Physics in Geant4 - part II

VI International Geant4 School 26-30 November 2018, Trento (Italy)

Overview

- Recap on tracking
- Cuts
- Overview on physics models

For these slides I took inspiration from:

- M. Asai (SLAC, Stanford)
- A. Dotti (SLAC, Stanford)
- S. Incerti (CNRS, Bordeaux)
- L. Pandola (INFN-LNS, Catania)

 You can download code and slides from: http://www.roma1.infn.it/~mancinit/Teaching/Trento/

Run

Just like a HEP experiment...

- It is the most common application of MC in Particle Physic
- Assume that all the possible interactions are known
- The distance s between two subsequent interactions is distributed as $p(s) = \mu \exp(-\mu s)$

• Being μ a property of the medium

- μ is proportional to the probability of an interaction per unit length, therefore:
 - Reminder...
 - is proportional to the total cross section

$$\mu = N\sigma = N\sum_{i} \sigma_{i}$$

- σ_i are the partial cross section of all the competing processes
- depends on the **density** of the material
 (N is the number of scattering centres in the medium)

- Divide the particle trajectory in "steps"
 - Straight free-flight tracks along the step
 - Could be limited by geometry boundaries
- Sampling the step length accordingly to p(s)
- Sampling the interaction at the end of the step
- · Sampling the interaction accordingly to $\,\mu_i/\mu$
- Sampling the final state using the physics model of the interaction i
 - Update the properties of the primary particle
 - Add the possible secondaries produced (to be tracked later)

Reminder...

- Follow all secondaries, until absorbed (or leave the geometry)
- μ depends on the energy (cross sections do!)

Tracking, not so easy...

- This basic recipe doesn't work well for charged particles
- The cross sections of some processes (ionisation and bremsstrahlung) is very high, so the steps would be very small
- In each interaction only a small fraction of energy is lost and the effect on the particle are small
- A lot of CPU time used to simulate many interactions having small effects

Reminder...

The solution: approximate

- Simulate explicitly interactions only if the energy loss is above a threshold E_0 (hard interactions)
 - Detailed simulation
- The effects of all sub-threshold interactions is described cumulatively (soft interactions)
- Hard interactions occur much less frequently than soft interactions

The G4VProcess

- All physics processes derive from G4VProcess
- G4VProcess is an abstract class

Reminder...

- It defines the common interface of all processes in Geant4
- Three kind of "actions":
 - AlongStep
 all the soft interactions
 - PostStep
 all the hard interactions
 - AtRest decays, e+ annihilation

Geant4 way of tracking

- Force step ending at geometry boundaries
- All AlongStep processes co-occur
- The PostStep compete, i.e.: only one is selected

Geant4 way of tracking

- If particle is at rest chose one of the AtRest processes
- The secondaries are saved in the stack
- To be further tracked with a last in first out approach

let's run an example!

Let's cut it out... (cuts in MC)

- The traditional Monte Carlo solution is to set a tracking cut-off in energy:
 - a particle is stopped when its energy goes below it

- its residual energy is deposited at that point
- Imprecise stopping and energy deposition location
- Particle and material dependence

Let's cut it out... (cuts in Geant4)

- Geant4 does not have tracking cuts
 i.e.: all tracks are tracked down to 0 energy
- A Cut in Geant4 is a production threshold
- It is applied only for physics processes that have infrared divergence
 - Bremsstrahlung
 - Ionisation e⁻ (δ rays)
 - Protons from hadronic elastic scattering

A range cut

- The threshold is a distance!
- Default = 1 mm
- Particles unable to travel at least the range cut value are not produced

- Sets the "spatial accuracy" of the simulation
- Production threshold is internally converted to an energy threshold for each material

Cut in energy

- 460 keV
- good for LAr
- not for Pb

- · 2 MeV
- good for Pb
- not for Lar

Cut in range

- 1.5 mm
- ~460 KeV in LAr
- ~2 MeV in Pb

run with the hares and hunt with the hounds... (good for both!)

Setting the cuts

Optional method in G4VPhysicsList

```
void MyPhysicsList::SetCuts()
{
    //G4VUserPhysicsList::SetCuts();
    defaultCutValue = 0.5 * mm;
    SetCutsWithDefault();

    SetCutValue(0.1 * mm, "gamma");
    SetCutValue(0.01 * mm, "e+");
    G4ProductionCutsTable::GetProductionCutsTable()
        ->SetEnergyRange(100*eV, 100.*GeV);
}
```

- not all models are able to work with very low production thresholds
- an energy threshold limit is used,
- its default value is set to 990 eV.
- You can change this value

Cuts UI command

```
# Universal cut (whole world, all particles)
/run/setCut 10 mm

# Override low-energy limit
/cuts/setLowEdge 100 eV

# Set cut for a specific particle (whole world)
/run/setCutForAGivenParticle gamma 0.1 mm

# Set cut for a region (all particles)
/run/setCutForARegion myRegion 0.01 mm

# Print a summary of particles/regions/cuts
/run/dumpCouples
```

Cuts per region

- Complex detector may contain many different sub-detectors involving:
 - finely segmented volumes
 - position-sensitive materials (e.g. Si trackers)
 - large, undivided volumes (e.g. calorimeters)
- The same cut may not be appropriate for all of these
- User can define regions (independent of geometry hierarchy tree) and assign different cuts for each region
- A region can contain a subset of the logical volumes

To limit the step

- To have more precise energy deposition
- To increase precision in magnetic field
- Include G4StepLimiter in your physics list
 - as a Physics process
 - compete with the others

Physics processes

an overview...

γ model inventory

- Many models available for each process
- Differ for energy range, precision and CPU speed
- Final state generators

Model	E_{min}	E_{max}
G4LivermoreRayleighModel	100 eV	10 PeV
G4PenelopeRayleighModel	100 eV	10 GeV
G4KleinNishinaCompton	100 eV	10 TeV
G4KleinNishinaModel	100 eV	10 TeV
G4LivermoreComptonModel	100 eV	10 TeV
G4PenelopeComptonModel	10 keV	$10~{ m GeV}$
G4LowEPComptonModel	100 eV	$20~{ m MeV}$
G4BetheHeitlerModel	1.02 MeV	100 GeV
G4PairProductionRelModel	$10~{ m MeV}$	10 PeV
G4LivermoreGammaConversionModel	1.02 MeV	$100~{ m GeV}$
G4PenelopeGammaConversionModel	$1.02~\mathrm{MeV}$	$10~{ m GeV}$
G4PEEFluoModel	1 keV	10 PeV
G4LivermorePhotoElectricModel	10 eV	$10 \mathrm{PeV}$
G4PenelopePhotoElectricModel	10 eV	10 GeV

ElectroMagnetic models

- The same physics processes can be described by different models
- For instance: Compton scattering can be described by
 - G4KleinNishinaCompton
 - G4LivermoreComptonModel (low-energy, based on the Livermore database)
 - G4PenelopeComptonModel (low-energy, based on the Penelope analytical model)
 - G4LivermorePolarizedComptonModel (low-energy, Livermore database with polarization)
 - G4PolarizedComptonModel (Klein-Nishina with polarization)
 - G4LowEPComptonModel (full relativistic 3D simulation)
- Different models can be combined, so that the appropriate one is used in each given energy range (à performance optimization)

You MUST:

Reminder...

- Describe your experimental set-up
- Provide the primary particles input to your simulation
- Decide which particles and physics models you want to use out of those available in Geant4 and the precision of your simulation (cuts to produce and track secondary particles)

EM Physics constructors

G4EmStandardPhysics G4EmStandardPhysics_option1 — HEP fast but not precise G4EmStandardPhysics_option2 - Experimental G4EmStandardPhysics_option3 — medical, space G4EmStandardPhysics_option4 — optimal mixture for precision G4EmLivermorePhysics G4EmLivermorePolarizedPhysics G4EmPenelopePhysics G4EmLowEPPhysics G4EmDNAPhysics_option...

default

Combined Physics Standard > 1 GeV **LowEnergy < 1 GeV**

Advantage of using of these classes – they are tested on regular basis and are used for regular validation

Hadronic processes

- At rest
 - Stopped muon, pion, kaon, anti-proton
 - Radioactive decay
 - Particle decay (decay-in-flight is PostStep)
- Elastic
 - Same process to handle all long-lived hadrons (multiple models available)

- Inelastic
 - Different processes for each hadron (possibly with multiple models vs. energy)
 - Photo-nuclear, electro-nuclear, mu-nuclear
- Capture
 - Pion- and kaon- in flight, neutron
- Fission

Hadronic physics challenge

- Three energy regimes
 - < 100 MeV</p>
 - resonance and cascade region (100 MeV 10 GeV)
 - > 20 GeV (QCD strings)
- Within each regime there are several models
- Many of these are phenomenological

Hadronic models

- Two families of builders for the high-energy part
 - QGS, or list based on a model that use the Quark Gluon String model for high energy hadronic interactions of protons, neutrons, pions and kaons
 - FTF, based on the FTF (FRITIOF like string model) for protons, neutrons, pions and kaons
- Three families for the cascade energy range
 - **BIC**, binary cascade
 - BERT, Bertini cascade
 - INCLXX, Liege Intranuclear cascade model

ParticleHP

- Data-driven approach for inelastic reactions for n (in place since many years, named NeutronHP) p, d, t, 3He and α
- Data based on TENDL-2014 (charged particles) and ENDFVII.r1 (neutrons).
- For neutrons, includes information for elastic and inelastic scattering, capture, fission and isotope production
- Range of applicability: from thermal energies up to 20 MeV
- Very precise tracking, but also very slow
- Use it with care: thermal neutron tracking is very CPU-demanding

Haronic model inventory

http://geant4.cern.ch/support/proc_mod_catalog/models

thank you for your attention!