Where do binary black holes come from? How do we find out?

Davide Gerosa

NASA Einstein Fellow California Institute of Technology

January 15th, 2018 Sapienza theory seminars Roma

dgerosa@caltech.edu www.tapir.caltech.edu/~dgerosa

Outline

A new window on the Universe

- Almost everything we know about the Universe comes through photons.
- Gravitational-waves are a fundamentally new way!
- Serendipitous discoveries came with new electromagnetic bands (X-ray binaries, gamma-ray bursts, pulsars, CMB...)

Electromagnetic radiation

- Charges
- **Strongly coupled**: easy to detect, but also easily scattered

Gravitational radiation

- Cumulative mass and momentum distribution
- Very weakly coupled: hard to detect, but travel unaffected!

Ripples in the fabric of spacetime

 $G_{\mu
u} = 8\pi T_{\mu
u}$ Einstein equations $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$...linearized

Mass quadrupole
$$Q_{jk} = \int \rho x_j x_k \, \mathrm{d}^3 x$$

GW propagation
$$\Box \bar{h}_{\mu\nu} = 0$$

 $h_{ij}^{\text{TT}}(t,z) = \begin{pmatrix} h_+ & h_{\times} & 0 \\ h_{\times} & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix} \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$

Equivalence principle: measure tidal forces

GW emission $h_{jk} = \frac{2}{r} \frac{d^2 Q_{jk}}{dt^2}$ mass velocity Mv^2 ΔL measurement strain $h \sim \frac{11}{r} \sim \frac{1}{L} \frac{1}{\text{detector}}$ distance **Binaries are natural emitters** Binary cars? Binary black holes! $M \sim 10^3 \mathrm{Kg}$ $M \sim 10 M_{\odot} \sim 10^{31} \mathrm{Kg}$ $v \sim 0.1c$ $v \sim 1000 \,\mathrm{Km/h}$ on a 1 km track $r \sim 100 \,\mathrm{Mpc}$ $h \sim 10^{-21}$ $r \sim \lambda \sim R_{\text{Earth}}$ $h \sim 10^{-42}$

GW signals from BH mergers

- Frequency gradually increases during the inspiral
- Merger of two BHs is one of the most energetic events in the Universe
- Direct signal from highly-dynamic strongfield gravity
- *BHs have no hair*: final remnant has to dissipate all properties but mass and spin (**ringdown**)

LIGO/Virgo (for a theorist)

...4 km arms measured with the precision of about 1/1000 the diameter of a proton!

LIGO/Virgo (for real)

LIGO Washington

LIGO's O1: an incredible story...

That's 87% of a BH binary...

Lower mass, many more cycle and spins!

LIGO/Virgo's O2: a more incredible story...

LIGO/Virgo Collaboration

GW170814

GW150914

Neutron stars! Gamma rays, and optical counterpart, and X ray later, radio still on...

Another big one... LVT151012 GW151226

GW170817

GW170104

There's a new kid in town

GW170608

That was too much for a single figure...

...and not all the O2 results are announced!

BH mass measurements

• Low mass: many orbits; chirp mass:

$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

• High mass: mainly merger; total mass:

$$M_{\rm tot} = m_1 + m_2$$

Another population? Just the tip of the iceberg!

Spin in the waveform

Aligned components of the spins

- Different merger frequency h(t) (analog of the ISCO)
- Aligned spins take longer to merge

Orbital-plane components of the spins

- spin precession; orbital plane precession
- Peculiar waveform modulations
 Image: A state of the state

0.8 0.6

0.0

 180_{\circ} 180_{\circ}

magnitude

OGI

 $c\mathbf{S}_2/(Gm_2^2)$

.00

Spin measurements

Best measured quantity: effective spin ullet

$$\chi_{\text{eff}} = \left(\frac{\mathbf{S_1}}{m_1} + \frac{\mathbf{S_2}}{m_2}\right) \frac{\mathbf{\hat{L}}}{M}$$

- Constant of motion at 2PN Racine 2008; DG+ 2015
- Careful with that prior... Vitale. DG+ 2017

Can BHs really make it?

Peters and Mathews 1963 Peters 1964

Have we been together for so long?

Massive stars to BHs: field evolution

Dynamical assembling: cluster evolution

Dense stellar clusters, many three body interactions

2 Dynamical friction: heavy objects sink towards the center

3 Soft binaries become softer, hard binaries become harder

Key point: stellar evolution is separate! They meet, swap, meet again, etc...

Can we tell them apart?

Spins have secrets!

Field binaries: evolve together. Tidal interactions and accretion tend to align the spins?

My two cents. The good news first...

Outline

Field binaries, spin tracking

 $M_{\rm BH}^{\prime\prime}$

 a_2

 e_2

 $M'_{\rm BH}$

2. Mass transfer

4. Tides, common envelope

5. Inspiral, merger, LIGO

DG+ 2013

A diagnostic of BH binary formation

Two main knobs:

- **Tides**: when the system is formed of a BH and a star, can tidal interactions align the star's spin?
- Mass transfer: is mass transfer efficient enough to reverse the mass ratio?

Spin dynamics remembers *precise* formation steps!

Outline

Supernova asymmetries and kicks

Scheck+2006; Repetto+2013,2015; Janka 2013

Asymmetric Supernova:

multiD simulations shows strong mass/neutrino asymmetric emission

Gravitational tugboat mechanism

- Emission concentrated close to the shock
- Remnant starts recoiling towards the slow ejecta
- Gravitational attraction and fallback material

How big is the kick?

One of the main uncertainties in all population synthesis models

Neutron stars:

solid measurement from pulsar proper motion distribution $v_k \sim 450 \mathrm{km/s}$

Black holes? We don't know much...

- Fallback prevents kicks entirely, especially for high masses? Fryer+2001,2012; Janka 2013
- Kicks as large as those imparted to NS?
 Repetto+2013,2015

Boxing day event (GW151226)

First GW kick measurement!

O'Shaugnessy, DG+2017

0

 $\sigma \, [\rm km/s]$

Outline

Black hole generations

Orthogonal, but complementary, direction to the usual field vs. cluster debate

Spins, 1st and 2nd generations

- At merger, the binary's orbital angular momentum has to be converted into spin
- More or less whatever you do when you merge two BHs, you get ~0.7!

Spins remember previous mergers!

More mergers means...

Mergers means:

- more massive
- equal mass
- closer
- higher spins

Analysis:

- filter SNR
- measurement errors, spread over multiple bins
- Bayesian model
 comparison

Can we infer previous mergers happened?

Need only 10-60 observations to distinguish 1g+1g vs 2g+2g at 5σ !

Already! Using O1 events only:

1g1g vs. 2g2g. Odds: 12 1g1g vs. 1g2g. Odds: 2 1g2g vs. 2g2g. Odds: 6

2σ statement our BHs are not 2g+2g!

Can we infer previous mergers happened?

ð o

Three models mixed, can we measure their mixing fraction?

- each pure model is on a corner
- assuming 100 BBH
- 90% and 50% confidence intervals

Yes, but that's harder.

Need O(100) observations and/or a better detector!

Outline

Hold on... How about the prior?

- Everything derived using priors with isotropic spins!
- Risky situation: our prior is one of the models we are trying to discriminate!

First independent reanalysis of the LIGO data

Vitale, **DG+** 2017

- P_1 Default: everything is uniform and isotropic
 - P_2 | Spins uniform in BH rotational energy
- P_3 Spins uniform in volume
 - P_4 Bimodal in the spin magnitudes
- P_5 | Spins preferentially aligned
- P_6 Stellar initial mass function
- 7 Stellar initial mass function v2
- P_8 Small spin magnitudes

LIGO/Virgo Collaboration

Impact on inferred BH spins

- GW151226 not consistent with zero spins (robust!)
- The bimodal spin prior choses the high spin mode. Support misalignment.
- All others fully consistent with zero spins (robust!)
- More severe issues for low SNR like LVT

Variations in the 90% confidence interval up to ~20%!

Impact on inferred BH masses

- Chirp mass (GW151226 and LVT151012), total mass (GW150914) are very solid.
- Median change of $\sim 0.1 M_{\odot}$
- But component masses are not

If you insert the analysis the information that BH should come from stars:...

- Data tends to favor more equal mass systems
- ...especially if info from dynamical interactions are in

 $--- P_1 \\ ---- P_6 \\ ---- P_7$

Default: everything is uniform and isotropic
Stellar IMF, uniform mass ratio Sana+ 2012
Stellar IMF, logistic mass ratio Rodriguez+ 2016

Is there a mass gap between BHs and NSs? Miller & Miller 2015; Kreidberg 2012

The future is bright and loud

LISA: the next revolution

- Fully approved by ESA. Now being commissioned. NASA expressed interests
- Amazing LISA pathfinder performance
- The next big thing in GW astronomy

Outline

