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Summary. — These lectures illustrate laboratory experiments investigating a
spring-slider system shearing a granular bed. When the shear rate is low enough,
the dynamics is intermittent, displaying a chaotic stick-slip motion which can only
be described statistically. This is an instance, among many others, of systems ex-
hibiting intermittent and erratic activity, in the form of avalanches characterized by
self–similar fluctuations of physical quantities in a wide range of values. In anal-
ogy with equilibrium systems, it is thought that such properties originate from the
vicinity of some critical transition, and therefore that systems microscopically very
different could display similar and universal statistical properties. Investigation of
such systems is thence not only interesting in itself, but can be of help in understand-
ing the dynamics of a wider class of phenomena and in devising effective models for
their description.

PACS 45.70.-n – Granular systems.
PACS 91.55.Jk – Fractures and faults.
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian
motion.
PACS 05.65.+b – Self-organized systems.
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Fig. 1. – An example of intermittent signal supplied by the velocity time series of a spring-slider
shearing a granular bed.

1. – Motivations

Laboratory experiments on the response of a granular bed subjected to a shear stress

can be performed in different ways and with different aims. One possibility is to aim at

replicating what happens within real seismic faults, trying to reproduce analogous condi-

tions, with inherent difficulties especially for what concerns fault pressure and extension.

Another possibility, which is the one we explore, aims at finding whether the relevant

mechanisms of the dynamics are general enough to be apply also at different systems

whose phenomenology displays very similar features. This would allow to understand

several situations of interest, including those not easily accessible. These lectures illus-

trate and discuss the results of laboratory experiments performed within this latter point

of view, which is essentially the point of view of statistical physics. For those who are

not familiar with this area of physics, and perhaps with its language and basic concepts,

we shall recall in the first part some notions and some methods that will also serve to

introduce concepts useful to the second part, where we shall describe the experimental

results. In the third part we shall try to better understand what is seen in experiments

with the aid of some simple stochastic models.

1
.
1. Crackling noise. – Many systems in the natural world react to solicitations in

a discontinuous and impulsive manner, displaying random intermittence of the activ-

ity and strong fluctuations of physical quantities. An instances of this phenomenology

are earthquakes, which share this feature with many natural phenomena such as frac-

tures [1], crack propagation [2], plastic deformation [3], structural phase transitionss [4],

rain precipitation [5], and others.

Besides intermittency, these diverse phenomena share several other tatistical prop-

erties. In particular, physical quantities display often long range correlations and self-

similar distributions, i.e. power laws, in a wide range of values. Such properties raise

the question whether some common or similar mechanism could trigger the occurrence

of events. This is one main reason for investigating such systems, which have also been

associated for their “crackling noise” [6]. Figure 1
.
1 shows the velocity of a spring-slider

shearing a granular medium as function of time. This is an example of crackling noise

and will be object of these lectures.
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Another hint that similar dynamics could be at the base of the observed phenomenol-

ogy, common to different systems, comes from the study of the critical phase transition.

It is in this context that the concept of universality has been developed and observed:

systems that are microscopically very different, can display similar and universal statisti-

cal features in their critical properties. In this chapter the main properties characterizing

critical phenomena will be shortly recalled, with in mind their possible connection with

the “crackling noise” systems.

1
.
2. The point of view of the statistical physics. – The study of critical phase transitions

makes use of the tools of the statistical mechanics. This branch of physics is usually

concerned with systems made by many components (e.g. molecules) whose trajectories

are practically impossible to follow singularly, and that therefore are treated statistically.

To make these ideas clearer let us consider a concrete example. Many phenomena

present Gaussian statistics. An instance is the diffusion, like that of a colloidal particle

in a liquid, known as Brownian motion. For each spatial component the dynamics of the

particle can in principle be described by a Newton equation like

(1) m
d2x

dt2
= −µdx

dt
+ f(~x) + F (x,v),

wherem and µ are the mass and the viscous damping of the particle. f(~x) are the external

forces and F (x,v) describes the interaction of the particle with the liquid molecules,

depending on their coordinates and velocities x and v. Being impossible to determine the

motion of all the molecules, one can treat F like a random force with suitable properties

[7]. One expects that such interaction force, describing the collision of the particle with

the liquid molecules, has no preferred direction

(2) F (t) = 0

and very short memory:

(3) Fx = 0,

where . . . indicates time, or ensemble, averages. Using these assumptions, and the

equipartition principle

v2 =
RT

N
,

where T is the absolute temperature, R the gas constant and N the Avogadro number,

Langevin determined the strength of the random force:

(4) F 2 = 2kTµ,

(where k = R/N is the Boltzmann constant).
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From Eq. (1) also follows the Fick’s law for diffusion. An easy way to see this is to

consider Eq. (1) in the simpler case when external forces and inertia can be neglected:

(5) µv = F (t).

In modern language the Langevin assumptions amount to take a force that only depend

on time, with zero average

(6) F (t) = 0

and no correlations

(7) Fi(t′)Fi(t) = Γδ(t′ − t),

i.e a white spectrum, with Γ = 2kTµ. By integrating Eq. (5) it s straightforward to

obtain (assuming the intial position in the origin)

(8) x2 =
Γ

µ2
t = Dt

with

(9) D =
Γ

µ2
=

2kT

µ

In fact, the most important result is this formula relating the diffusion coefficient to the

absolute temperature and the viscous damping of the particle. From Eq. (1) (it must

be reminded that this relation was first derived by Einstein in a less straightforward way

[8]). It can also be shown that the coordinate of the particle obeys a Gaussian probability

distribution whose variance is indeed Dt [9]. This example shows how a general results

can be derived by exploiting the statistical features of a system.

1
.
3. Critical phenomena. – Actually the crackling noise statistics of intermittent sys-

tems is very far from that of a Gaussian process. It is generally characterized by strongly

asymmetric distributions of many physical quantities, usually close to power laws. We

will see below that also the Gutenberg-Richter statistics for earthquakes magnitude and

the Omori’s law for the aftershocks number can be considered examples of this phe-

nomenology. So the questions are where do power laws come from, and why should they

be universal.

In equilibrium critical phase transitions some power laws are observed which originate

from long range correlations in the system. Power laws are self-similar, that is they

have no characteristic scales , as opposite to, e.g., exponential or Gaussian distributions,

whose scales are characterized by some parameter. They generally describe self-similar

(fractal) objects, Such an absence of characteristic scales was first observed in critical

phase transitions and revealed the existence of universal behaviors in nature, i.e. not
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Fig. 2. – Phase diagram of water.

Fig. 3. – Phase diagram drawn from Van der
Walls equation. Lines indicates isotherms.
Within the shadowed region, B, the two pases
A and C coexist. The region terminates above
Tc, indicated by the line 2.

depending on many details of the system. This suggests the presence of some equivalent

critical transition also in non equilibrium systems.

To see how a critical behavior emerges in equilibrium systems let us consider a very

familiar substance like water. In certain conditions of pressure and temperature, liquid

and gaseous (vapor) phases, so as liquid and solid (ice) phases, can coexist. This situation

is resumed in the phase diagram in Fig. 2a), where the coexistence is marked by lines.

There is also a point (black dot) where all the lines cross (the triple point) and another

where the liquid–vapor line ends,. This is the critical point, where the two phases merge

into an opalescent fog. This special fog is made of vapor bubbles of any size containing

liquid drops of any size, which in turn contain vapor and so on [10]. The system is a

fractal, proposing a same landscape at every length scale.

The existence of a critical point is predicted by the Van der Walls equation [11], relat-

ing temperature, pressure and volume at thermodynamic equilibrium. The coexistence

curves derived by this equation (supplemented with the Maxwell construction) are shown

in Fig 2b). Each line corresponds to a different temperature. The system is liquid in the

region A, gas in the region C and the two phases coexist in region B. This region shrinks

as temperature increases, until it reduces to a point at the critical temperature Tc.

1
.
4. Universality . – The bell-shaped region of coexistence is common to many systems,

which in fact display a critical point. Close to this point many thermodynamics quantities

display power law dependences on the distance from the critical point. For instance

the temperature distance ∆T from the critical temperature, Tc, that is ∆T = T − Tc,
or from the specific critical volume vc: ∆v = v − vc. These dependencies of some

standard thermodynamic quantities are reported in Table 1. The astonishing fact is that

many different systems display very similar values of the exponents characterizing these
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specific heat specific volume isothermal compressibility pressure

cv ∝| ∆T |−α vG − vL ∝| ∆T |β κT ∝| ∆v |−γ | p− pc |∝| ∆v |δ

Table I. – Critical dependence of some thermodynamic quantities

dependencies, which therefore appear to be universal, as can be seen in Fig. 4 where

the values for some substances are reported. Universality can also be seen in a famous

plot by Guggenheim [12], Fig 5, where experimental points for different substances on

the coexistence line are reported. All points fall on the same bell-shaped curve. It is

also seen that in nature many different kind of transitions display a critical behavior [11].

After many contributes from several scholars, the concept of universality was definitely

made clear by K. Wilson, who gained the Nobel prize in 1982 for identifying, by means

of the renormalization group theory, which ingredients (like space dimensionality and

symmetries in the interactions) make different systems fall into a same universality class.

The liaison between power laws and critical behavior strongly suggests that some

similar mechanism can rule different out of equilibrium, e.g. dissipative, systems and

that universality classes could exist as well in this context. Simplifying a bit it could be

said that when algebraic relations are observed, they could correspond to some fractal

features due to the criticality of the system. However the identification of universality

classes in out of equilibrium systems is still an open problem [13, 14] which is far from

being solved even for simple model systems.

Fig. 4. – Critical exponents of Tab.1
for different phase transitions.

Fig. 5. – Region of coexistence (From
Guggenheim (1945)[12]).
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Fig. 6. – An image of the laboratory granular system and its schematic.

2. – Sheared granular matter in laboratory experiments

2
.
1. The laboratory set up. – We have realized a laboratory version of the spring-

slider system [15]. A circular geometry has been chosen because it allows for long lasting

experiments, and consequently large statistics. The system, in its present version, consists

of a PPMI annular channel (see Fig. 6) of inner radius r = 12.5 cm and outer R = 19.2

cm. The channel is 12 cm height and filled almost completely with glass beads of diameter

ranging between 1 and 2.5 mm, dependning on the experiment. The beads can be sheared

by a horizontal plate laying on their top and inserted in the channel. The plate has a

few layer of grains glued to its lower face, in order to better drag the underlying granular

medium, and is free to move vertically. This implies that in our experiments the medium

can change volume under a nominal pressure of p = Mg/[π(R2 − r2)], if M is the mass

of the plate. The plate is put into rotation by a motor to which it is connected via a

torsion spring, and two optical encoders supply the angular positions of motor, θ0(t),

and plate, θ(t), with a spatial resolution of 3 · 10−5 rad. From θ0 and θ one derives the

respective instantaneous velocities, ω0(t) and ω(t). The instantaneous frictional torque

τ(t) is obtained through the motion equation of the plate

(10) τ = −κ(θ0 − θ)− Iω̇,
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Fig. 7. – Velocity signal in stick slip (black-higher line) and continuous sliding (red-lower line).

where κ is the spring constant and I the plate inertia. All quantities are acquired at a

sampling rate form 10 to 1000 Hz, depending on the experiment, recorded by a computer

and then processed and analyzed.

2
.
2. Distribution of dynamical quantities. – When the motor speed and the spring

constant are small enough, one observes high intermittent motion (Fig. 1
.
1) where the

plate alternates slipping, in which it explores a broad range of velocities, with sticking,

in which it stays at rest for unpredictable times, as shown in Fig. (1
.
1) More details of

this stick-slip regime can be seen in the sample of plate velocity time series shown in Fig.

7. The lower curve (red online) shows the instantaneous plate velocity for some slips. In

the same figure the higher curve (black online) displays the velocity during continuous

slide, occurring for larger values of driving speed and/or spring constant.

From these time series quantities such as slip extension, s, duration T and instanta-

neous velocity ω(t) can be extracted (see inset of Fig. 8), and their statistical distribution

estimated. An example of the resulting distribution for the slip size is reported in the

main panel of Fig. 8. It is seen that, as expected, it is not simply peaked around a

typical value but, on the contrary, it is essentially monotonic. It is close to a power law

and well described by

p(s) ' sαf(
s

s0
).

Similar equations describe the distributions of T and v. The function f represent a

physical cut-off and for a purely critical dynamics is an exponential function. The present

system sometimes also presents a bump at high values of s and of the other quantities.
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Fig. 8. – Experimental probability distribution of slip size s. In the inset an exemplification of
the quantities s, T and v.

This is mainly related to the characteristic system time, proportional to
√
I/κ, but

possibly also to other issues that can drive the system away from criticality. These

possibility will be discussed below, talking about theoretical models.

It can be useful to remark that power laws underly also the celebrated Gutemberg-

Richter law [16], relating the occurrence of seismic events to their magnitude:

P (m) ∝ 10−bm,

where P (m) is the probability of occurrence of an event with magnitude larger than m.

In fact magnitude is related to the seismic moment M :

m =
2

3
logM + c,

with M ' µAs, where A is the slipping area and µ the shear modulus. For given A and

µ one gets from the above equations the cumulatative distribution of slips larger than s:

P (s) ∝ s−β with β = 2
3b, and thus the density

p(s) = −dP (s)

ds
' s−(1+β).
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Fig. 9. – Static torque probability distribution in the stick regime.

For the typical value(1) b ≈ 1 this implies β ≈ 1.7, not far from what observed in

laboratory (see e.g. Fig. 2 in [17]). This power law behavior is a manifestation of

criticality in earthquakes, as it is the Omori’s law, and several other regularities observed

in seismic activity [16]. A recent review on this subject can be found in [18].

Another interesting quantity is the frictional torque. The first important thing to

observe is that it is a fluctuating quantity. This aspect of friction is essential and is at

the base of the observed critical behavior, as it will be discussed below. Friction exhibits

two phases: The loading one, in which the plate stills and the spring is stretched by the

motor causing a linear increase of the torque, and the slipping one, where friction strongly

fluctuates (examples of these fluctuations are shown in [19]). As a stochastic quantity the

friction torque can only be characterized statistically. Figure 9 shows the experimental

probability distribution for the static torque in the stick slip regime. It is seen that, at

variance with the previous quantities, it is not right winged. Nevertheless it is far from

Gaussian and still asymmetric, with an exponential tail at large values. This signals

the presence of strong correlations, as discussed in [20], which are not present in the

continuous sliding phase, where the torque distribution shrinks and attains a Gaussian

profile [15]. A similar behavior is observed for the dynamic friction [15].

(1) Measured values have been criticized, e.g. Tinti and Mulargia Bull. Seismol. Soc. Amer.,
75, 1681 (1985) and revised, .e.g Y.Y. Kagan, Tectonophysics 490, 103 (2010))
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3. – A stochastic model for the slider motion

Different models have been devised and investigated in the effort of understanding

and reproducing the erratic and intermittent activity displayed by earthquakes an many

other phenomena. The first of such models to our knowledge is that of Burridge and

Knopoff [21]. The model is an idealization of a frictional elastic interface. It reproduces

several features of earthquakes and has been extensively investigated [22]. A different

approach to this kind of phenomena was proposed at the end of the eighties by Bak, Tang

and Wiesenfeld [23] who, using a sand-pile as metaphor, proposed the concept of Self

Organized Criticality (SOC). The concept gained a wide popularity and has been followed

by a huge quantity of work [24]. Nevertheless the concept of critical self-organization itself

has been criticized [25] and still presents many open problems [13, 14], like the existence

of well defined universality classes and the way it can be connected with real systems in

terms of specific dynamics, parameter values, etc.. The sand–pile, and the model inspired

to it, belong to the category of stochastic cellular automata, to which belong even other

kinds of models more directly related to real systems. For instance the Fiber Bundle

Model and its derivations [26] which together with other statistical models [27] aims at

the description of fractures or cracks [28]. There is no room here for reviewing these

models in the due manner and in the following we shall focus on a different approach

[29], which appears more suitable to describe the dynamics observed in the experiments..

3
.
1. The friction force. – To model the experimental spring-slider system one can

start from Eq. (10). The friction force however is known only through its experimental

realization. It looks random and in principle can be a function of many variables such as

position. velocity, acceleration, F (θ, ω, ω̇, ...), and others like state or memory variables.

In analogy with other friction laws one can first attempt to put into evidence a definite

dependence on the instantaneous velocity. As seen above, friction is a fluctuating quantity

and presents complicated trajectories even as function of just the instantaneous plate

speed, (as shown for instance in Fig. 2 of [17]). One possible way out is to average over

many slips. That is to consider the mean value of friction for a given fixed instantaneous

velocity. Despite the apparent chaoticity of the friction trajectories a regular pattern

emerges, showing a well defined dependence, also characterized by a velocity weakening,

visible in Fig.10. In order to account for the stochastic component one can be inspired

by the Langevin dynamics discussed in Sec. 1, and assume that the friction is the sum

of a deterministic velocity dependent term, τd(ω) and a random term, τr:

(11) τ = +τd(ω) + τr.

As for the Brownian motion the aim of the random term is to describe in an effective way

the interaction of the probe, in this case the plate, with the medium, i.e. the granular

bed, without resort to the motion of each individual particle. The friction exerted by the

granular medium on the plate is due to the action in the medium of force chains which
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Fig. 10. – Average friction as function of the instantaneous velocity.

transmit the stress. The strength of these chains evolves in a continuous manner along

with the configuration during the motion, while in the stick phases it does not change

sensibly. Thus in this case the time dependence is replaced by an angular dependence.

The simplest assumption that can be made is that, along the plate trajectory, the strength

variations result from the sum of independent increments. This can be formalized as

(12)
dτr
dθ

= η(θ),

where η is a white noise satisfying the usual properties (6) of zero average

(13) η(θ) = 0

and δ correlation

(14) η(θ′)η(θ) = rδ(θ′ − θ),

while and r is the strength of the fluctuations. This amounts to say that the friction

force performs a Brownian motion [29], like the one described in Sec. 1.

The above form is coherent with the fact that friction cannot be a white noise itself,

since this would imply that its value at θ + dθ would be totally independent from its

value at θ, which looks highly unphysical. On the other hand a simple random walk can

also lead to unphysical consequences since, as we also know from Sec. 1, the average
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Fig. 11. – Spectrum of the dynamic torque with a Lorentzian fit.

fluctuations for this process diverge linearly with the parameter (which in this case is the

angular coordinate θ). Forces must be limited, and this can be obtained by subjecting

them to some bounding potential. At the lowest order it can be assumed to be harmonic

so that the friction torque obeys the equation

(15)
dτr
dθ

= rη(θ)− aτr.

This process is named after Uhlembeck and Ornstein [9] and the parameter a represents

the inverse of its correlation length (a correlation angle in the present case).

In order to test this hypothesis and determine the relevant parameters r and a one

resorts to the experimental data. By subtracting τd(ω) from the experimental time series

of τ(ω), one obtains the series for τr(θ). Performing a Fourier transform (in angle) one

gets the power spectrum of the signal, as function of the wavenumber, an instance of

which is shown in Fig 11. It is seen that its shape is well described by a Lorentian, and

the values of r and a can be determined by a best fit.

3
.
2. Results from the model . – Different forms can be equivalently assumed for describ-

ing the behavior of τd reproduced in Fig 16. We have resorted to one already employed

in the literature for the solid-on-solid friction [30]:

(16) τd(ω) = τ0 + γ

{
ω − 2ω0 ln(1 +

ω

ω0
)

}
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where τ0 is the constant dynamical friction and ω0 a characteristic speed. With this

expression and (15) in Eq. (10) one can simulate numerically the stick slip motion of

the plate employing the values of the parameters used in the experiment (plate inertia

I, spring constant κ, motor driving angular speed ωd) and those characterizing friction

in Eqs. (15) and (16).

By repeating on the resulting time series the same analysis performed on the ex-

perimental series one can compute distributions for slip extension, duration, etc. Some

results are shown in Fig 12. The different curves correspond to different driving speed

of the plate and a good agreement is obtained in all cases.

4. – Criticality and its possible breakdown

4
.
1. Where does criticality come from? . – This question has not yet received definitive

answers. It involves areas of non-equilibrium statistical physics which, at variance with

thermodynamics, deals with systems where detailed balance is not observed and that

usually include dissipative forces. As already recalled, a common feature of these systems

is the existence of a non-equilibrium critical transition underlying the observed dynamics

[6], that for granular matter could be the jamming transition [31, 32].

The model introduced above does not consider the motion of individual grains but

only their global influence on the dynamic and is closely related to models for propagating

fracture in disordered media [33, 27]. In this frame a large class of models presenting

common, and in some cases universal, critical features are the depinning models. These

models describe the motion of an elastic line or surface, representing the crack, driven

by a uniform force: The motion takes place in the presence of a viscous force and of a

disordered potential, which account for inhomogeneities and can exert a pinning force.

When this force is larger than the driving force, the system stills, until the drive is made

large enough. The depinnig transition is critical and presents all the features of criticality

described above (power law distributions, correlations, etc.). These features are shared

by other models describing different systems, and in certain cases give raise to identical

critical exponents, distributions etc. (or at least compatible, when models be studied

only numerically). One instance of these cases is the so called ABBM model.

4
.
2. The ABBM model . – A ferromagnet in an external magnetic field H is character-

ized by a certain amount of magnetization M . If the field changes, magnetization follows.

However, on closer observation it can be seen that M as function of H is not smooth

but rather irregular, displaying jumps, avalanches, of magnetization. These jumps were

at first be revealed by their induced electromagnetic flux and are known under the name

of Barkhausen effect, or noise, see e.g. [34]). In order to describe the Barkhausen noise,

in [35] a model was derived from microscopic considerations, known as ABBM model.

Besides the application to material science, a very interesting point of the model is that

it has been shown to be directly related with the depinning models mentioned above [34]

and, in certain cases, it is described by the same equation [36]. One of this case is the

mean field case, in which the acverage position of the interface is considered.
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Fig. 12. – Distributions for slip size, velocity and duration from experiments (symbols) and
simulation of the model (lines) from Eqs. (10), (11), (15) and (16). Three different driving
speeds are considered.

The ABBM model in the mean field formulation can be described by the equation

(17)
dx

dt
= −(x− ct) + F

with x a quantity directly proportional to the magnetization and c the rate of variation
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of the external field H. F is a random perturbation given by

dF

dx
= η(x),

where η has the usual properties of the white noise, Eqs. (13) and (14). One can recognize

the same evolution described by (12).

As anticipated, although not evident at first sight, the dynamics described by Eq. (17)

is critical. Motion occurs intermittently and many physical quantities characterizing the

avalanches (duration, size, velocity) are distributed as power laws. The importance of

the model comes also from the fact that it is analytically soluble and all quantities

are known exactly. Moreover it is possible to identify the origin of criticality in the

self similar symmetry owned by the equation [34]. For all these reasons the model is

considered paradigmatic and investigated in different contexts [37]. Moreover it also

describes a kind of population dynamics (previously introduced by Feller [38] and the

price evolution for several financial products [39]. More recently, the same equations

have been adopted for describing other items, such as concentration of pollutants [?].

Concerning the stochastic dynamics of the slider described by Eq. (10), the is also a

simplified model of this dynamics. In fact, by neglecting inertia in Eq. (11), in analogy

with Eq. (5), and by moving the first term of the deterministic friction τd to the left-hand

side, one is left with

ω = −k(θ − ωdt) + Fr,

where k = κ/γ, v = ω/γ and Fr = τr + τd − γω. This is formally identical to Eq. (17),

and it is easy to recognize that, by neglecting the logarithmic term in τd and by setting

a = 0 in Eq. (15), a complete identity is attained.

4
.
3. Breakdown of criticality . – Models for granular and earthquake dynamics directly

mappable into the original ABBM have been proposed and investigated [40]. On the

other hand, how and to which extent the presence of different friction laws and inertia

can affect the critical behavior and the universality properties of dynamics is still subject

of investigation. The statistical distributions derived from our experiments, so as those

reproduced by the related model, are not so clean power laws as those from the ABBM

model [34]. Other deviations from criticality have been observed in [41] and [42].

In [37], some aspects of the effect of inertia on the original ABBM have been studied,

while other aspects are under investigation [43]. In addition there are many features of

the granular-slider dynamics that should be considered and that also the models discussed

here does not take into consideration. One of these features is friction hysteresis. It is

well known that in many instances dynamical friction is not a single valued function of

velocity. Different friction laws addressing these problem have been proposed, among the

most widely adopted being those by Dieterich [44] and Ruina [45], also known as rate–

and–state laws. These laws were at first deduced and validated for solid–on–solid friction,

and then adopted also for describing the friction of faults and granular gauges [46, 47, 48],
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Fig. 13. – Friction torque measured in an experiment with imposed plate speed. Diamond (green
on line) correspond to increasing speed and square (red on line) to decreasing speed. Bullets
(black) are the average friction.

together with some simplified versions. It is thus clear that a better description of the

systems has to take into account suitable friction laws. Attempts to supply Eq. (11)

with a rate–and–state law were done in [19], where the behavior of friction as function of

controlled plate speed has been measured while imposing a velocity ramp. An example

of the resulting dynamical friction si shown in Fig. (13) It can be seen that, although

maintaining weakening, friction behaves very differently in accelerating and decelerating

phases, with a peculiar crossing value. Another important point concerns the correlation

length a in Eq. (15). Since the granular medium is quasi–solid near the jamming, and

quasi–liquid at high shear, it is clear that a is also a dynamical quantity that should be

described by a suitable, shear rate dependent, constitutive equation. All these features

can cause a breakdown of the critical behavior, at least for large avalanches, as emerging

in recent experiments [41, 42].

5. – Summary and perspectives

These lectures have resumed some of the results produced in experiments on the

stick-slip dynamics of a sheared laboratory fault, and some models aimed at describing

and understanding the observed phenomenology. This has been done within a statistical

physics approach and adopting simple stochastic models., because the very irregular and

chaotic dynamics prevents detailed descriptions. At the same time, such an approach is

also an effort to understand whether alike elementary mechanisms might underly several

different natural phenomena that display apparently similar phenomenologies.

It is clear that all the features listed in the last section, like friction hysteresis, vari-
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able correlation length in the random friction, scaling breakdown, etc., are important in

determining the slider motion even in a simplified approach as the one reported here.

Their influence deserves to be more systematically investigated in both experiments and

theoretical models. Especially these latter seem to be still rather scarce and very little

evolved. At the same time the results discussed here show that also approaches based

on general assumption can be quite effective in the description of systems with irregular

dynamics.
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