
Monte Carlo methods and Geant4

Laboratorio di Fisica Nucleare e Subnucleare

Carlo Mancini Terracciano

carlo.mancini.terracciano@roma1.infn.it

mailto:carlo.mancini.terracciano@roma1.infn.it

Overview

• The Monte Carlo method

• A short introduction to Geant4

• The transport of particle

• Geometry and scoring

• Running an example

• Tips for the Geant4 installation

• You can download examples and slides from: 
www.roma1.infn.it/~mancinit/Teaching/LabFisNucl

2

For these slides I took inspiration from:
• M. Asai (SLAC, Stanford)
• A. Dotti (SLAC, Stanford)
• L. Pandola (INFN-LNS, Catania)
• C. Pistillo (LHEP, Bern)
• S. Rahatlou (Sapienza, Roma)
• www.cplusplus.com

http://www.roma1.infn.it/~mancinit/Teaching/LabFisNucl

Monte Carlo

staff members made their pilgrimages to
ENIAC to run Monte Carlo problems.
These included J. Calkin, C. Evans, and
F. Evans, who studied a thermonuclear
problem using a cylindrical model as well
as the simpler spherical one. B. Suydam
and R. Stark tested the concept of artifi-
cial viscosity on time-dependent shocks;
they also, for the first time, tested and
found satisfactory an approach to hydro-
dynamics using a realistic equation of
state in spherical geometry. Also, the dis-
tinguished (and mysterious) mathemati-
cian C. J. Everett was taking an inter-
est in Monte Carlo that would culminate
in a series of outstanding publications in
collaboration with E. Cashwell. Mean-
while, Richtmyer was very actively run-
ning Monte Carlo problems on the so-
called SSEC during its brief existence at
IBM in New York.

In many ways, as one looks back, it
was among the best of times.

Rapid Growth. Applications discussed
in the literature were many and varied
and spread quickly. By midyear 1949 a

symposium on the Monte Carlo method,
sponsored by the Rand Corporation, the
National Bureau of Standards, and the
Oak Ridge Laboratory, was held in Los
Angeles. Later, a second symposium was
organized by members of the Statistical
Laboratory at the University of Florida in
Gainesville.

In early 1952a new computer, the MA-
NIAC, became operational at Los Ala-
mos. Soon after Anthony Turkevich led
a study of the nuclear cascades that result
when an accelerated particle collides with
a nucleus. The incoming particle strikes
a nucleon, experiencing either an elastic
or an inelastic scattering, with the latter
event producing a pion. In this study par-
ticles and their subsequent collisions were
followed until all particles either escaped
from the nucleus or their energy dropped
below some threshold value. The “exper-
iment” was repeated until sufficient statis-
tics were accumulated. A whole series of
target nuclei and incoming particle ener-
gies was examined.

Another computational problem run on
the MANIAC was a study of equations

THE FERMIAC

The Monte Carlo trolley, or FERMIAC, was
invented by Enrico Fermi and constructed
by Percy King. The drums on the trolley
were set according to the material being tra-
versed and a random choice between fast
and slow neutrons. Another random digit
was used to determine the direction of mo-
tion, and a third was selected to give the dis-
tance to the next collision. The trolley was
then operated by moving it across a two-
dimensional scale drawing of the nuclear
device or reactor assembly being studied.
The trolley drew a path as it rolled, stopping
for changes in drum settings whenever a
material boundary was crossed. This infant
computer was used for about two years to
determine, among other things, the change
in neutron population with time in numerous
types of nuclear systems.

of state based on the two-dimensional
motion of hard spheres. The work was
a collaborative effort with the Tellers,
Edward and Mici, and the Rosenbluths,
Marshall and Arianna (see “Monte Carlo
at Work”). During this study a strategy
was developed that led to greater com-
puting efficiency for equilibrium systems
obeying the Boltzmann distribution func-
tion. According to this strategy, if a sta-
tistical “move” of a particle in the sys-
tem resulted in a decrease in the energy
of the system, the new configuration was
accepted. On the other hand, if there was
an increase in energy, the new configu-
ration was accepted only if it survived a
game of chance biased by a Boltzmann
factor. Otherwise, the old configuration
became a new statistic.

It is interesting to look back over two-
score years and note the emergence, rather
early on, of experimental mathematics,
a natural consequence of the electronic
computer. The role of the Monte Carlo
method in reinforcing such mathematics
seems self-evident. When display units
were introduced, the temptation to exper-

129

Introduction to the
Monte Carlo method

The trolley drew a path as it rolled, stopping for changes in drum
settings whenever a material boundary was crossed.

This infant computer was used for about two years to determine,
among other things, the change in neutron population with time in

numerous types of nuclear systems.

Image from “The Beginning of Monte Carlo Method,  
N. Metropolis 1987

The Monte Carlo trolley, or FERMIAC, was invented by
Enrico Fermi and constructed by Percy King. The drums on
the trolley were set according to the material being traversed
and a random choice between fast and slow neutrons.
Another random digit was used to determine the direction of
motion, and a third was selected to give the distance to the
next collision. The trolley was then operated by moving it
across a two-dimensional scale drawing of the nuclear
device or reactor assembly being studied.

The “FERMIAC”
3

Monte Carlo methods

• It is a mathematical approach using a sequence of
random numbers to solve a problem

• Random quantities (e.g. the average value of mm of rain)

• Deterministic problems (definite integral?)

• Generate N random “points” in the problem space

• Calculate and

~xi

hfi = 1

N

NX

i=1

f(~xi) hf2i = 1

N

NX

i=1

f2(~xi)

4

Monte Carlo methods

• Comte de Buffon (1777): needle tossing experiment to calculate the π;

• Laplace (1886): random points in a rectangle to calculate π;

• Fermi (1930): random approach to calculate the properties of the newly
discovered neutron;

• Manhattan project (40’s): simulations during the initial developments of
thermonuclear weapons;

• Von Neumann and Ulam coined the term ‘Monte Carlo’ (1949);

• Exponential growth of the electronic computers (40’s-60’s);

• Berger (1963): first complete coupled electron-photon transportation code
‘ETRAN’.

5

How to calculate an integral

• Randomly choose couple of numbers from the
range and the domain, respectively, of the function

• The fraction of points where is equal to the
fraction of the area below the function

• Technique proposed by Von Neumann, known as the
“acceptance-rejection method”

• It is used to generate random numbers for an arbitrary
Probability Density Function (PDF)

yi  f(xi)

(xi, yi)
f

6

Example of an integral

• What if you have to calculate the integral of a function as:

f(x) = 1.4
h
sin4(x) cos2

⇣x
3

⌘
+ sin6

⇣x
4

⌘i
exp

⇣
�x

8

⌘

7

Example of an integral

• Using the acceptance-rejection
method

• The orange points are the
accepted (n)

• The blue are the rejected  
(N = accepted + rejected)

8

Let’s calculate p

⇡ ⇡ 2
n

N

�x ·�y

r2
= 4

n

N

n

N
/ Acirc

Arect
=

⇡r2/2

�x ·�y

9

f(x) =
p
(1� x2)

Acirc =

Z 1

�1
f(x)dx = ⇡

r2

2

Arect = �y ·�x

Let’s calculate p

• Is there a way to speed up the
convergence of the
computation?

• Use the symmetry!

• This is the method for calculating
p was proposed by Laplace in
“Théorie Analytique des
Probabilitiés” (1825)!

10

Use the simmetry!

11

Random Numbers Generators

• At the core of all Monte Carlo calculations is some mechanism to
produce a long sequence of random numbers ri that are uniformly
distributed over the open interval [0,1)

• Digital computers, by design, are incapable of producing random results

• A true random sequence could, in principle,  
be obtained by coupling to our computer  
some external device that would produce a  
truly random signal

• However, use of such a random number  
generator would not be practical!

• Imposible to debug!
12

Pseudo-random Number Generators

• Such a generator is a deterministic algorithm that, given the previous
numbers (usually just the last number) in the sequence, the next
number can be efficiently calculated  

• x0 is called “seed”

• A unique seed returns a unique random number sequence

• It is important to use a new seed every time that a random selection
is initiated

• A typical error is the use of the same seed for multiple generation,
which leads to the generation of the same sample of random
numbers

xn+1 = f(xn, xn�1, ..., x0)

13

Pseudo-random Number Generators

• Because the set of numbers directly representable in the
computer is finite, the sequence will necessarily repeat

• The length of the sequence prior to beginning to repeat is
called period

• Many pseudo-random number generators have been
proposed and used over the years in a wide variety of
Monte Carlo work.

• Designing better random number generators (and test
them) is still an active area of research

14

Bad PRNG: RANDU

• Linear congruential PRNG used
since ’60

• Was the most widely used random
number generator in the world

• Developed by IBM

• Three-dimensional plot of 100,000
values generated with RANDU

• Each point represents 3
consecutive pseudorandom values

[Image from Wikipedia]

15

xi = 65539 · xx�1 mod (231)

not only the period is important!

Simple case: decay in flight

• Suppose a p+ with momentum p

• The life time is a random value with a pdf

• Therefore, t can be sampled from the inverse of the
cumulative:

f(t) =
1

⌧
exp

✓
�1

⌧

◆

r 2 [0, 1)

t = F�1(r) = �⌧ ln(1� r)

16

Simple case: decay in flight

• Select the decay channel: 
 
 
 

• In the CM frame the decay is isotropic 

• Finally, Lorentz-boost in the Lab. frame

• 4 random numbers for one decay!

[table from PDG]

✓ 2 [0,⇡); � 2 [0, 2⇡)

17

Problem

• Why did I sampled q and f in the CM frame?

• What if I sample uniformly ?

• The extracted points gather 
in the centre 

• A uniform distribution in 
polar coordinates is not  
uniform in orthogonal  
coordinate system

✓ 2 [0, 2⇡); r 2 [0, 1)

18

Inverse transform sampling

• If a PDF is integrable (called cumulative,)

• and the cumulative is invertible

• It is possible to sample accordingly to : 
 
 
 where u is uniformly distributed

f F

F�1

x f

x = F�1(u)

19

Particle tracking

• It is the most common application of MC in Particle
Physic

• Assume that all the possible interactions are known

• The distance s between two subsequent interactions is
distributed as  

• Being a property of the medium

p(s) = µ exp(�µs)

µ

20

Particle tracking

• is proportional to the probability of an interaction per
unit length, therefore:

• is proportional to the total cross section  

• are the partial cross section of all the competing
processes

• depends on the density of the material 
(is the number of scattering centres in the medium)

µ = N� = N
X

i

�i =
X

i

µi

µi

N

21

µ

Particle tracking

• Divide the particle trajectory in “steps”

• Straight free-flight tracks along the step

• Could be limited by geometry boundaries

• Sampling the step length accordingly to

• Sampling the interaction at the end of the step

• Sampling the interaction accordingly to

• Sampling the final state using the physics model of the interaction

• Update the properties of the primary particle

• Add the possible secondaries produced (to be tracked later)

p(s)

µi/µ

i

22

Particle tracking

• Follow all secondaries, until absorbed  
(or leave the geometry)

• depends on the energy (cross sections do!)µ

23

Tracking, not so easy…

• This basic recipe doesn’t work well for charged particles

• The cross sections of some processes (ionisation and
bremsstrahlung) is very high, so the steps would be
very small

• In each interaction only a small fraction of energy is
lost and the effect on the particle are small

• A lot of CPU time used to simulate many interactions
having small effects

24

The solution: approximate

• Simulate explicitly interactions only if the energy loss is
above a threshold E0 (hard interactions)

• Detailed simulation

• The effects of all sub-threshold interactions is described
cumulatively (soft interactions)

• Hard interactions occur much less frequently than soft
interactions

25

Flowchart of an event

Next particle

Still alive
Ekin > cut

Inside World

Continuous part
(along the step)

Find next step
(physics process or
volume boundary)

Discrete part
(post step)

Create new particles

Energy deposits
Fields effects

End of the Event

End of the particle

Yes

No

YesNo

26

…luckily enough, somebody else already
implemented the tracking algorithms for us

(and much more)

27

Radiaton Simulaton and Monte Carlo Method - M. Asai (SLAC)

A short introduction to
Geant4 A sketch of the ATLAS MC simulation

[courtesy of A. Dotti]

28

Geant4 (GEometry ANd Traking)

• Developed by an International Collaboration

• Established in 1998

• Approximately 100 members, from Europe,  
US and Japan

• http://geant4.org

• Open source

• Written in C++ language

• Takes advantage from the  
Object Oriented software technology

[Geant4, a simulation
toolkit Nucl. Inst. and

Methods Phys. Res. A,
506 250-303 

Geant4 developments
and applications

Transaction on Nuclear
Science 53, 270-278]

29

http://geant4.org

Geant4 applications

• Physics experiments

• but also:

• Hadrontherapy

• Radiobiology

• and many others…

30

user example, named “extended/medical/dna/clustering”. To check
the consistency of this new clustering algorithm, results of
simulations performed under the same conditions as those of Francis
et al. are presented. A box of 1 μm × 1 μm × 0.5 μm made of liquid
water is irradiated with protons with energy ranging from 500 keV
to 50 MeV. Simulations are performed using the default
“G4EmDNAPhysics” physics constructor. The probability that an in-

teraction point falls within a sensitive region is fixed to 0.2 (Francis
et al. have used a value of 0.16), and the probability that the energy
deposit induces a damage varies linearly between 5 eV and 37.5 eV
(as in Francis et al.). The maximum limit distance to merge points
was tuned to reproduce the DSB/SSB ratio published for DBSCAN
[89] and PARTRAC [90]. We found that this distance could be set
at 3.3 nm to reproduce published data, as presented in Fig. 10a,
whereas Francis et al. used 3.2 nm. These differences may be at-
tributed to the difference between physical models as we found that
the distance criterion in our algorithm was dependent on the elastic
scattering model. In addition to the number of single, complex single
and double strand breaks, our clustering user application stores the
cluster size distribution corresponding to the result of the merging
procedure as presented in Fig. 10b.

Figure 7. The 5-compaction levels of the DNA molecule description used in the example “extended/medical/dna/wholeNuclearDNA”: double helix around the histone protein
(nucleosome) (two views on top row), B-type chromatin fiber (center row), chromatin loops (bottom left row) and chromosome territories within an ellipsoidal cell nucleus
(bottom right row). Geometry implementation is further described in [80].

Figure 8. Two linked nucleosomes in a newly developed Geant4 geometry of the
DNA molecule.

Figure 9. Rendering of the atomistic view of a dinucleosome irradiated by a single
100 keV proton using the “extended/medical/dna/pdb4dna” Geant4-DNA example
(see details in [81]).

871M.A. Bernal et al./Physica Medica 31 (2015) 861–874

atomistic view of a dinucleosome
irradiated by a single 100 keV proton
Image from M. A. Bernal et al Physica Medica, vol. 31, no. 8, pp.

861–874, Dec. 2015.

Geant4, further applications

• Radio-protection in space mission

• Shielding for satellites

• Single event upset and radiation
damages to electronics

• Simulations for nuclear spallation
sources

• Radioactive waste

1 ESA UNCLASSIFIED – For Official Use Geant4 SUWS, 26.8.2015

ESA Geant4 R&D activities

Petteri Nieminen, Giovanni Santin,
Hugh Evans, Piers Jiggens

Space Environments
and Effects Section
European Space Agency
ESTEC

Geant4 Space Users’ Workshop,
Hiroshima, 26 August 2015

Figure from M. Sawant, COTS Journal Jan. 2012

Space radiation protection

The	components	of	space	radiation	that	are	of	
concern	are	high	energetic	charged	particles,	
especially	protons from	the	Sun		and	heavier	

ions	from	galactic	cosmic	rays

(C2H4)n	is	foreseen	to	be	used	in		
spacecraft	shielding.

Corresponding	fragmentation	cross	
sections	are	important	for	dose	
estimate	to	the	astronauts

Energy:	
100	MeV/n	to	10	GeV/n

Projectiles:
H,	He,	C,	O,	Si	and Fe	

Norbury,	 J.	W.	et	al.	"Review	of	nuclear	physics	 experimental	
data	for	space	radiation." Health	physics 103.5	(2012):	640-642.

FOOT	could	explore	He,	C,	O	
beams	@		100-400	MeV/u

First slide of the talk “ESA Geant4 R&D Activities
from the Geant4 Space User Workshop

Hiroshima, 26 August 2015

31

18
Courtesy Tore Ersmark

International Space Station

Radiaton Simulaton and Monte Carlo Method - M. Asai (SLAC) 18

How to install Geant4 some tips
32

Prerequisites on CentOS7

• sudo yum update

• sudo yum groupinstall “Development Tools”

• sudo yum install xerces-c xerces-c-devel

• sudo yum install centos-release-scl-rh

• sudo yum install python27 python27-pyhton-pip
python27-pyhton-tools python27-numpy

• sudo yum install qt qt-x11 qt-devel
33

cmake3 for CentOS7

• cmake is needed to compile and use Geant4

• the version available on the CentOS7 repository is too old, we have to
compile it

• wget https://cmake.org/files/v3.10/cmake-3.10.3.tar.gz

• tar -xvzf cmake-3.10.3.tar.gz

• cd cmake-3.10.3

• ./bootstrap && make && make install

• Add to ~/.bashrc the line: 
export PATH=/home/soft/cmake-3.10.3/bin:$PATH

34

https://cmake.org/files/v3.10/cmake-3.10.3.tar.gz

Prerequisite on Debian/Ubuntu

• sudo apt update

• sudo apt install build-essential git cmake qt4-default  
qt4-dev-tools libxerces-c-dev

35

Prerequisites on a Mac

• install XCode and type in a terminal: 
xcode-select —install

• install XQuartz (https://www.xquartz.org/)

• install brew: 
/usr/bin/ruby -e "$(curl -fsSL https://
raw.githubusercontent.com/Homebrew/install/master/install)”

• brew doctor; brew update

• brew install cmake, qt, xerces-c

36

https://www.xquartz.org/

Preparing the installation

• wget http://cern.ch/geant4/support/source/
geant4.10.04.p01.tar.gz

• tar -xvzf geant4.10.04.p01.tar.gz 
this will create geant4.10.04.p01/

• mkdir geant4.10.04.p01-build

• mkdir geant4.10.04.p01-install

• mkdir geant4-data

• cd geant4.10.04.p01-build
37

http://cern.ch/geant4/support/source/geant4.10.04.p01.tar.gz
http://cern.ch/geant4/support/source/geant4.10.04.p01.tar.gz

Compile and install

• cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -
DGEANT4_INSTALL_DATA=ON -DGEANT4_INSTALL_DATADIR=../
geant4-data -DGEANT4_BUILD_MULTITHREADED=OFF -
DGEANT4_USE_GDML=ON -DGEANT4_USE_QT=ON -
DGEANT4_BUILD_CXXSTD=c++11 -DCMAKE_INSTALL_PREFIX=../
geant4.10.04.p01-install ../geant4.10.04.p01

• make -j `nproc`

• make install

• Add to your .bashrc (~/.bash_profile on a Mac): 
export G4DIR=~/geant4.10.04.p01-install 
. $G4DIR/bin/geant4.sh 
alias g4make='cmake -DGeant4_DIR=$G4DIR'

38

Geant4 is a toolkit

• Geant4 is a toolkit (= a collection of tools)
• i.e. you cannot run it out of the box
• You must write an application, which uses Geant4

• Consequences:
• There are no such concepts as “Geant4 defaults”
• You must provide the necessary information to configure your simulation
• You must deliberately choose which Geant4 tools to use

• Guidance: many examples are provided
• Basic Examples: overview of Geant4 tools
• Advanced Examples: Geant4 tools in real-life applications

39

Some basic features of
C++

[slides made getting inspiration from 
 http://www.cplusplus.com]

40

Just an introduction

• This is not a C++ course

• Just few information useful to understand the Geant4
examples

• For a complete course: 
http://www.roma1.infn.it/people/rahatlou/programmazione++/

41

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Few things about C++

• A general-purpose programming language

• Has imperative, object-oriented and generic
programming features

• Provides facilities for low-level memory manipulation

• In 1983, "C with Classes" was renamed to "C++"  
(++ being the increment operator in C)

• Initially standardised in 1998  
(current standard is C++17 but the most used is C++11)

42

Classes

• Classes are an
expanded concept of
data structures: like
data structures, they
can contain data
members, but they
can also contain
functions as members

 
class Apple {
public:
 void setColor(color);
 color getColor();

private:
 color fColor;
 double fWeight;
};

43

Like Plato’s ideas (the idea
of apple), classes have generic

attributes (e.g. color).
Each instance (this Golden Delicious

apple) of the class have a specific
attribute (e.g. yellow)

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

44

Idea of rectangle

An instance  
of rectangle

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

45

Declaration

Usage of the 
methods

Implementation

Namespace

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

46

Hyperuranion
(ὑπερουράνιος τόπος)

literally: "place beyond heaven”

“Real” world

What if I want to protect the rectangle
properties (the dimensions), once instantiated?

47

Constructors

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 Rectangle(int x, int y);
 int area() {return width*height;}
};

void Rectangle::Rectangle(int x, int y)  
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect(3,4);
 cout << "area: " << rect.area();
 return 0;
}

48

Using the
constructor and

removing the
setting method

Constructors
#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 Rectangle(int x, int y);
 int area() {return width*height;}
};

Rectangle::Rectangle (int x, int y) :
width(x), height(y) { }

int main () {
 Rectangle rect(3,4);
 cout << "area: " << rect.area();
 return 0;
}

49

Better
implementation!

Inheritance

• Classes in C++ can be extended, creating new classes
which retain characteristics of the base class

• This process, known as inheritance, involves a base class
and a derived class

• The derived class inherits  
the members of the base class,  
on top of which it can  
add its own members

50

Inheritance, an example

class Polygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

class Rectangle: public Polygon
{
 public:
 int area ()
 {
 return width*height;
 }
};

class Triangle: public Polygon
{
 public:
 int area()
 {
 return width*height/2;
 }
};

51

Protected and not private!

• The protected access specifier used in class Polygon is similar
to private. Its only difference occurs in fact with inheritance:

• When a class inherits another one, the members of the derived
class can access the protected members inherited from the
base class, but not its private member

• By declaring width and height as protected instead of private,
these members are also accessible from the derived classes
Rectangle and Triangle, instead of just from members of
Polygon

• If they were public, they could be accessed just from anywhere
52

Let’s use the classes…

#include <iostream>
using std::cout;
using std::endl;

int main () {
 Rectangle rect;
 Triangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

have a look at the example
https://github.com/carlomt/inheritance_example

for more details
53

https://github.com/carlomt/inheritance_example

Lets get back to Geant4
54

You MUST:

• Describe your experimental set-up

• Provide the primary particles input
to your simulation

• Decide which particles and
physics models you want to use
out of those available in Geant4
and the precision of your
simulation (cuts to produce and
track secondary particles)

55

You may also want to:

• Interact with Geant4 kernel to control your simulation

• Visualise your simulation configuration or results

• Produce histograms, tuples etc. to be further analysed

56

Jargons

• Run, event, track, step, step point

• Process

• At rest, along step, post step

• Cut = production threshold

• Sensitive detector, score, hit,  
hits collection,

57

A run in Geant4

• As an analogy of the real experiment, a run of Geant4
starts with “Beam On”

• A run is a collection of events  
which share the same detector  
and physics conditions

• G4RunManager class manages  
processing a run

• G4UserRunAction is the optional user hook

58

Physics List

• A class which collects all the particles, physics processes and
production thresholds needed for your application

• It tells the run manager how and when to invoke physics
• It is a very flexible way to build a physics environment

• user can pick the particles he wants
• user can pick the physics to assign to each particle

• But, user must have a good understanding of the physics
required

• omission of particles or physics could cause errors or poor
simulation

59

There is not default, but…

• Geant4 provides several “production physics lists” which
are routinely validated and updated with each release
these should be considered only as starting points which
you may need to validate or modify for your application

• There are currently 19 packaged physics lists available

• 6 reference physics lists:

• FTFP_BERT, FTFP_BERT_HP QGSP_BERT,
QGSP_BERT_HP, QGSP_BIC QGSP_FTFP_BERT

60

Naming…

• The following acronyms refer to various hadronic options
• QGS -> Quark Gluon String model (>~20 GeV) FTF -> Fritiof

string model (>~5 GeV) 
BIC -> Binary Cascade (<~ 10 GeV) 
BERT -> Bertini-style cascade (<~ 10 GeV)

• HP -> High Precision neutron model (< 20 MeV) P ->
G4Precompund model used for de-excitation

• EM options designated by
• no suffix: standard EM physics
• EMV suffix: older but faster EM processes 

– other suffixes for other EM options
61

Production Physics Lists

• FTFP_BERT
• recommended by Geant4 for HEP
• contains all standard EM processes
• uses Bertini-style cascade for hadrons < 5 GeV
• uses FTF (Fritiof) model for high energies (> 4 GeV)

• QGSP_BERT
• all standard EM processes
• Bertini-style cascade up to 9.9 GeV
• QGS model for high energies (> ~18 GeV) FTF in

between
62

Production Physics Lists

• QGSP_BIC
• same as QGSP_BERT, but replaces Bertini cascade with

Binary cascade and G4Precompound model
• recommended for use at energies below 200 MeV (many

medical applications)

• FTFP_BERT_HP
• same as FTFP_BERT, but with high precision neutron model

used for neutrons below 20 MeV
• signifcantly slower than FTFP_BERT when full thermal cross

sections used there’s an option to turn this of
• for radiation protection and shielding applications

63

Other Physics Lists

• If primary particle energy in your application is < 5 GeV (for
example, clinical proton beam of 150 MeV)
• start with a physics list which includes BIC or BERT
• e.g. QGSP_BIC, QGSP_BERT, FTFP_BERT, etc.

• If neutron transport is important
• start with physics list containing “HP”
• e.g. QGSP_BIC_HP, FTFP_BERT_HP, etc.

• If you’re interested in Bragg curve physics
• use a physics list ending in “EMV” or “EMX” or “EMY”
• e.g. QGSP_BIC_EMY

64

An event in Geant4

• An event is the basic unit of simulation in Geant4

• G4Event class represents an event. It has following objects at
the end of its (successful) processing
• List of primary vertices and particles (as input)
• Hits and Trajectory collections (as output)

• G4EventManager class manages  
processing an event

• G4UserEventAction is the  
optional user hook

65

A track in Geant4

• Track is a snapshot of a particle

• It has physical quantities of current instance only. It does
not record previous quantities

• It’s not a collection of steps. Instead, a track is being
updated by steps

• G4TrackingManager manages processing a track, a track
is represented by G4Track class

• G4UserTrackingAction is the optional user hook
66

A step in Geant4

• A step is a variation of a track
• Has two points (pre and post step points)
• In case a step is limited by a boundary, the

end point stands on the boundary, and it
logically belongs to the next volume

• Boundary processes such as transition
radiation or refraction could be simulated

• G4SteppingManager class manages processing a step, a
step is represented by G4Step class

• G4UserSteppingAction is the optional user hook
67

Particle in Geant4

• A particle in Geant4 is represented by three layers of
classes:

• G4Track
• Geometrical information (position)

• G4DynamicalParticle
• Dynamic physical properties (momentum, energy,

spin…)

• G4ParticleDefinition
• Static properties (charge, mass, life time)

68

Sampling the step size

• In Geant4, particle transportation is a process as well, by
which a particle interacts with geometrical volume
boundaries and field of any kind

• Each particle has its own list of applicable processes. At
each step, all processes listed are invoked to get
proposed physical interaction lengths

• The process which requires the shortest interaction
length limits the step

69

Process kinds

• At rest

• for instance: muon decay

• Along the step

• like Cerenkov

• Post step

• decay on the fly, hard interactions

70

Let’s cut it out… (cuts in Geant4)

• A Cut in Geant4 is a production threshold

• It is applied only for physics processes that have infrared
divergence

71

System of Units

• Internal unit system used in Geant4 is completely hidden
not only from user’s code but also from Geant4 source
code implementation

• Each hard-coded number must be multiplied  
by its proper unit:
• radius = 10.0 * cm; E = 1.*GeV;

• To get a number, it must be divided by a proper unit:
• G4cout<< “E dep: “<< eDep/MeV <<“ [MeV]”<<G4endl;

72

User classes

• You have to write the main()
• Initialisation classes:

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserActionInitialization

• Action classes
• G4VUserPrimaryGeneratorAction

• G4UserRunAction

• G4UserEventAction

• G4UserStackingAction

• G4UserTrackinAction

• G4UserSteppingAction

73

classes written in red
are mandatory!

Your program

• Geant4 does not provide a main()
• In your main(), you have to
• Construct G4RunManager (sequential mode)
• Set user mandatory initialisation classes to RunManager

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserActionInitialization

• You can define VisManager, (G)UI session,
• You can initialise optional user action classes

74

carlo.mancini.terracciano@roma1.infn.it

www.roma1.infn.it/~mancinit/Teaching/LabFisNucl

mailto:carlo.mancini.terracciano@roma1.infn.it
http://www.roma1.infn.it/~mancinit/Teaching/LabFisNucl

