements of H, do not depend on T,
go that we will not menti on it further on. Moreover H, can connect only states
belonging to isomultiplets with the same 7' and Y. Recalling what we said in
gect. 9.3b, we see that in 1 as well as in 1’ isomultiplets with given values of 7
and Y can occur at most once, so that the matrix representing H,, has the form:

™Y T, Y

........ ml(Tﬂ}’]“ —

AR Y

(11)

30 F

A Y
To diagonalize this matrix is equivalent to diagonalize each submatrix

(ml{T” Y)u my (1%, Y)u») (12)
m1(Ta, Y )i ml(Ts’ Y)ia
for each value of 7' and Y occurring both in 4 and ",

In the case of stable baryons, pseudoscalar mesons, and decuplet resonances,
for each value of N and JF, only one representation is present, so that H, has

the form
m, (1%, Y) 0
H, = my(T*, Y') (13)
0 g

and each isomultiplet has the mass
m = my + m,(7%, Y).

We have found nothing else but that particles with same 7'2, ¥ have the same mass.
Significant results are obtained by assuming H, to be the Y = 0,7, =0,
T?* =0 member of a set of tensor irreducible operators transforming as the

regular SU, representation.
In a field theoretical treatment one would describe the symmetry breaking inter-

actions by adding to the symmetrical Lagrangian ¥, a term £yg which is required
to be hypercharge and igospin conserving:

ETs AR

Using perturbation theory in #yg one would write mass corrections as the expec-
tation value of a power serie in ¥yg. If we assume Fyg to transform like the
T* =Ty = Y = 0 member of an octet, we are led in first order approximation

to our assumption on H,.
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With this proviso we can obtain the i

i general form of matrix el i
ngnetl'-Eckart theorem (sect. 6.3.). FHRSTERE (5, et
We write H, as T} , and introduce the notation

C4, T4 Ty, Y; 8,0,0,0; 1,71, Y)
for the Clebsch-Gordan coefficient connecting the vectors
14, T*T,Y) |8, 0, 0, 0); |, T*T, Y,

where the latter vectors span the standard basis which decomposes'the tensor

product 1 ® 8. The suffix y distinguishes between ival i
appearing in the decomposition. PR D

Then, according to Wigner-Eckart theorem, we have:

=+ (T y) = mo + 37 03, T%, Ty, ¥ 8,0,0, 0; 4, TV, ¥) - AT p).
¥y
(14)

Consider stable baryons. In this case 1 — 8 and 8 ®8=1+48+48+4 10+

4+ 10 -+ 27, so that the regular representation a ice i i i
) ars twice in
and we have two reduced matrix elements. bpe Slidect,

Using the Clebsch-Gordan coefficients reported in [29] one finds:
5 1
mx = my — 1581 708 1 5 BIT® |8,
mz = my — ﬁ 8| 7® 1 (8)
= 0 10( I IBI)__§<8IT Il 8%

5 .
mp = mg — ]’—g 817 8,)

V5 - (15)

5
mg = my - —5—(8 1 7® | 8,).

We have four masses and three unknown par. i imi
: ameters. T i
to the relation (firstly given by GELL-MANN)I:) pelr climination leads

3 1
??’&N‘-l-mE:—Q—mA_!_EmE

(2256 MeV) (2268 MeV).

The values of the masses have been taken from the table listed before.

;Ve alpply the same procedure to the decuplet resonances. Since in the reduction
® 10 =8 4 10 4 27 + 85 the 10 representation appears only once, in the

for_mula (14) we have only one reduced matrix element, ’

Using again Clebsch-Gordan coefficients, one obtains:

(16)

1
MNt = Mﬂ — 78: <10" TSH 10); MY‘o = Mo; Mg- = M° +V—1;8_— <10"T‘81|10),

2
Mo- = M, + = (10 7® | 10).
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Since there are two unknown parameters and four masses, one can obtain:
MN‘ e MY- - ME‘ — Mn-
(146 4 3 MeV) (146 4 4 MeV)

2ME‘ M= Y, “+ Mn_
(2058 + 2 MeV) (2057 4 3 MeV).

(17)

These formulae simply state that masses in the decuplet are equally spaced.

The mass of Q- can be obtained from the known masses of N* and Y. This
predicted value, as we said, is amazingly close to the experimental one.

For the octet of the pseudoscalar mesons the argument is the same as that made
for the stable baryons. Thus we get a formula analogous to (16):

3 1
mg -+ ME = 5 My + 5 My
(992 MeV) = (891 MeV). (18)

T'wo remarks are in order:
1) mg = mg by charge-conjugation invariance of strong interactions.
2) (18) is in very poor agreement with experiment.
Substantial improvement can be achieved if we put in (18) the squared masses
instead of the masses:
3 1
2mg = o my + a8 D
(49.2 - 10* (MeV)?) (46.2 - 10* (MeV)?).

(19)

An argument given by Feynman to support this substitution is that in any field
theoretical model, corrections to bare boson masses affect directly m?.
The same remarks apply to the vector mesons which will be treated in next

section.
10.5. ® — ¢ mixing

We have previously assigned eight vector mesons to an octet and the ninth to
an S U, singlet; but we had no way to decide whether the w or the ¢ had to be
placed in the singlet. With the aid of the mass formula for the octet, which has
of course the same form as (19), we find:

" 3 1
2mk. = §m§ + 5 m (20)

(mg = mass of the isosinglet i.e. of the T = ¥ = 0 member of the octet)
Inserting the known values for my.,m,, one obtains mg = 930 4~ 3 MeV. This
value is intermediate between m, = 1019,5 4+ 3 MeV and m,= 782. 4 0.5
MeV; however both differences m3 — m§ = 18 - 10* MeV?, m§ — m3 = 25.
- 10* MeV? are very large.

If we insist that the mass formula must hold even in this case to an accuracy
comparable to that obtained for the three other cases considered, we must con-

R s o—
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clude that neither w nor ¢ can be identified sic et simpliciter with the isosinglet

of the octet.
However physical particles are eigenstates of :

IIEHD'i"Hl-

And H in the representation 8 @ 1 to which the vector mesons are assigned
is represented by the matrix: '

. [M§+{K*|H1|K*) 0 0 0 0

0 My+@|Hl) 0 0 0
H= 0 0 M3+ (K*|H,|K*) o 0

0 0 0 My +BIH:[8)  (81Hy[1)

0 0 0 (UH8)  Mi+(1IH,))

If now M, is nearly equal to M,, we can expect that the off-diagonal elements
of H are important, so that the 7' = 0, ¥ = 0 eigenstates of H which we want
to identify with « and g, are considerably different from the corresponding eigen-

states of H,,.
We have then to diagonalize the submatrix

MG + e &1
( Em M3 + eg 2k

ey = (8 |H,| 8), &y = (8 |H,| 1) ete.
‘Changing, if necessary, phases of the states |8), |1) we can take &, real so that
from the hermiticity of H, &3 = &g;.
We write:

where

|@) = cos 6 |8) + sin 6 |1).
|w) = — sin 6 |8) + cos 6 |1).

(22)

The angle 6 must be determined requiring |p) and |w) to be eigenstates of (21)
with eigenvalues equal to their physical masses squared [30].
From this one finds:

g MR ian. p. apexni
(tan 0)* = T2 —0 = 0,60; 0 = 30°50 (23)

where mj = M3 + &, is the value given by the mass formula for the octect.
According to these results ¢ and w appear to be superpositions of pure S U, states,
in contrast to all the other particles we have considered [31].

It is important to note that, in contrast to the other cases, the introduction of
the mixing angle 6 rises to four the number of parameters needed to describe
the vector mesons mass spectrum (6, M,, M,, (8 |H,| 8)). Having four masses
at our disposal mgs, m,, m,,, m, it is not possible in this context to have any test
of the theory. The possibility of determining 6 in an independent way will be
-discussed later.
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Our derivation of the sum rules (16), (17), (19), 20), was based on the knowledge
of the Clebsch-Gordan coefficients involved.

Alternatively one can find the general structure inside each irreducible represen-
tation of an operator, such as H,, commuting with 7', T, T, ¥ and transforming
according to the regular representation of S Us.

Such an operator must have the form:

Hy={(T,Y)=0a1+bY +cT*+d¥s ...,
The stated transformation property further restricts H, to the form

1
leb}w—c(rﬂﬁi— Ys) +a-1,

s0 that in each irreducible representation the Hamiltonian is

H:Ho—l-lea-l—f—bY+c(T‘3—-i—Yﬁ). (24)

For fermions (24) gives the mass formula:
JI:a-l+bY+c(ﬂ"(T—|— 1)-—%1’2). (25)
For bosons, taking into account conditions CHC- = H,CY C-' = — Y (where

C is the charge-conjugation operator), b must vanish :
1
m’:a+c(T(T+l)—-IY’). (26)

For the decuplet resonance one has the relation 7' = 1 /2Y 41, which reduces

m=a +b¥, (27)

giving the equal spacing rule.
The general formula (24) has been given by S. Oxuso [32]

10.6. Baryon-meson Yukawa cdup]ings

It is interesting to find out all the Yukawa-type couplings between baryons and
pseudoscalar mesons which are invariant under SU,, In fact we will find that
these couplings involve only two constants so that writing them in the usual

‘isotopic spin form, one can derive relations between coupling constants such

a8 INNn» JEan: INzk ete.

In a field-theoretical model one assumes baryons and mesons fields to behave

under S U, as tensor operators (see sect. 6.3) belonging to the eight dimensional
representation.

‘The Yukawa-type interaction Lagrangian has the form

L= %: Japy 5—’,}!5 Bﬂ M?
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where B; and B, are, respectively, baryon and antibaryon fields specified by
the labels f and o (ie. p,n,...p, 0,...) and M, is a meson field specified by y
{ie T, T

Invariance under S U, demands ¥ to transform as a scalar operator. Now the
operators

E‘, ySBﬂ M}.

transform like members of the 8 ® 8 ® 8 representation, and obviously the same
holds for #. Coefficients g,5, have to be determined by requiring ¥ to be one
of titose vectors which in the decompogition of 8 ® 8 ® 8 belong to the irredu-
cible (0, 0) components. Using the method described in sect. 9.7 one can see that
there are two (0, 0) components, i.e. only two possible invariant Yukawa-coup-
lings.

Ae%ording to sect. 10.3, antibaryon fields transform as

(B) >UBU' Ue8U,

i.e. just like baryons, due to the fact that the 8-representation is selfconjugate.
It is then easy to verify that the tensor operator

Trace (By; BM) (28)

(trace involves summation only over S U, indices, so that y, must be treated as
a number) is invariant. In the same way one can see that also the operator

Trace (Bys M B) (29)

is invariant.
Instead of (28) and (29) we will use the so called F and D combinations defined as

(F') Trace (By;[B, M]); (D) Trace (Eys{B, M}),

which are obviously linearly independent invariant operators. Recalling that
in the product 8 ® 8 ® 8 there are exactly two operators of such kind, we
conclude that the most general invariant trilinear operator in mesons, baryons
and antibaryons fields is a linear combination of F and D. In particular:

F = 2; Gosy Boys BsM, = gg Tr (By; [B, M) + gp Tr (By, (B, M}). (30)
apgy

To deduce couplings in terms of isomultiplets one has merely to substitute (3),
(4), (8) into (30), to carry out the trace and to rearrange terms in order to have

a combination of isospin couplings (for example of the form gyy, Nt Nr, Z Ey
ete.).
If we define:

— g 9o —gr
INRe = § VQ

V29
then all coupling constants can be expressed in terms of « and g. We refer the
reader to [33] for a complete list of these relations.

x
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The experimental situation does not allow a precise determination of «. The
value « = 1| (i.e. pure F-type coupling) seems to be excluded by hyperfragments
binding, which requires gyy. = 2/}3 g (1 — &) = 0. The dynamical calculations
of MARTIN and WaALI [34] indicate 0.15 = « = 0.56 i.e. a prevalence of the
D-type coupling. With this set of values gy, turns out to be of the same order
of magnitude than gyy,. This seems to be in contrast with K-photoproduction
data, which suggest gyag an order of magnitude smaller than gyny.

These discrepancies can be in principle accounted for by symmetry breaking
interactions. One other possibility has been pointed out in [35].

Same considerations can be applied to the baryon-vector meson couplings, leading
to two possible Lagrangians: one F-type, and the other D-type.

If one writes the F-type coupling in terms of isospin multiplets, [36] the p appears
to be coupled to the isospin current (i.e. to terms like NtN, Zx X, etc.) and the
wg (i.e. the Ty = Y = T = 0 member of the vector meson-octet) to the hyper-
charge current (i.e. to the term NN -+ EE) whereas in the D-type these peculiar
couplings do not appear. Now we know (for example from the isovector part of
the electromagnetic form factors of the nucleon) that p is actually coupled to the
igospin current, so that in this case we have to assume only F-type coupling.
The interaction Lagrangian then is

£ = gppv Tr (By, [B, V.]),

1 where V,, is a matrix analogous to (4), with the substitutions:
T > py

K — K}

1 > (wg)u

We have now only one parameter.
The vector meson singlet (i.e. the ¢,) is coupled with the baryonic number
current:

£ = gupv (o) Tr (By,B)

Consider now the pseudoscalar-vector meson couplings: also in this case we may
. have two invariant combinations of terms like

o
(EE‘M,)MH (V)

(a, B, y, are SUj, indices which label the various mesons.),
namely

Trace (V,M (0, M) — V,(8,M) M) = Tr (V,[M,3,M])
Trace (VMo M+ V,0,MM) = Tr (V, (M, 0,M}).
:However the second term, by virtue of the condition:

o.V,.=0,
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is equivalent to a divergence, i.e. it adds a divergence to the Lagrangian, so that
it can be assumed to vanish. In fact:

V.uM(a.uM} + V,,(a,,M]M = V#a#{MM) = Op( V.M M) + {aﬂV#)MM =
= (V. MM).

Hence also this coupling is pure F. In contrast with the previous case the vector
meson singlet cannot be coupled to pseudoscalar mesons: in fact the only possible

coupling would be
(90)u Tr (2, M) M),

but under charge conjugation M — M7, 9, M — 3, M T Pou > — Pou (charge cm:.i‘}‘
gation of py, @, and @ is — 1) so that this coupling is not invariant under C. This
has the consequence that the decay

(pn--rK—{—K

is forbidden, whereas B
wg—> K+ K

is allowed, i.e. only the componend of the ¢ particle on the octet can decay in
in K K. This fact can be used in principle to determine the w — ¢ mixing indepen-
dently from mass formulae [37].

10.7 Decuplet decays

The decays of the baryon decuplet resonances allowed by energy, Ty, 1% and ¥
conservation are

A
3

=* > Ex

N* - N 4 =x; Yr—»{

(Q- is stable against electromagnetic and strong decays because of its mass,
which is less than the threshold of the EK channel which is the only open for
these interactions). These decays, in the limit of exact SUy, are described by a
single amplitude. In fact in this case the matrix elements involved are of the type

M(N* > Nx) == (N* | §| Nx), (31)

where § is scalar under SU,. By reducing the product 8 ® 8, with Clebsch-
Gordan coefficients, we can write (31) as the matrix element of a scalar operator

between vectors of irreducible representations. _
Such matrix elements are zero for vectors belonging to irreducible components

of 8 ® 8 different from 10, whereas they are equal to

adpqs g, Oy y
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for vectors of the 10 component. Hence we have

1 1
N*+I = = - = § h * —_ — —
M (N - p +1%) = M(Y$+ - Am) X
1 1
MY — Tont) = —= a; MY — Stad) = — —==0 (32)
Y12 V12 :
M(E* > & 4 ) = — = a; M(E* —>E'n) = -
Ve 23

obtained from these by isotopic spin symmetry)
the proper Clebsch-Gordan coefficients.

h experiments we have to take into account mass
do is to introduce mass differences into the
in the expression for rates, leaving un-

(all the other amplitudes can be
where factors multiplying a are
1f we want to compare (32) wit
differences. The most simple thing to
phase space factors which multiply | M [®
touched relations (32).

Predictions so obtained are in an unp
For example one has: -

leasant disagreement with experiments.

Py 2
ke AR S bl

. .
Rate (Vi >2x) _ (phase space ratio) X Z— = s

et o S et
Rate (Y?+ — Amx)
(pr4 = momentum of T or A particle),

whereas experimentelly the ratio is consistent with zero (~ 2 £ 2%)-
This discrepancy can be thought as due to large non gymmetrical interactions,

which must be properly accounted for. :
s and V. SinaH [38] and by C. BEeccHI,

In fact it has been shown by V.GUPT

E. EpgrLE, (. MorPURGO that inserting a symmetry breaking interaction of the
type used for mass formulae, one can derive relations between decuplet decay
amplitudes which agree well with the experimental data.

10.8. The main test of the unitary symmetry model in strong interactions would
derive between ampli-

be to check experimentally the relations which one can
tudes of different scattering processes. However relations obtained assuming
full S Uy symmetry widely disagree with experimental data [23] and again one
has to take into account the role of symmetry breaking interactions. This role
has not been till now satisfactorily understood so that, partly for this reason,
partly for lack of experimental data, we do not know at present how to make

meaningful tests of the eightfold way with scattering processes.

11. Electromagnetic Interactions

field interacts with hadrons in such a
due to the smallness of the coupling
h a pertubative method, starting

11.1. We know that the electromagnetic
way to conserve T, and Y; moreover,
constant, we can describe such interaction wit
from an interaction Lagrangian of the form:

Lo = €jy (%) 4" (2). (1)

JE—
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Here j, () is the electromagnetic current of h
: adrons. The structure of thi
depends upon the dynamics of strong interactions t:heumlstelv.rel.ls0 wmilfpemmr
Il?Iresent do not know in detail. , ve o
ence the Lagrangian (1) has to be considered
‘ 1) . as a phenomenologi ic
:,‘:fh;;:,l; az,l}z:;i al{l‘:.to Bxp]iwltly cor;;:der the dependence Ic):'n electromfglf:sltigef‘iféﬁ
: ions, whereas unknown effects of strong interactions
; are |
;1}:;;1;;;:1 ls(;(;ati ;ﬂ:;ator T (:2;1\?’9 note that the matrix elements of j, (x) b:i:]\:lgzi
connec 0 iti
S e measurable quantities (form factors).

. [ia(@) d3x = Q )
and by charge, Y, T'y conservation:
ﬁl'jp (x) =0
[fu (@), T3] =[G, (=), Y] = 0. (3)

(I)? }:LI.E:)?::J?)?O;& :i]l:e ;ight:l(;ld kr\:'ayl model, relations between matrix elements
of 7 e e knowled i i
s pontetas ofyS 5. wledge of the commutation relations between
From the Gell-Mann Nishijima relation we have:

: 1
fh(r)dszszTs_}_E Y=3H,+H,.

This suggests j, (z) to be
(@) b composed of two parts: th i
ponent of total isospin plus one half the hypgrcharge zui':;;int of the third com:

@) = 5,00 + 5 7,0 B, @)

gng )n:;vTjﬂ:::i(x;fa;‘c: ju”’lr‘l (x) have the same transformation properties (under
3 4 . From this it is easy to see that j i
the same for #;,. If we put (see sect. g.’?.c} A AR W e e

3 1 3

U, = — T m __ 3

8 4Y 293—§H=.——_V2_Hl
U1=V§E;s,

we r
g;n:f;t;llat‘ UT U‘i have the same commutation relations of the isotopic spin
i ai, :ﬁup :;lte clei(?d thedU-spin generators. Hence electromagnetic intI:ar
srturbative orders conserve cha d i ich i 2
o rge and U-spin, which
> r:mplrgethe same role as h ypercharge and I-spin for medium sls)t.mng interalt:ltiznmss
previous analysis we see that everything we said for medium strong-

interacti 3 i
Interactions can be applied to electromagnetic interactions, substituting the

ay e = I - Y . . .

pﬂ-tt;ltl_{)l.l l_n‘t() -Spl]l. a]lll -multlll)letﬂ Of ll‘l‘educlble SU‘B repl‘eﬂelltatiollﬁ witlh
Ve give fﬂr l'efe['&llce t!he de iti .

”‘ > : C . Gomp(}Sltlon Of the pSBlldOSOaIaI' mesons Octet ].l. ltO
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One sees that =+, K+ and K-, =~ constitute two U-spin doublets whereas K, and

K, are members of an U-spin triplet. n° and v are eigenstates of U,, with eigen-
value zero, but they are not eigenstates of U™ Instead the combinations

oy = &y — 12 1

[n*) = £2_3- [7®) + ; [n)

are eigenstates of U? with eigenvalues 2 and 0,
so that 7, K9, KO constitute an U-spin trip-
R° let and * is an U-spin singlet.
As a general rule in the weight diagram U-spin
Tig. 10. U-spin multiplets in the pseudosku- multip lets are directed a]ong t'.he %3 root.
e aoin oot From what we said, we can draw very easily
a certain number of consequences:
a) Electromagnetic mass splittings — In calculating mass splittings due to symmetry
breaking interactions we neglected the electromagnetic effects, which we want

now to take into account.
We start from a situation in which, apart from S Us-invariant strong interactions,

only electromagnetic interactions are present. In this case the masses of the
particles inside an S Uy multiplet split up according to U-spin multiplets, being
(1) invariant under U-spin. Hence masses obey a law of the form

m = mgy +m(Q, U) (my = common mass of the 8 U, multiplet).
In the case of stable baryons we get in particular the relations:
my, = My+
Ty = Mze (5)
Mz- = My-.

Relations (5) are of course not satisfied by the actual masses; this is natural
because we have neclected the important contribution of medium strong inter-
actions. We can however deduce from (5) the relation: .

my — my = (mze — mz-) (my+ - mg-) (6)

which has been given firstly by S. CoLemaN and S. L. GLASHOW [41].
If we now turn on the medium strong symmetry breaking interactions, masses
of particles lying inside the same I-spin multiplet are shifted of the same amount,
go that we way expect relation (6) to be left unchanged, since it compares mass
differences for particles with same 7. In fact ingerting the experimental values
(6) reads: y

(my- — myp+) — (my, — M) = 6.38 -+ 0.3 MeV

mz- — mge = 6.5 4+ 1.2 MeV (data from [28]).

T
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The agreement is excellent. One should remark that the previous derivation of
(6) rests on the possibility of treating in an independent way the medium strong
and electromagnetic effects. This seems not to be in general a legitimate procedure
in a field theoretical treatment we would write a Lagrangian made up of three
erms:

f='r0+rlls+fe.m.

£, is the symmetrical part, whereas ¥yg and £, , are responsible of medium
strong and electromagnetic interactions. Using perturbative methods, the correc-
tion to the symmetrical mass m, is expressed as the expectation value of a power
?FI‘IBS in ,Z]’ MS +life‘m‘. Hence we see that CoLEMAN and GrasHow relation follows
if we neglect all terms which contain powers of the product : ini
all orders in £yg and £, o,. : SSRGS
From this point of view the validity of (6) is quite

: } t quite unexpected (see however [23]).
b) Magnetic moments — Just in the same way, neglecting medium stro:ll)g
mtera.(':tmns anFl assuming only U-spin and charge conservations, we obtain the
following relations between magnetic moments of stable baryons [39, 40] (the
same relations apply to the electric and magnetic form factors)

-

#(EY) = u(p)
pu(E) = uE)
1 (E°) = p(n) (7

1
& B(Z°A) = p(n) — u(A)

— V3 u(AZ) = u(n) — pu(X9),

where p(2°A) is called the transition magnetic moment between Z° and A, and
;[;lpears for example in the amplitude of the decay X%+ A -+ vy, ’
e experimental information available up t d

i o p to now does not allow to test any-one
For pseudoscalar mesons we obtain easily the results [40] that the form factors
of K+ and =+ are equal, whereas the form factors of K® and K° are zero
In fact: '

form factor (K°) = form factor (K°) by U-spin

form“fact.or (K% = — form factor (K9 by Charge-conjugation
¢) n and = — two photons decay — We said previously that the Uy =@ =0
eigenstates of U? are (in the pseudoscalar meson octet)

1 3
tw">=§tnﬂ>—§|n> U=1
3
=L+l =0,
conversely one has:
p 1 3
In)=§-1ﬂ“)+K;In“)

V3

iy == = L2 ey o 2 .

27



378 G. pE FRANCESOHT and L. MATANI

Observe now that |z") cannot decay, by U-conservation, into two photons (which
have U = 0) so that the amplitudes for (= n) — 2y are equal to

3
A(n—2y) = ]/?_ A" — 2y)

1
A (n —2y) =g 4" —2y),

ie.

A > 2y) = V3 A(n - 2y).

After phase space corrections, assuming the lifetime of = to be equal to 1.5 - 10-1%g,
we obtain a width for n — 2y of 140 eV [4I], which is not inconsistent with
present data.

d) First order relations — Up to this point we have only used U-spin in-
variance. More detailed informations can be obtained if we retain in the pertur-
bative expansions considered only first order terms (in the electromagnetic coup-
ling) i.e. terms containing the elctromagnetic current only once.

In this case we can exploit the assumption contained in formula (4), i.e. the
fact that j,(x) transforms as a member of the eight-dimensional representation
of 8 Uj,. By using Wigner-Eckart theorem, for example, we can express all magne-
tic moments of stable baryons in terms of only two magnetic moments; (the same
applies to electric form factors). For example we find

1

BA = 5 o = — 0.95 nuclear magnetons,
whereas experimentally
up = — 0.66 4 0.35 nuclear magnetons.

All the other explicit relations are contained in [40].
Finally, let us consider the electromagnetic decays:

o —>et + e (ut + po)
¢ —~et + e (ut + po).
Both decays can be thought to go through the one-photon channel [37]

w e*
:}’WA< . (8)

¥ 7 e~
In the amplitude for the process (8) the matrix element of the electromagnetic
current between the w(or ¢) state and the vacuum is involved. Now if we write

(sect. 10.5 (22))
' |p) = cos 6 |8) +sinf 1)

|w) = g8in 6 |8) 4 cos 6 |1),

we see that we have to evaluate the matrix elements:
(1] Ju() [0)
(8] ju() |0).
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ju(@) transforms as the 8 representation and, whereas the product 8 @ 8 con-
tains the singlet representation (to which the vacuum is assigned) this represen-
tation is not contained in the product 8 ® 1. Hence, by Wigner-Eckart theorem,
the first matrix element vanishes. We conclude that an SU, singlet cannot decay
through the one photon channel, so that only the components of w and ¢ over
the octet can go (at first order) into e+ + e~ (u*+ + po).

The ratio

I'(p —ete)

T'(w—>ete) = (phase space corrections) tan? 6

provides in principle a measure of tan?6 independent from mass formulae.
Up to now however only the « — e+ -} e~ decay has been observed, so that we
cannot make any comparison of the theory with experiment.

12. Leptonic Decays of Hadrons

12.1. Very exciting results have been obtained by the application of S U, sym-
metry to the field of weak interactions of hadrons. We will not give here an
extensive discussion of all the topics involved, limiting ourselves to sketch the
theory for leptonic decays?!). These processes have the general form

A—-l+v+B+ B 4+ ...
A—l+w,

where 4, B, B’ ... are strongly interacting particles, I is a lepton (e, @), v; the
corresponding neutrino. A few significant examples are:

AT A48 AQ
[t —>n® et +v, —1 0 . |
¥ + o
AR ) B YR s !
n—>p-+4e 4y, 1 0 1
Tt—>Ad4et+y, —1 0 —1
Kt >n0 et +v, -1/, —1 —1 )
A8 =0 K+_)‘p-+—f—\o‘# = _'1;2 —1 —1
A‘*p—i—e‘—l-v, l,"g
Z-—>n+e +v, Y, 1 1

All these processes can be described starting from an interaction Lagrangian of
the form: N
(&}

)

J, and j, are the weak currents associated to hadrons and leptons, and @ is the
weak coupling constant determined from p-decay.

2 [Ju()* + H. c.] (2)

#1) For a more detailed treatment of weak interactions see [42, 43, 44).
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For what concerns j,, expermental findings agree with the form (in terms of
lepton fields)

ju = 8u(l + vs) ve + wyu (1 + v8) Vus (3)
whereas the structure of J,, which is thought to be determined by strong inter-

actions, is not known in detail. The amplitudes of the processes we are consider-
ing are expressed as matrix elements of (2)

—V‘i KB+ B . 1Tul 4 Al jh10) + (BB .. 1751 4) At ljul O;
2

the matrix elements of j, can be calculated, so that the actual difficultyis consti-

tuted by the other terms. _ o
For wh);t concerns space-time properties, experiments indicate that J, can be

splitted up in two terms: one transforming as a vector and the other as a pseudo-
vector: we will refer to them as to the vector and axial-vector currents:

Jy=Jt 4+ J4 .
The first one is responsible e.g. for the f-decay of m*:
nt =>7nt et 4 ve,
and the other for the usual © decay:
mt =t 4 v

Let us define A8, AT,, AQ respectively as the changes of strangeness, 1sospin,
charge suffered by hadrons?3) (see (1)). Then we can divide leptomc decays into
two classes: A8 = 0, and A8 == 0 decays. Experiments indicate [43] that the
following selection rules are satisfied within errors (which are however rather

large):
i) for A8 = 0 decays, |4Ts| = 1 (hence AQ = 4-1)

i) for A8 4 0 decays A8 = AQ, |48| =1 (hence |ATs| = 1/2).

This selection rule forbids for example the process:
T+t—n 4 et + v

which actually has not been seen [45].
We are then led to write J, as:
Jﬂ — Jl'itli + J:'il! + J;‘ltﬂl + J;»![l! ’ (4}
I i t '

: _— e

where J V' is the strangeness conserving and J!'! is the 4.8 =1 part of the
H i

vector current, and the same for axial currents.

22) These changes are not independent. From the Gell-Mann Nishijima formula:

1
AQ=ATy+ ~ 48.
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In the context of isotopic spin symmetry one could attempt to explain selection
rule i), assuming the 4.8 = 0 current to tranform under 8 U, as a tensor operator,
belonging to the isospin one representation.
The CVC (conserved vector current) theory of FEYNMANN and GELL-MANN [46]
embodies this assumption in a much stronger statement ; they identify the 48 =0
vector currents JY©, (JJ'*)* with the 73 = + 1 components of the isospin
currént, i.e. of the current which arises from 8 U, invariance (gee sect. 7.3.).
The T3 = 0 component is the isovector part of the electromagnetic current. As
a consequence, insofar we neglect electromagnetic effects, JJ© and (J}'*)+ are
conserved :

2,4 =0,0,(J")*F = 0.
We quote three significant examples of predictions made by CVC theory [42]:
a) the agreement between the Fermi constant in -decay of nuclei and the Fermi
constant in p-decay;
b) the rate of the pion p-decay can be calculated from the neutron f-decay obta-
ing a result in agreement with experiments:
c) using Wigner-Eckart theorem one can express the matrix elements of J Y%,
(J) @), for example between nucleon states, in terms of the electromagnetic
current matrix elements, i.e. of nucleon e. m. form factors which are known from
e — N scattering experiments. Preliminary data on neutrino experiments seem
to support this prediction.
The 48 = 0 axial current is also assumed to transform as an isovector, but in
contrast to J}'? it is not conserved.
The simplest generalization to include strange particles decays is to assume J)
and J# to possess well-defined transformation properties under SU,. In parti-
cular if we assume J and J# to belong to octets of tensor operators, it is obvious
that selection rules i), ii) are fulfilled (of course the converse is not true: i)ii) do
not imply octet currents).
Now S U, symmetry provides us an octet of vector currents (see sect. 7.3) which,
in absence of symmetry breaking interactions, are conserved. We could then iden-
tify various pieces of J with such currents. This however would imply each current
to be coupled to leptons with the same strenght, i.e. with the same coupling
constant as the 48 = 0 part.’ On the contrary experiments give coupling con-
stants for strange particle decays which are smaller of an order of magnitude than
the 48 = 0 couplings.
N. CaBieBo has assumed [47—48] that the vector current coupled to leptons
has the form

n

where JI'©, (JYO), JEW, (JYU)*, are the Ty = +1, Y =0, Ty = +1/2,

Ji =cos 0 +singJ)V, (5)

YV = 4 1 members of the octet of currents deriving from SU, invariance (to
which electromagnetic current belongs, sect. 11.1). 6 is an angle which charac-
terizes weak interactions of all hadrons. Moreover the axial current is assumed
to have the form

Ji=cos O J1O 4 sin § JAP (6)

with the same 0 as (5). J4©, (J4©)t, JAD, (JAV)+ are tensor operators trans-

forming as the 7'53= 41, Y =0,T; = 41/2, Y = 41 members of an octet.
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We give here a brief account of predictions which can be obtained from this
theory in the case of baryons decays. For a detailed discussion see [43, 49].

Matrix elements of J) between baryon states can be expressed in terms of 0
and of two reduced matrices (8 ® 8 contains the eight representation twice),
By analogy with sect. 10.6 let us call them F,., Dy.. In the limit of zero momentum

transfer, they can be written as:
(Fy)y = u @)y, £y (k) u(p:)
(Dy)y = u(p))y, Dy (k) w(ps) (7)

Pi, P;: baryons initial and final momentum
k-——jﬂ;“jﬂi,k"—+0.
And in the limit in which such currents are conserved

FV{O]ZI! DV(0)=0:

8o that the matrix elements of J! are determined by 0.
For what concerns axial currents, again we have two reduced matrices, F, D

which in the same limit as (7) can be written as

F, =u(p)F(k*)y,ysu(p:) (k* —0)
D, = u(p) D(k*)y,ys w(pi), 8)

but now the lack of conservation of J;‘;‘ does not allow to obtain additional con-
ditions on F (0), D(0).

Concluding we see that the baryons decays (in the limit k* — 0, absence of
gymmetry breaking interactions?¥) are described in terms of three numbers:

F(0), D(0), 0

H. CouraNT et al. [45] find two sets of parameters consistent with data, both
with near the same value of 6, but differing for the ratio #'/D.

It is remarkable that near the same value of 6(0 ~ 0.25) has been given by

CaBiBBo in the paper previously quoted, comparing the decays:

Kt —pt 4-v,

ot — pt 4 v._u :
In these decays only axial currents contribute (V) and (J4©)*) respectively)
so that the branching ratio:

R(K+ = I‘L+ '_]l' Yu
R(TE+ i I"‘+ i V“}

~ is proportional to

| (K+ [(J40)" 0)
| = 14)* 0)

i.e. to tan® 0.

%) When the symmetry breaking interaction is taken into account at the first order, it can be
shown that our conclusions on the vector current remain correct [50].
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13. Concluding Remarks

13.1. The idea of a higher symmetry, in the concrete formulation of the eightfold
way model, undoubtely greatly improves the phenomenological description of
the behaviour of strongly interacting particles. However the very fact that it
works rises the need of understanding at a deeper, dynamical level, how the sym-
metry is brought about (as well as its partial violation).

Tor an up-to-date discussion of the various attempts made in this direction, using
bootstrap technique as well as field theoretical methods, see [23]. To the latter
class belongs ScHWINGER’s W, model [51] as well as the popular “quarks” or
“aces’ model (proposed by ZwEgie and GELL-MANN].

Another interesting problem ig that of the connection between internal and
gpace-time symmetries.

In this context very promising is the S Uy model proposed by Girrsey, RaproaT:
and Pais [52]; see also [63]) who treat on the same footing spin, isospin and

hypercharge.
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