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Uncertainty-principle noise in vacuum-tunneling transducers
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The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transduc-
er to monitor the location of a test mass are examined using a first-quantization formalism. We show

that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momen-

tum of a test mass monitored by the transducer through the presence of two sources of noise: the shot
noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to
the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential
barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the
quantum limit in measurements of the position of macroscopic bodies with such a class of transducers
are studied.

I. INTRODUCTION

The investigation of the ultimate quantum limits for
the detection of weak forces has been stimulated by the
development of sensitive antennae to search for gravita-
tional radiation. ' If several practical barriers can be
overcome and electromechanical transducers of sufficient
sensitivity are developed, then it should be possible to
monitor massive Weber-bar gravitational wave antennae
in the regime in which their behavior is dominated by
quantum effects, i.e., by the measurement process itself.
Thus a class of experiments in which repeated measure-
ments are performed on a single isolated macroscopic
quantum-mechanical oscillator may become possible. '"

So far superconducting-quantum-interference-device
(SQUID) —based electromechanical transducers have
offered the best opportunity to study the quantum re-
gime. However, recently it was pointed out that the tun-
neling probe used in the scanning tunneling microscope is
a quantum limited electromechanical amplifier and there-
fore may present an opportunity to study the quantum
regime with electromechanical transducers.

Since the tunneling transducer is intrinsically a quan-
tum device, without a classical analog, a quantum
analysis is required to understand the origin of its noise.
It was shown that there are two independent sources of
noise in the tunneling transducer. ' The first is the well-
known shot noise of the tunneling current which enters
as an apparent fluctuation of the test mass. The other
source of noise is a fluctuating "back-action" force which
the tunneling transducer exerts on the test mass. The
two sources of noise work in concert to add to the
amplified mechanical signal an amount of noise power
equivalent to one-half quantum of energy per second at
the operating frequency. Recently Yurke and Kochanski
presented a full quantum-mechanical analysis of the noise

of a tunneling transducer. They used a second-quantized
description of electron tunneling through a barrier to find
an expression for the uncertainty in the width of the tun-
neling barrier, which is equivalent to the position of the
test mass, based upon the tunneling current fluctuations.
They also computed the fluctuation of the momentum
current transported across the barrier. Their calculations
explicitly show that the tunneling transducer enforces the
Heisenberg uncertainty relation between the position and
momentum of the test mass.

The purpose of this paper is twofold. The first purpose
is to present a simplified, first-quantization treatment of
the noise in the tunneling transducer. Although we ob-
tain the same expressions for the uncertainties as Yurke
and Kochanski in Ref. 8, we think that the use of first
quantization to deal with this problem is more physically
intuitive and less mathematically complex. The second
purpose of this paper is to discuss some of the practical
considerations regarding the tunneling transducer and
the prospects for achieving quantum noise limited force
detection.

The paper is organized as follows. In Sec. II, after a
brief description of the working principles of the tunnel-
ing transducer, we express the position and the momen-
tum uncertainties in terms of the time-independent solu-
tions of the Schrodinger equation. The position uncer-
tainty is derived from the transmission coefficient and the
momentum uncertainty is obtained by a generalization of
the current flux. In Sec. III we apply these considera-
tions to calculate the position and momentum uncertain-
ty product for symmetric and asymmetric rectangular
barriers. In Sec. IV we treat the case of a barrier in
which there is a constant electric field. In Sec. V we dis-
cuss the practical obstacles to achieving quantum noise
dominance and we give a specific example of a
configuration in which quantum effects may be observed.
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In Sec. VI we discuss some conceptual problems in mak-

ing the correspondence between the quantum uncertain-
ties which are calculated here and the more experirnen-
tally relevant classical description of noise which employs
spectral densities of random variables.

II. POSITION AND MOMENTUM UNCERTAINTIES
FOR A TUNNELING TRANSDUCER

The tunneling transducer is simply a variable resis-
tance transducer. The motion of a test mass modulates
the gap of a vacuum tunnel junction thus affecting the
tunneling probability. If the junction is voltage biased
then the current measured by an amplifier which follows
the tunnel probe provides a sensitive measure of the tun-
neling gap and therefore of the displacernent of the test
mass.

In Figure 1 we show a schematic representation of the
tunneling tt'ansducer. A tunneling tip is placed a dis-
tance I from the test mass which is to be monitored. The
displacement of the test mass from its initial position is
given by x. The effective resistance of the tunneling
transducer is given, in the limit ko))1, by the familiar
formula

—2kox
R =Roe (2.1)

where ko is the inverse of the de Broglie wavelength of
the electrons with energy E inside the barrier of height
Vo and is given by

ko=
2m ( Vo E)—1/2

(2.2)

The tunneling resistance Ro is usually around 10 —10 0
and a typical value of ko is 10' rn ', the distance scale
over which the tunneling resistance changes significantly
is of atomic dimensions. For typical values of the tunnel
probe voltage bias the tunneling current is in the range of
nanoamps to microamps. Using conventional electronic
techniques it is possible to measure extremely small frac-
tional changes in currents of this magnitude so it is possi-
ble with the tunnel junction transducer to measure dis-

(bn)—:((n —(n )) ) =NTR . (2.3)

The variance of the number of electrons which tunnel

may be written as a function of the transmission
coefficient and the gap between the tip and the test mass:

hn =N Al
aT
Bl

(2.4)

and the uncertainty in the position of the barrier there-
fore is inferred as

1 &TR

aT
Bl

(2.5)

placements which are a very small fraction of ko '.
It is important that the capacitance between the tun-

neling probe and the test mass be small, on the order of
10 ' F or less. This ensures that the quantum effects
associated with the tunneling transducer will dominate
the back-action force fluctuations that have their origin
in the amplifier used to sense the tunneling current and
which are capacitively coupled to the test mass. This as-
sumption allows us to concentrate on the fluctuations
which arise from the tunneling process.

We express the uncertainties in the position and the
momentum of the test mass which is sensed by the tun-
neling transducer in terms of solutions of the time-
independent Schrodinger equation which describes the
motion of a particle in the presence of a one-dimensional
barrier. Let us assume that there are N electrons at-
tempting to tunnel out of the probe. We treat each tun-
neling process as independent from the others, this ap-
proxirnation being satisfactory for the realistic tunneling
currents that can be obtained. For each electron there is
a probability T that it will tunnel and a probability
R =1—T that it will not tunnel, where T and R are, re-
spectively, the transmission and the reflection coefficients
associated vyith the barrier. The probability that n (N
electrons will escape from the probe is given by the bino-
mial law, therefore the average number of electrons
which escape will be (n ) =NT and the variance of the
average is

When ir}T/dl i
=0 a second-order expansion must be em-

ployed; however, in all the situations which we explore in

what follows, a first-order expansion of (2.5) is adequate.
In order to calculate the uncertainty in the momentum

transferred to the barrier we first consider the continuity
equation for the probability flux

-2 koX
Roe

Test Mass

ap aJ
Bt Bx

where the probability density is

(2.6)

(2.7)

FIG. 1. Scheme for the detection of displacement through a
vacuum-tunneling transducer. The "at-rest" separation be-

tween the test mass and the tunneling probe is I and the dis-

placement of the test mass is x. The probe is voltage biased and
the current is sensed by a current amplifier A.

and the probability current is

(2.8)
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Analogously for the momentum flux we have the follow-

ing conservation equation:
using the stationary version of (2.9} where V(x) is re-
placed with V2(x}, i.e.,

a aJ av,
Bt Bx Bx

(2.9)
b+ Bvz

J~=Jp(b+)+ f P'gdx .
a

(2.15)

where the momentum density is

fi., Bg Bg'
~2 Bx Bx

(2.10)

The "momentum-squared" flux transferred to the barrier
at b is, using Eq. (2.12),

J' =J 2(b+) —iA'J p* — f dx .
b+ ~~2

Bx Bx Bx
and the momentum current is given by

a@' a@ .a'@ a'q'
4m Bx Bx Bx' ax 2

(2.11)

B~p'+ a p' .~av .By aq'
~at ax

'
ax ax ax

(2.12)

in which

, a'1( a'y'
P 2 Qx2 Qx2

(2.13)

and

.a'y a@' a'y a'1(' a@ a'1(*
4m

(2.14)

The above equations were derived by forming combina-
tions of successive derivatives of the time-dependent
one-dimensional Schrodinger equation for a particle in a
potential V(x) in much the same way as the familiar con-
tinuity equation (2.6) is derived. Note that (2.9) expresses
Newton's law in quantum-mechanical terms, the right-
hand side of (2.9) being the force density which acts on
the particle. Also, a feature of (2.14) deserves comment.
As we will see in the following examples J 2 is negative
inside the barrier which is a consequence of the follow-
ing. The barrier is a classically forbidden region so the
kinetic energy flux J 2/2m associated with a particle in-

P
side the barrier is negative which makes the "momentum
squared" flux J 2 negative also.

P
Following Yurke and Kochanski's approach let us im-

agine that the potential V(x) represents a barrier located
between a &x &b, and V(x) is zero outside of this re-
gion. We decompose the force of the potential barrier on
a tunneling particle into two parts, BV/Ox=tV, /Bx
+BV2/Bx, where V& is associated with the tunneling
probe at the location a and the potential V2 is attributed
to the test mass surface at b. To calculate the momentum
uncertainty imparted to the test mass we must find the
momentum and "momentum-squared" fluxes passing
through a surface at b. The momentum current
transferred to the part of the barrier at b is obtained by

This progression can be carried out to higher moments of
the momentum and for our calculation of the variance of
the momentum we need to consider the flux of "momen-
turn squared" for which the following continuity equa-
tion applies:

(2.16)

(&p) =&((p') —(p)')=& — +
J;„

Jt
P

J;„
(2. 17)

In the following sections we will calculate the uncer-
tainty product 61 hp for various stationary barriers when
the electrons attempting to tunnel are initially in a
momentum eigenstate.

To summarize the procedure outlined in this section
the steps in the calculations will be the following. First
we solve the time-independent Schrodinger equation to
find the electron wave function in the presence of the bar-
rier. From this we can calculate the transmission and
reflection coeScients and therefore 6/ with the use of Eq.
(2.5). Finally we can find bp by using the solution of
Schrodinger s equation and the potential Vz(x) in Eqs.
(2.15)—(2.17).

III. UNCERTAINTY PRODUCT
FOR RECTANGULAR BARRIERS

In this section we use the formalism developed in Sec.
II to calculate the uncertainty product hl Ap for rec-

Dividing J' and J'2 by the incident flux J;„we obtain the
P

momentum and "momentum squared" transferred to the
potential barrier at b by a single tunneling particle. Fi-
nally, the momentum and momentum squared"
transferred to the test mass is related in the following
fashion to the momentum and momentum squared"
transferred to the barrier from the electron. In our mod-

el, the test mass is schematized by a potential step at a
fixed location in space. The test mass can be thought of
as an infinitely rigid oscillator with a surface fixed at the
location b; this is the effect of the feedback system which
is actually used to prevent the test mass position from
drifting under the effect of the continuous stream of elec-
trons impinging on it. Therefore the test mass has a
quantum-mechanical wave function which rapidly decays
away from b. In a plane-wave representation, this corre-
sponds to a superposition of plane waves with imaginary
momenta. Thus a localized particle, in this case the test
mass at b, with real momentum can be viewed as a free
quasiparticle with imaginary momentum. Thus the mean
momentum imparted to the test mass is (p) =iJ~/J;„
which is i times the momentum transferred to the barrier
from each electron tunneling event. As a consequence
the mean "momentum squared" imparted to the test
mass is (p ) = —J'~ /J;„. The momentum fluctuation of
the test mass due to X electrons is then
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tangular barriers, both symmetric [see Fig. 2(a)] and
asymmetric [see Fig. 2(b)] cases.

In the symmetric barrier case the wave function which
solves the time-independent Schrodinger equation can be
expressed as

(a)

vo

e'" +r(k)e '"", x (a
Qk(x)= —'C+(k)e ' +C (k)e

t(k)e'"', x )b,
a&x&5

(3.1)

(b)

Vp

where A'k=v'2mE and Ako=+2m(vo E). —The nor-
malization of the wave function used throughout this pa-
per corresponds to an incident flux J;„=1/2ir(Ak /m ).

By imposing the matching conditions for P and the
first derivative of g at a and b we obtain

FIG. 2. Potential energy for a rectangular barrier; symmetric

(a) and asymmetric (b).

t(k)=
2ikok cosh[ko(b —a)]—(ko —k )sinh[ko(b —a)]

(3.2)

The uncertainty in the position hl can be calculated using
Eq. (2.5): (bp) =N

2
T[4k ko+(k —ko) T] . (3.8)

hl= 1 1 k
v'N T (k +k 0 )cosh( kol)

~here l =b —a and the transmission coefficient is

(3.3)

T = It(k)l'=
(ko+k ) sinh [ko(b —a)]

1+
4kok

(3.4)

In order to calculate the momentum uncertainty we first
define the potential due to the test mass as

On multiplying b, l and bp we obtain b, l bp =A'/2, i.e.,
the minimum uncertainty product for the test mass. The
uncertainty principle here may be regarded as arising
from the interaction with the tunneling electrons during
the process of measurement.

The same calculations can be repeated for an asyrn-
metric rectangular barrier as in Fig. 2(b), schematizing an
unbiased barrier between two materials having different
work functions. The solution of the Schrodinger equa-
tion is

V,(x)= V,B(b —x) .

Using Eqs. (2.15) and (2.16) we then have

(3.5)

(3.6)

e'""+r(k)e '"", x (a
gk(x)= —'C+(k)e ' +C (k)e

v'p
t(k)e'"', x )b,

a&x~b

(3.9)

1

2m. m

According to (2.17), we get

(3.7) where irik =&2mE, A'ko="(/2m ( Vo E), and-
fik =v'2m (E+p). The transmission amplitude is found
to be

lkk e
—i( kb —ka)

t(k)=
iko(k +k )cosh[ko(b —a) ]+ (kk —koi )sinh[ko(b —a) ]

(3.10)

and the transmission coefficient is now defined as V2(x)=(vo+P)B(b —x) —P by applying (2.11) and
(2.14):

(3.11)

To find the momentum uncertainty we can calculate the
momentum flux and the "momentum-squared" flux
transmitted to the barrier via the potential

J'= (k —ko) T, —1 W —2 2 k
2~ 2m k

1 A'J'.=- ' ' k.'kT-
2m m

(3.12)

(3.13)
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This allows us to evaluate (bp ), Vp

g2
(bp) =N T[4k k p+(k —kp) T] . (3.14)

It is straightforward to show numerically that in this case
the product of the uncertainties remains nearly the
minimum allowed by quantum mechanics, i.e., A/2, for
any value of the potential energy P.

FIG. 3. Potential energy for a barrier with a constant electric
Seld.

'0, x &a
IV. UNCERTAINTY PRODUCT FOR A BARRIER

%'ITH A CONSTANT ELECTRIC FIELD V(x}= Vp —P, a ~x ~b .—a
(4.1)

We now repeat the above procedure for a barrier in
which a constant electric field is present, such that the
potential is expressed as (see Fig. 3)

x &b

The solution of Schrodinger s time-independent equation
is expressed as

e'""+r(k)e '"", x &a

P„(x)= C+(k)Ai[a'~'(P —x)]+C (k)Bi[a' '(P —x)],
t(k)e'"", x & b,

(4.2)

where Ai(z) and Bi(z) are the Airy functions with argument z =a' (P—x) and a =(2m lfi )Pl(b —a),
P=a+ [( Vp E)lg](b——a). The quantities k and k are defined as in the previous case of the asymmetric rectangular
barrier.

After imposing the matching conditions we obtain

and

r(k)= — e'"'[ik[C+(k)Ai(a)+C (k)Bi(a)]+a' [C+(k)Ai'(a )+C (k)Bi'(a)]],
2k

C+(k)=mt(k)e'" [Bi'(b)+ika ' Bi(b)],

C (k) = mt (k)e'"—"[Ai'(b )+ika ' Ai(b )],

(4.3)

(4.4)

(4.5)

t (k) = — e'"' " 'a' [[a' Ai'(a ) —ikAi(a )][a' Bi'(b }+ikBi(b)]

—[a'~ Bi'(a) —ikBi(a)][a' Ai'(b)+ikAi(b)]] (4.6)

where

b=a' (P—b)

and

a =a' (P—a) .

(4.7)

(4.8)

V2(x) = Vp
—+ 8(a —x)

+8(x —a)8(b —x) Vp
—+- 6 x —a

2 2 b —a

—y8(x —b) . (4.10)

The prime denotes the derivative with respect to the ar-
gument of the Airy function. The transmission and
reflection coefBcients are defined as

The momentum flux transmitted to the test mass can be
calculated by

T= —/t(k)/, R =/r(k)/k
k

(4.9) =J (b+)+ —,'[J (a+) J(b )]+[J(—b ) J(b+)]—
We introduce, as in the previous considerations, a poten-
tial V2(x) defined as

=
—,'[J~(a+)+Jp(b )] .

Analogously, for J'2 we obtain
P

(4.11)
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FIG. 4. Momentum uncertainty in units where 6=1 (left
scale) and transmission coefficient (right scale) for the rectangu-
lar barrier vs the applied voltage.

sence of an applied voltage which can also be verified by
examining the asymptotic behavior of the Airy functions
in the limit of $~0. The increase of the uncertainty
product hl bp as the applied voltage is raised is due, at
least in part, to a correlation between hl and Ap induced
by the electric field in the gap. The rnechanisrn for the
growth of the correlation is the following: an initial
momentum dispersion of the electrons will be
transformed into a spatial dispersion as the electrons
traverse the barrier under the influence of the electric
field. The magnitude of the correlation has been explicit-
ly calculated in Ref. 8. A detailed discussion of the
correlation between the uncertainties in momentum and
position may be important for understanding techniques
to surpass the standard quantum limit by using time-
dependent tunnel probe bias voltages. This is a topic for
further investigation.

J'2= —,'[J 2(a+)+J,(b )j . (4.12)
V. PRACTICAL CONFIGURATIONS FOR REACHING

THE QUANTUM NOISE
IN TUNNELING TRANSDUCERS

Equations (2.15) and (2.16) can be used to express the
fluxes inside the barrier in terms of the fluxes calculated
outside the barrier. The detailed calculation of Ap is
shown in the Appendix, as well as the explicit form of the
derivative of the transmission coefficient which allows us
to obtain bl.

In Fig. 4 the rnornentum uncertainty and the transmis-
sion coefficient are shown as functions of the applied volt-
age. We observe that as the potential drop across the
barrier is increased the momentum uncertainty increases.
This can be understood in the following way: when the
electric field is increased the barrier is more transparent
to the electrons and can be effectively represented by a
lower rectangular barrier. Thus the electron current in-
creases and Al is reduced. The uncertainty relation
therefore requires a larger value of the momentum uncer-
tainty.

In Fig. 5 the uncertainty product versus the applied
voltage is shown for the case of V0=5 eV and E =1 eV.
The minimum uncertainty product is obtained in the ab-

1.0

0.9

In this section we discuss some experimental aspects of
quantum measurements with a tunneling transducer. To
compare the quantum noise with the classical sources of
noise we have to introduce a "quantum" force noise spec-
tral density which allows us to use the usual techniques of
stochastic processes. We do not claim to rigorously
define such an effective noise spectral density, although it
may be possible to define such a tool in the framework of
Nelson's stochastic mechanics. ' Following Ref. 8 we
write the spectra1 density of the force fluctuations in
terms of the variance of the momentum current per unit
bandwidth

2
(&P)'

fg

where the effective force spectral density for the quantum
noise has been expressed in terms of the uncertainty in
the momentum deposited in the test mass by the tunnel-
ing current Io in a time interval ~. In practica1 cases the
bias voltage applied to the tunnel junction will be much
less than the work function of the tip material so the rec-
tangular barrier is a close approximation to reality. In
this case the spectral density of the "quantum" force
noise is

0.8

CL

0.7

0.6

0.5
0

A'k'—Io
fo e 2

2 2

l+
2 2

0 (1—T) '. (5.2)

Barrier Potential Drop (V)

FIG. 5. Uncertainty product 51 Ap in units where 6=1 for
the test mass vs the applied voltage in a rectangular barrier with
a constant electric field. At a bias of 0 V, 61 hp =Pi/2, the value
for a rectangular barrier.

The biggest practical obstacle to observing the quan-
tum effects we discuss in this paper is the thermal noise
which is manifested as the Brownian motion of the test
mass. One can describe the Brownian motion of the test
mass by including a Langevin force having a single-sided
spectral density
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k~0
Sf =4m(2mfo}

QL
(5.3}

We assumed in Eq. (5.3) that the test mass is a mechani-
cal resonator, at a temperature 0, having mass m, fre-
quency f0, and quality factor Q such that the decay time
of the free oscillation is Q/ufo. To be able to observe
the influence of the tunneling transducer on the test mass
the Langevin force must be smaller than the force fluc-
tuations from the tunneling transducer, i.e., Sf %Sf

Q L

This can be expressed in the following practical form:

10 A m 8 fo 10 &1.
10 ' kg lomK 10 Hz Q

(5.4)

We have assumed that k0 =10' m '. The mass, frequen-

cy, and Q used in 5.4 are appropriate to micromachined
silicon resonators at low temperatures. The mass of
10 '

kg which is assumed above corresponds to a silicon
structure like the one shown in Fig. 6. A mechanical
quality factor of 6X 10 was obtained at room tempera-
ture in a micromachined silicon torsional resonantor of
mass 7X10 kg, " and a more massive resonator, m =1
g, which had a similar Q at room temperature achieved a

Q approaching 10 at 10 mK. ' A systematic study of
acoustic losses of silicon resonators at cryogenic tempera-
tures indicates that the intrinsic Q's of silicon are over
one billion. ' Therefore we assume that a Q of 10 may
be achievable with a 10 ' kg mechanical resonator at 10
mK. Atomic force-sensing microcantilevers in this mass
range have been fabricated and used at room tempera-
ture. '

There are two practical problems which are somewhat
eased by working with a mechanical resonator at a fre-
quency of 100 kHz. The first is the 1/f noise in the tun-
neling current. At a frequency of 100 kHz it is likely that
the 1/f noise component in the tunneling current should
be below the level of the shot noise. Furthermore there
should be no problems with seismic vibrations and vibra-
tion isolation at the frequency of 100 kHz. Two other re-

quirements to reach the quantum noise limit with the
tunneling transducer are that the noise of the
preamplifier used to sense the tunnel current be small in
comparison to the shot noise and that the dynamic capac-
itance of the tunnel probe also be small. The first require-
ment, that the amplifier noise be insignificant compared
to the tunneling current shot noise, is fairly easy to meet.
For a tunneling current of 10 A the shot noise spectral
density is 5.7X10 ' A/&Hz. This is a fairly high noise
level compared to the noise of commonly available
transistors and operational amplifiers. ' The other re-
quirement is that the dynamic capacitance, i.e., the probe
capacitance which changes as the inverse of the tip to test
mass gap, be "small. " Small in this context means low
enough to ensure that the back-action force associated
with fluctuations in the energy stored in the capacitor is
less than the quantum force fluctuations of the tunneling
current. The specific requirement on the dynamic capaci-
tance have been calculated and values of 10 ' F or
smaller are needed to reach the quantum limit. There is
also some experimental evidence that the dynamic capac-
itance of tunnel probes can be in this range. ' Note that
the stray probe capacitance, which may be orders of mag-
nitude larger, is not important in this respect because it is
only weakly gap dependent.

In the realm of conventional, nontunneling transduc-
ers, to overcome the two problems just discussed the so-
called back-action evasion (BAE) techniques have been
developed. One example of a BAE strategy which has
been used on a capacitive transducer coupled to a
mechanical harmonic oscillator is to perform phase-
sensitive detection. The coupling, i.e., the electric field in
the capacitor formed between the transducer and the test
mass, is modulated, which has the consequence that the
back-action force acts on one of the phases of the
mechanical oscillator while the information which is ex-
tracted from the mechanical oscillator reflects the state of
the orthogonal phase. It is not clear if one can directly
apply the phase-sensitive continuous-monitoring BAE
techniques to the tunneling transducer and circumvent
the quantum limit, however, one may be able to use a so-
called quantum nondemolition stroboscopic measure-
ment. In this way, provided that an initial high-
sensitivity measurement of the position has been made,
repeated measurements made at time intervals of half the
period of the mechanical oscillator motion can be per-
formed with the same accuracy as the initial precise
measurement. A stroboscopic measurement could be
realized by sending in short pulses of tunneling current at
time intervals equal to one-half of the period of the
mechanical resonator. One needs very short pulses to
make an accurate stroboscopic measurement. ' The
duration of each pulse, and therefore the accuracy of the
stroboscopic measurement, will be limited by the RC
time constant of the tunneling probe so one will have to
avoid large stray capacitance of the tunneling probe.

FIG. 6. Design for a silicon micromachined torsional resona-
tor with a resonant frequency of 60 KHz and an effective mass
of 10 ' kg.

VI. CONCLUSIONS

Quantum-mechanical uncertainties for measurements
made on a test mass by a tunneling transducer have been
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calculated using a first-quantization approach.
The possibility of reaching the quantum limit in practi-

cal electromechanical devices incorporating a tunneling
probe has been discussed, as well as a possible way to sur-
pass the standard quantum limit by means of quantum
nondemolition stroboscopic techniques.

In closing the ability to probe a single macroscopic ob-
ject in the quantum domain opens a fundamental ques-
tion concerning the validity of the quantum ergodicity as-
sumption. This assumption is that ensemble averaged
quantities are equivalent to time averages of the same
quantity in a single quantum system. The point in our
analysis where the quantum ergodicity assumption enters
is Eq. (5.1), in which we assert the equivalence of the
quantum uncertainties we calculated and the noise spec-
tral densities of the corresponding quantities. All the ex-
periments which probe microscopic quantum phenomena
in which a measurement is made on each member of an
ensemble of identically prepared systems have outcomes,
without exception, which agree with the predictions of
quantum mechanics. The sort of experiments which
should be possible with the tunneling transducer are qual-
itatively different. One will be able to make repeated
measurements on a single quantum system which is
weakly coupled to its environment. In this case the out-
come of later measurements will depend upon the in-
teraction of the measuring apparatus with the system
during earlier measurements. If the ergodic assumption
is true, then the outcome of the experiments discussed in
this paper should coincide with the quantum predictions
obtained by the usual ensemble-averaging technique.
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APPENDIX

We use (2.15) and (2.16) for expressing the momentum
density flux and the square momentum density flux inside
the barrier in terms of the analogous quantities outside
the barrier,

J (b ) J (b )
2m-

tk'J 2(b ) =J 2(b+) — 2VOA'k,

(A 1)

(A2)

VoJ (a+)=J (a ) — [1+R+2Re(re ' ')], (A3)

VoJ &(a+)=J ~(a )
— 2fik(1 —R),2'

where the currents outside the barrier are

b+ It(k)l A' k

b+ I
t(k) I' R'k'
2nm.2

1+R fi k
2n. m

( )
1 —RA'k
2a m

(A4)

(A5)

(A6)

(A8)

which, using (2.17), allows us to find (hp ) .
Finally the first derivative of the transmission

coefficient with respect to the gap of the tunneling probe
can be calculated and we find b, l using (2.5):
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dT kd
dl k dl

k dt (k) y(k)+ (k)
dt (k)

k dl dl

where the derivative of t (k) is evaluated as

(A9)

1/3dt(k) =t(k) a I da —l(k+k)
dl dl

+t(k) . a ' e'" "' [[a'i aAi(a) —ikAi'(a)][a' Bi'(b)+ikBi(b)]
2ik

—[a' 'a Bi(a ) —ik Bi'(a ) ][a' 'Ai'(b ) + ik Ai(b ) ] ] dl

+ [ [a'i Ai'(a ) ikAi(a )—][a'i bBi(b )+ikBi'(b )]

—[a' Bi'(a) —ikBi(a)][a'i bAi(b)+ikAi'(b)]]
dl

+ [ [a' Bi'(b )+ikBi(b )]Ai'(a )+[a'i Ai'(a ) —ikAi(a )]Bi'(b }

—[a'r3Ai'(b )+ik Ai(b ) ]Bi'(a }

1/3—[a'r3Bi'(a )
—ik Bi(a ) ]Ai'(b ) ] dl

(A 10)
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taking into account the following relationships:

dt*(k)
dl

dt(k)
dl

(A 1 1)

' 1/3
da 2 2m/ Po &i ]/3
dl 3

(A12)

1/3
db 2 2m/ Po

dl 3

1/3 j ~1/3

dl 3 l

l
—1/3 (A13)

(A14)
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