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Chaotic Quantum Phenomena without Classical Counterpart
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We describe a quantum many-body system undergoing multiple resonant tunneling which exhibits
chaotic behavior in numerical simulations of a mean-field approximation. This phenomenon, which has
no counterpart in the classical limit, is due to effective nonlinearities in the tunneling process and can be
observed in principle within a heterostructure.
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Heterostructures, besides offering very interesting new

technological perspectives, represent a unique opportunity
to study fundamental questions of quantum mechanics
[1,2]. In a previous paper [3] we pointed out the possibil-
ity of effective nonlinearities due to many-body interac-
tions in electron transport through resonant tunneling
heterostructures. It is a natural question to ask whether
such nonlinearities can give rise under appropriate condi-
tions to chaotic behavior.

The situation studied in Ref. [3] represented a tran-
sient phenomenon because we dealt with an open system.
In the present paper we consider the same system en-
closed between two potential barriers (see Fig. 1). In
other words we deal now with a cloud of electrons moving
in a three-well heterostructure. In a mean-field approxi-
mation the corresponding Hartree-like equation describ-
ing the motion of the cloud represents a confined nondis-

sipative system which may be ergodic or even mixing at
least in some regions of its phase space and which there-
fore may exhibit irregular behavior during its evolution.
Indeed we find chaotic behavior in a variable, the electric
charge trapped in a well, which is in principle experimen-
tally observable [4].

It is important to realize that in the phenomenon we

consider, the phase of the wave function is a relevant
dynamical variable. Resonant tunneling is possible only
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FIG. l. Energy diagram of the three-well, two-barrier het-
erostructure considered in the present paper. The barriers bi
and bz separated by the well wz produce a resonance in the
currents between wells wi and w3 at the energy indicated by the
dashed line. An electron cloud is initially localized in the well

wi and moves toward the well w3 with a mean kinetic energy
close to the resonance.

if the electrons remember their phase which, of course,

may be different from electron to electron. Our case be-

longs to mesoscopic physics which deals with systems that
are macroscopic but retain essential quantum features
[2]. It has novel features which enrich the wealth of
chaotic quantum phenomena already considered in the
literature [5].

The heterostructure envisaged is described in Fig. 1.
An electron cloud is initially created in one of the large
wells with a kinetic energy peaked around the resonance

energy of the double barrier bf, -b2. Assuming, as dis-

cussed in Ref. [3], a factorization of the wave function of
the electron cloud with respect to longitudinal and
transversal degrees of freedom, we may reduce ourselves

to one-dimensional propagation along the longitudinal
direction, i.e., the direction x orthogonal to the junction
planes of the heterostructure. This description, as shown

in [3], is compatible with the Pauli principle. We repre-
sent the state of the electrons with a one-particle wave

function obeying a nonlinear Hartree equation [3]. The
effect of the nonlinearity depends strongly on the materi-
als in the heterostructure regions. We assume that the
wells w~ and w3 consist of a heavily doped semiconductor
so that in these regions the nonlinearity can be neglected
during the time evolution of the system, while the barriers
b i and b2 and the well w2 are undoped semiconductors
[6]. When a fraction of the charge penetrates inside the
double barrier, the resonance is shifted and the nonlinear
charge oscillations described in Ref. [3] appear. The
reflected and transmitted charges in regions w[ and w3

after some time will return to the double barrier and a
fraction of them will penetrate inside the well w2, depend-

ing on the height of the resonance at that moment. We
expect that after a few cycles the charge in w2 will show a
very complicated time dependence losing memory of how

the process initiated.
Let us now turn to the mathematical model of the sys-

tem. The external potential, as depicted in Fig. 1, is as-
sumed to be a step function (no electric field is applied):

V(x) = V,[q, , (x)+q, ,(x)]+V, [q, , (x)+g&,(x)], (1)

where Vo and V~ are positive constants (i.e., the height of
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the barriers bi, bz, and Bi,B2, respectively) with Vl ) Vp

and gq is the characteristic function of the set 5 [i.e.,

gq(x) = I if x 6 5, 0 otherwisel.
As in Ref. [3] we simplify the shape of the nonlinear

term by considering a rigid displacement of the well w2.
This looks legitimate because the essential efrect of the
nonlinearity is the displacement of the resonance energy
and in addition this choice enormously simplifies the nu-

merical calculation. On the other hand, we have verified
that a more precise calculation using a screened Coulomb
potential does not modify any important feature of the
dynamics of the system. The nonlinear Schrodinger
equation describing the evolution of the electron cloud
wave function is therefore

.
~

'r)y(x, t)
ttl

Bt

6' rl'y(x, t)
2m

+ [V(x) +aQ(t)g„, ,(x)]y(x, t),
where Q(t) is the charge inside the well w2 at time t:

Q(t)= „, Iy(x—, t)I'dx. (3)

In these notations y(x, t) is normalized to I, Q(t) is di-
mensionless, and a has the dimension of an energy and
measures the strength of the mean fieM acting on each
electron. The parameter a is proportional to the
transversal areal density of the electrons and depends on
the electric capacitance of the double barrier.

The one-particle state which is the initial condition in

the mean-field equation has been chosen to be a
Gaussian-shaped superposition of plane waves with mean
momentum h k p.'

X Xp
y(x, O) = exp —— +ik px (4)

xp is chosen to coincide with the middle point of the wel1

wl which has a width so large with respect to o that at
the initial time no appreciable charge sits in w~, i.e.,

Q(0) =0.
The choice of the various parameters has been made on

the basis of the results obtained in Ref. [3]. Their values
correspond to a situation in which nonlinear oscillations
in the transient regime are enhanced. We consider
Iil =l31 =I IOOao. Izl = l5ao, Ibil =lb21=20ap, o'
= I lOap (ap=0. 529 A, being the Bohr radius), and
Vp=0. 3 eV. The mean kinetic energy of the initial state
is equal to the resonance energy (ER=0.15 eV) of the
double barrier b]-b2. The width of the two external bar-
riers IBi I

= IB2I =440ap and their height Vi =0.9 eV as-
sure the complete confinernent of the electron cloud be-
tween them.

The solution of the diAerential equation (2) with the
initial condition (4) has been achieved by a numerical in-

tegration on a suitable two-dimensional lattice, taking
into account the remarks of Ref. [7].
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FlG. 2. Time development of the charge g(t) in the case
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FIG. 3. Time development of the mean charge lgl, I'rom the

data of Fig. 2 (solid line). The dashed line represents the case
where the starting single electron cloud of Fig. 1 is replaced by
two equal half-density electron clouds moving from the wells wl

and w q.

Now we report the results of the numerical simulations
and we provide an analysis which shows that in our sys-
tem a chaotic behavior develops during its evolution. We
concentrate on the charge Q(t) and we treat it as if it
were an experimental signal. A mathematical study of
the system is deferred to another publication.

In Fig. 2 we show the behavior of Q(t) as a function of
time in two difrerent widely separated time intervals. The
first structure appearing between t =0 and l0 (every-
where we use as the time unit 10 atomic units of time,
=4.83x IO ' s), reproduces exactly the transient be-
havior explored in Ref. [3]. Between t = IO and 40 we

observe a qualitative repetition of almost the same struc-
ture due to the multiple reflections of the wave packet in-
side the large wells wi and w3. The number of oscilla-
tions per structure increases progressively until, after
t =40, the isolated structures tend to disappear and an

apparently irregular motion sets in. The irregularity in-

creases with time as is evident from the behavior of Q(t)
between t =500 and 600. This suggests an approach to a
stationary state as also evidenced in I ig. 3, ~here the
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evolution of the mean charge (Q), =—t 'foQ(t')dt' is re-

ported. It is clear that a true stationary state is not yet
reached at t =600 but the approach at this stage is

already very slow so that one can safely speak of
quasiequilibrium.

Concerning the attainment of quasiequilibrium a cru-
cial question is what happens if the initial conditions are
varied. In the case of an energetically equivalent initial
condition the same quasiequilibrium state is reached. An

example is shown in Fig. 3 where the dashed curve refers
to an initial condition in which the single electron cloud
of Fig. 1 is replaced by two equal half-density electron
clouds moving from the ~elis ~~ and w3. When the ini-

tial conditions are energetically nonequivalent the asymp-
totic behavior changes. For instance, we have examined
the case of an initial cloud with mean energy below the
resonance energy. In this case the mean charge (Q)t
tends to a lower asymptotic limit and the irregular varia-
tion of the charge Q(t) in the time interval considered is

less pronounced. This is due to a reduced charge accu-
mulation in the well ~2 and therefore to a weakening of
the nonlinearity. A more systematic study of the depen-
dence of the phenomenon on the initial conditions will be
presented in a forthcoming paper.

We now show that the irregular behavior we have
found has all the features of chaotic behavior by estimat-
ing commonly used indicators like correlation functions,
power spectra, information dimension, and entropy [8].

We examine first the autocorrelation function

the linear and the nonlinear case, respectively. The
difference is striking. In the nonlinear case we have a
short correlation time followed by small oscillations
around zero. The interpretation of these oscillations is

not immediate. In part they reflect the complicated dy-
namics of the system and in part they are a noise effect
which tends to disappear when the interval T is enlarged.
Furthermore a preliminary analysis shows that when the
parameter a measuring the strength of the nonlinearity
decreases these oscillations increase in amplitude and

their characteristic times become comparable to those of
the linear case. A rather sharp transition seems to take
place in the region of values of a in which the transient
oscillations observed in our previous work [3) disappear.

In order to study the approach of the system to the true
equilibrium state we chose to calculate the chaotic indica-
tors in two different time intervals, T& =[180,260] and

T2 =[480,560], where (Q), is almost constant and has a
slightly different value. Between these two intervals we

observe a reduction of the correlation time r. We have

t =0.28 in T~ and r =0.25 in T2. This fact is also
reflected in the behavior of the power spectrum P(to) not

reported here. Going from T~ to T2, in fact, we observe a
corresponding increase of the spectrum flatness.

We have next calculated the information dimension

dimHp(T& 2), where p(T& 2) is the quasiequilibrium mea-
sure associated with the evolution of our system during
the intervals T& and T2. We have used the Grassberger-
Procaccia algorithm [9]. As expected from the results of

C(t& q(t &q(i=—+t&dt '/'q(t &q'(t &dh''
of the zero-mean charge

80 q ~ ~ 30
)

r ~ q q

)
~

q(t) —=Q(t) —)T( ' Q(t')dt'.

In Fig. 4 we give for comparison the autocorrelation
function calculated in the time interval T=[l00,600] for
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FIG. 4. Normalized time autocorrelation function C(t) of
the zero-mean charge from the data of Fig. 2 (solid line). The
dot-dashed line represents the corresponding linear case a =0.

1n r
I IG. 5. Information dimension dimII(p) calculated by the

slope of the straight-line portion of the curves lnlV(r) vs lnr in

the two intervals T& =[l80260I and ,Tq =[480,560]. I&t(r) is

the number of pairs of points (Q(t ),Q(t + t&&t ), . . . , Q(t
+[d —lit),t)) with distance less than r in a d-dimensional

embedding space with d =6,8, l0, . . . , 22 (see Ref. [9l).
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Ref. [101, dimttp, i.e., the slope of the straight lines in

Fig. 5, has a noninteger value increasing slowly with time
from 2.20+ 0.05 in the first interval to 2.50+ 0.05 in the
second interval. The straight-line behavior of InN(r) vs

ln(r) is absent in the linear case. From the same data of
Fig. 5 we can compute the order-2 Renyi entropy Kz(p),
a lower bound for the Kolmogorov-Sinai entropy, by an

extrapolation process to the infinite embedding dimension
d [9]. For both time intervals we obtain a positive value
for K2(p). We have also made an independent calcula-
tion of the first Lyapunov exponent which turns out to be
strictly positive.

We conclude with some general observations. In the
mean-field model the mathematical origin of chaos re-
sides in the nonlinearity of the Hartree equation. This
nonlinearity provides an approximate description which
captures to a certain extent for some time interval the
very complicated evolution of the true many-body system.
The question then arises: Does this chaotic behavior per-
sist in time? One must always remember that quantum
systems evolve according to a linear equation and this is
an important feature which makes them diAerent from
classical systems. Confined quant um systems with a
finite number of degrees of freedom, e.g. , consisting of a
finite number of particles, are quasiperiodic. This means
that persistent chaotic behavior in the evolution of the ob-
servables is not possible [5]. We think that this limitation
does not apply to an infinitely extended system with

infinitely many particles. In particular it does not apply
to our heterostructure which can be considered infinite in

the plane orthogonal to the direction of the junctions.
We can conceive of persistent motions of an extended
electronic fluid which are chaotic in space and time. We
hope to come back to this question in a future publica-
tion.
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