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Abstract. The equation of motion approach is employed to derive the two-body Green 
function. relevant for the calculation of Auger spectra, in the case of systems well described 
by the Hubbard Hamiltonian with many bands. The results have been used to calculate the 
M l v v  (M, valence-valence) Auger rate of copper, which has been shown to be well 
described by the present theory. as distinct contributions belonging to different bands are 
clearly present. 

1. Introduction 

Recently a great deal of attention has been devoted to both theoretical and experimental 
study of Auger spectra of 3d transition metals and alloys (Weightman 1982). This large 
amount of work is connected to the fact that Auger spectra contain information about the 
electron-electron interaction in metals. It is well established that the naive theory, which 
accounts for the Auger spectrum as the self-convolution of the single-particle density of 
states, only gives an approximate description of the spectrum. This happens to be true in 
simple metals as well as in transition metals. Therefore the electron-electron interaction 
must be taken into account in calculating the two-electron Green function relevant in 
Auger transition. 

In the case of transition metals and alloys a complex situation occurs as both atom-like 
and band-like behaviour are present. To  deal with such a situation a single-band Hubbard 
Hamiltonian has been employed by various authors (Cini 1977, 1978, Drchal and 
Kudrnovsky 1984, Sawatzky 1977). Using such a Hamiltonian and various decoupling 
procedures for the two-particle Green function the general shape of the Auger spectrum 
has been obtained. 

However, a detailed examination of the experimental spectrum Mlvv in the case of Cu 
suggested that the Auger spectrum contains contributions from different bands (Jennison 
1978); therefore a many-band Hubbard Hamiltonian seems to be more appropriate to 
describe transition metals. The same fact is probably important in Fe-Ni alloys too, 
though further investigation is needed in this case (Cubiotti et a1 1986). 

We have also to remark that a many-band Hubbard Hamiltonian is able to reproduce 
with great accuracy bulk magnetic properties in transition metal alloys (Leoni and 
Sacchetti 1974, Menzinger and Sacchetti 1979), thus indicating the importance of using 
many bands having different characters. 

Bearing this in mind we extended the previous works (Sawatzky 1977, Cini 1977) to 
calculate the two-particle Green function, employing the equation of motion approach to 
deal with a many-band Hubbard Hamiltonian. Though the present approach is quite 

0305-4608/87/030779 + 07 $02.50 0 1987 IOP Publishing Ltd 779 



780 C Presilla and F Sacchetti 

general we limit ourselves to the case of energy independent matrix elements, but 
different matrix elements have been employed for various bands. The proposed model results 
are a surprisingly good fit to the experimental data, as will be shown in the subsequent 
sections. 

2. Many-band model and the two-particle Green function 

To describe the valence electrons of a transition metal we shall employ the following 
Hamiltonian: 

H = , Z  EnkdnLkidnks + f 1 Un1nln”34ddn:isdn:is,dn,is’dnqis (1) 
n k s  in ,  n 2 n ,  n4 ss’ 

where n, k ,  s indicate the band index, the wavevector in the first Brillouin zone and the spin 
index respectively. dnks(dn;ts) annihilates (creates) an electron in the single-particle state 
Inks)  the eigenenergy of which is &,,ks; 1 is a site index, while dnls(d$s) annihilates (creates) 
an electron in the state 

jnls) = N-”* 1 exp(ik R l ) / n k s )  
k 

N being the number of unit cells in the crystal. is the screened Coulomb or 
exchange interaction among the bands n l ,  n 2 ,  n3 and n4. The Hamiltonian (1) appears to be 
useful in describing the electron interaction relevant to the magnetic behaviour of transition 
metals and alloys (Leoni and Sacchetti 1974, Menzinger and Sacchetti 1979, Hodges et a1 
1966). However it should be emphasised that the Hubbard Hamiltonian including the 
interatomic interactions is of only little use in describing the effect of electron-electron 
interaction on the band structure itself. Therefore the single-particle eigenenergies & , k s  

should be determined by means of more sophisticated methods. No spin-orbit interaction 
is considered in (l), so that the electron spin is a good quantum number and no spin-orbit 
splitting is assumed in the single-particle energy spectrum. 

To deduce the Auger rate we start from the first-order perturbation theory result: 

where E is the energy of the Auger electron, li) is the initial state with one hole in a core 
state, if) is the final state including the Auger electron, while Ei and Ef + E are the initial 
and final state energies respectively. Frit is the electron-electron interaction. Assuming that 
the core states are almost completely decoupled from the valence states the cvv 
(core-valence-valence) Auger rate can be written in the usual form: 

where the k are the appropriate quantum numbers, i.e. wavevector, band index and spin; 
Mklk2 are appropriate matrix elements of the Coulomb interaction and ( d ;  d ;  dk ,  d k 4 ) W  
is a correlation function that describes the propagation of two particles. We have 

(dk: dk: dk, dk4 > W  d f  eiu‘(Ol dk: ( t )d& (t)dk3 (0)dk4 (0)lO) (4) 
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where hw = - E, - E ,  E, being the core hole energy, and IO) is the exact valence-electron 
ground state, To derive the correlation function of (4) we make use of the two-time Green 
function (Zubarev 1960), the equation of motion of which yields: 

(hw + E n  I k + En 2 k 2 - Zn I n 2 ) (( d< dl2 ; dk, dk4 )) w 

with 

(nk , )  being the occupation number of the state k,=nlkrsl .  An RPA-like pairing 
approximation has been employed to simplify the higher order Green function. Such an 
approximation amounts to writing 

<d< dk2 ) 6kl k 2  (tlkl ) (60)  

(6b) d;'d;d3d4 ~ d i ( d z ' d 3 ) d q  - d ; ( d ; d q ) d ,  - d i ( d ; d 3 ) d q  + d ; ( d ; d q ) d , .  

In ( 5 )  we put 

Znlnl = b - n j n l n l n , n l  + u n 2 n Z n 2 n 1  - 2  1 ( U n l n n n l  + U n n Z n l n ) .  
n 

Equation ( 5 )  can be solved exactly to yield 

((d;,klsl d"+k2s2; dn3k,sjdn4k4s4))w 
A - - 

+ E n l k l  + E n 2 k 2  - z n l n 2  

This exact result has been obtained using a series expansion in terms of the interaction 
strength and then summing the single contributions. The result of equation (7) is 
a generalisation of that by Sawatzky (1977) and reduces to it in the case of a single-band 
Hubbard Hamiltonian. It should be emphasised that equation ( 7 )  holds independently of 
the location of the Fermi level or the occupancy of the bands, within the accuracy of 
equation (6), while it holds exactly when the bands are fully occupied. Therefore it is useful 
to treat any transition metal, taking into account the orbital degeneracy and hence 
connected crystal-field effects. 

In principle the evaluation of equation (7) can be done exactly. However the matrix 
elements cannot be calculated consistently with the Hubbard Hamiltonian and even 
unrenormalised energies must be determined using some approximation. Therefore we 
shall use an approximate procedure to derive the Auger rate, taking the effect of matrix 
elements into account in an approximate way. 

3. Calculation of the Mlvv Auger rate in copper 

In this section we shall present the M l v v  Auger rate in copper, as compared to the 
experimental data. We choose copper as the prototype transition metal, though the 
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presence of an almost full d band can partly reduce crystal effects with respect to other 
transition metals. 

To reduce the computational effort and to make equation (7) more transparent we 
introduce an approximation similar to that proposed by Cini (1978), thus making the 
Auger rate only dependent on the densities of states. To  do this we put 

1 1 
?- c (8) 

1 c 
q h o  f E n , k ,  -4 & n 2 k 2  +q-zn,nl N k , k 2  fim f E n l k l  & n l k 2  - z n , n l '  

c -  
0 

Moreover we observe that 

I 
I 
1 

1 
I 

\ 
S 2 - 

where pn(&) is the density of states of the nth band, so that the Auger rate can be calculated 
by means of the following approximation: 

As we can see, equation (10) is more suitable for computational purposes. In equation (10) 
energy-independent matrix elements have been included. This approximation is not very 
crude in view of the use of the Hubbard Hamiltonian. 

Because any realistic calculation of band structure contains the effect of electron- 
electron interaction we have to take into account this fact. First of all it does not appear 
realistic to start from band structures with no electron-electron interaction included, 
as such an interaction affects the shape of the density of states and the position of the 
bands. In principle the approximation for the two-body Green function could be used 
to deduce a self-consistent approximation for the single-particle self-energy and hence 
single-particle Green function, along the line of the work by Baym and Kadanoff (196 1). 
Alternatively we can use a density of states with electron-electron interaction already 
included then subtract the effect of interaction given by the Hubbard Hamiltonian of 
equation ( l ) ,  thus avoiding the need to introduce the electron-electron interaction twice. 

Figure 1. Densities of states of the different bands of Cu employed in calculating the Auger 
spectrum. 
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Table 1. Relevant parameters of the present calculation. 

Lr,,,,,* (Ryd)  M n ,  n2 

'11 S E, S E, Tig  

S 0 0 0 7.5 1.94 1.94 
E, 0 0.4 0.32 1.94 1 1 
T2g 0 0.32 0.4 1.94 I 1 

Following the underlined scheme we start from the rather accurate densities of states 
obtained by Stocks et a1 (197 l), including electron-electron interaction via the local 
density approximation. To evaluate the electron-electron interaction contribution given 
by the Hubbard Hamiltonian we take the Hartree-Fock limit of equation (l), namely: 

HHF = 1 (Enks  + A&n)dAsdnks. 
nks  

In this case the effect of the Hubbard Hamiltonian is simply a shift of the various bands 
which amounts to 

= ign u n n  + gn' u n n '  n = E,, T2, n ' f n  (1 1) 

where g, is the band multiplicity (gE8 = 2, gTZg = 3). No shift has been assumed for s-like 
states, according to the assumption U,, = 0. The densities of states resulting from the 
above procedure, i.e. the original densities of states (Stocks et a1 1971) shifted according to 
the equation (l), are shown in figure 1. The various interaction parameters have been 
treated as free parameters to be fixed by comparison with the experimental Auger rate. To 
calculate the Auger rate we take into account also the effect of matrix elements, 
assuming, as already said, band-dependent and energy-independent matrix elements. Various 
parameters employed in the present calculation are reported in table 1. Starting from the 

Kinetic energy [ Ryd I 

Figure 2. Auger rate as determined using present theory (full curve), self-convolution of 
density of states (broken curve) and experimental results (dots). The energy scale is absolute. 
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Figure 3. Contributions to the Auger rate belonging to different bands a s  well as  to mixed 
terms. 

densities of states of figure 1 and using the parameters of table 1 we calculate the Auger 
rate, employing equation (10). In principle the core hole energy should be taken into 
account; however, in view of the approximations introduced in treating the unperturbed 
densities of states, the present energy scale cannot be regarded as absolute. Therefore we 
choose the final energy scale in such a way that experimental and theoretical peaks 
coincide. The results of the calculation are shown in figure 2, where the experimental data 
reported by Jennison (1978) are also shown. As we can see the agreement is surprisingly 
qood. Of course the close agreement between theory and experiment point by point should 
probably be regarded as accidental, though the overall agreement is in any case an 
indication that present theory indeed includes most of the relevant physics. In figure 3 
we report the contributions to the Auger rate due to different bands. As we can see the 
high-energy tail observed in the experimental spectrum is directly connected to the 
presence of several bands and, while an almost atomic behaviour is typical of d-like bands, 
the s-like band gives rise to almost free-electron behaviour. However a non-negligible 
contribution is due also to mixed terms which contribute to both the atomic-like peak and 
the high-energy tail. 

4. Concluding remarks 

As a conclusion we want to observe that, apart from the obvious validity of the present 
model in accounting for the many-band effect on the Auger rate, our equation of motion 
approach appears to be rather powerful also in treating different problems connected to a 
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two-body correlation function. In fact the procedure we employed to solve the equation of 
motion is not connected to the actual form of the interaction potential, but any potential 
can be treated resulting in a solution of the same form. 

Finally we observe that the basic approximation of equation (6) holds exactly in the 
case of full bands or in the case of independent electrons, i.e. when U,, n 2 , 3  n4 = 0, while 
equation (6) loses its validity when an electron-electron interaction is present. Therefore 
any improvement of the present approach, still using the Hubbard Hamiltonian, should 
remove the approximation connected to equation (6),  as equation ( 7 )  is the exact solution 
of equation ( 5 ) .  
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