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We use the generalized S-matrix approach to study multiple-lead coherent conductors in the case
of finite applied voltages. In this framework we discuss the transverse voltage arising in a four-lead

conductor with two symmetric biased leads.

Recently a great number of experiments have shown
the possibility of investigating the coherent electron
transport.'? In the regime of very small applied volt-
ages and currents (linear regime) coherent transport can
be described in terms of the Landauer-Biittiker formula
for conductance.3* However, in different situations non-
linear corrections to the Landauer-Biittiker formula may
become important. Some authors® 7 have noticed that
in two-lead devices nonlinear phenomena occur for ap-
plied voltages greater than a critical value. In this paper
we show that nonlinear effects can arise in a multiple-
lead conductor for arbitrarily small values of the applied
voltage when certain geometrical symmetries exist.

The Landauer-Biittiker formula for multiple-lead
conductors®® has been recently extended to account for
temperature changes in the reservoirs and heat fluxes in
the leads.!® We propose a similar extension which ac-
counts for a nonlinear dependence of the conductance on
the applied voltages.

Let us consider a general three-dimensional conductor
with NV ideal leads (see Fig. 1 for a two-dimensional four-
lead schematic picture). Let V(z,y, z) be the potential
function inside the conductor when M < N leads are
connected to voltage sources which keep them to con-
stant potential V;, i = 1,..., M. When electron inelastic
scattering is neglected, the potential values in the open
leads, V;, i = M + 1,..., N, can be calculated by con-
sidering the related coherent quantum-mechanical trans-
mission problem. Let (z;,¥;, 2;) be a reference frame as-
sociated to the ith lead with z; parallel to the lead itself.
The electron eigenfunctions inside the ith lead can be eX-
pressed in terms of plane waves in the x; direction and
localized states in the (y;, z;) plane
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where k; = \/2m(e — V;)/h? is the ith lead wave vector

at the longitudinal energy ¢ and v is the index of the
transverse state with energy €,. The longitudinal plane
waves are chosen normalized to an energy é distribution.
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In this way any relevant physical quantity is related to
the longitudinal energy distribution of the electrons in-
side the leads. When an electron is injected inside the
conductor through the ith lead in the state (¢, V) its wave
function is scattered in all the other leads. In the station-
ary regime we have
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where € and v/ are fixed by the energy conservation re-
lation for elastic scattering: € + €, = €’ + €,s. The trans-
mission and reflection amplitudes, t and r, depend on the
potential function V(z,y, ) inside the conductor. The
electric current per unit longitudinal energy flowing into
the jth lead due to the quantum state (¢, v) follows the
usual current rule
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The total electric current I* ™/ flowing into the jth lead
from the ith lead is obtained summing this contribution
over all the ith lead electrons. If the energy distribution
of the electrons inside the leads is n[(e —eV; — ) /k 6] for
each v transverse state where n(z) = [exp(z)+1]~! is the
Fermi function and @ and p are the relevant temperature
and chemical potential, respectively, we get

'~ = —27:; /de n[(e — eV; — p)/kBb) Tij(e), (5)
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where spin degeneracy has been accounted for explicitly.
The transmission coefficients Ti;(e) = 30, [tiv,jur|* are
functionals of V(z,y,z). However, in most cases, for
small applied potentials the dependence of T;;(€) on V is
weak and they can be calculated with good approxima-
tion by setting V' = 0. Making use of the probability flux
conservation and the symmetry relations T;; = Tj;, we
write the total current I; flowing into the jth lead from
the inside of the conductor as

L=y -y =231y, (6)
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where

Dy = [ de {nl(e~ eV; ~ )/ke0)
—nl(e - eVi - /KBl Ty(e).  (7)

From this equation we can determine the potentials gen-
erated into the open leads by the current flowing into
the leads kept at fixed external voltages. Due to the en-
ergy dependence of the transmission coefficients Tj;(e)
the condition I; = 0 for the open leads represents a sys-
tem of nonlinear equations. As a consequence the un-
known potentials V;, j = M + 1,..., N are nonlinear
functions of the fixed voltages V;, j =1,..., M.

At sufficiently low temperature I';; can be developed
in a series of even powers of kg#:

eV;
Ly = / Ti(p + =) dx
eVi

T (k)2 T (+ €V5) — T+ eVl + ..,
®

where T};(e) = dT;j(e)/de. If we make the ansatz that
i)

[Ti2(p) + 2Th3(w)]Vi — Taz(u)Va + [3T12(1) + Tia(w)]eVE — 3T15(p)eVE = 1175 (n)eV?,

[T12(k) + 2To3(1)]Va — Ti2(u)V1 + [%Tll2(/") + Tgs(u))eVy — %sz(#)evf = 4LT2/3(#)6V2-
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FIG. 1. Schematic picture of a four-lead two-dimensional
conductor with the relevant potentials and currents.

the transmission coefficients are linearly varying func-
tions near the chemical potential, i.e.,

Tij(€) = Ty () + Tis (n) (€ — p) - (9)

the temperature-dependent term in Eq. (8) cancels out
and I';; is quadratically dependent on the lead potentials:
Ty =~ (eV; — eVi)Ty5(w) + 3(e?V? — VAT (). (10)

The above approximation is well suited to investigate
analytically some definite situations in the limit of small
but finite applied voltages. Here we study the case of
a four-lead conductor (see Fig. 1). Two leads of the
conductor (leads 1 and 2 of Fig. 1) are open and I; =
I, =0. A current I = Iy = —I3 flows between the other
two leads due to a voltage source V' which keeps them at
potentials V4 = —V3 = V/2. The presence of the current
I induces a potential difference V; — V, also between the
open leads. If a geometrical symmetry 3 < 4 between
the biased leads exists, V; — V5 is a nonlinear function of
I for arbitrarily small values of I. Let us analyze in detail
this symmetric case. Imposing T3 = T14 and Th3 = Thy
in Eq. (6) for I; and I, and using approximation (10),
we get

(11)

(12)

Due to the symmetry 3 < 4 the terms linear in V' cancel out. The voltage V is related to the applied current I

through Eq. (6) for I3 and Iy, i.e.,

1= S Bya(0) + Tro () + 2T ()] V.

(13)

Now the quadratic terms cancel out and the Ohm law V = Rg34] holds. At small applied current the quadratic terms
in the left-hand side of Egs. (11) and (12) can be neglected as well, hence

Vi— ¥y = Ep2 Ti3(p)Ta3 (1) — Tra(p)Tas (1)

8" Tis(w)Tas(p) + Trz2(w)[Taa(p) + Tas(w)]/2

Taking into account the linear dependence of V on I we
get a quadratic dependence of the transverse voltage on
the applied current. It is worth noting that this trans-
verse voltage crucially depends on the gradients of the
transmission coefficients near the chemical potential.

In the case of a not-too-small applied current the

(14)

[
quadratic terms in Egs. (11) and (12) cannot be ne-

glected and the system of nonlinear equations can be
solved numerically. The transmission coefficients and
their derivatives at the chemical potential are in prin-
ciple valuable from the geometrical characteristics of the
device. In Fig. 2 we assign to these quantities a set of
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arbitrary but realistic values and we show the behavior
of the numerical solution V; — V5 as a function of I in
comparison with the analytical small-current result.
The example we have discussed may be relevant in the
interpretation of two recent experiments.!'12 In both
these experiments the transverse voltage established at
the open leads of a four-lead device is interpreted in terms
of a pure thermopower effect.>13 Due to the current I
flowing in the biased channel (channel 3-4 in Fig. 1)
the central portion of the device, the region ¢ hereafter,
J
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would heat up to a temperature 6 + A6 while the leads
1 and 2 are held at the lattice temperature 8. If leads 1
and 2 have different thermoelectric conductivity with re-
spect to the region c, a potential difference between them
arises proportional to Af. The region ¢ at potential V.
acts as a reservoir at temperature 8+ A6 and leads 1 and
2 can be considered ‘separately in relation to ¢. In this
two-lead scheme from Eq. (6) within approximations (8)
and (9) we get

0= / de {nl( — eVi — ) /5] — (e — Ve — 1) [k (8 + AB)]} Tie(e)

m2k2 .
~ (Vi — eVTie(h) + 3(2VE - AVATL () — KB 0 A6 TL(u), i =1,2. (15)

In the limit of small A§, i.e., small I, the quadratic terms
in the above equation can be neglected and the potential
difference between leads 1 and 2 increases linearly with
Af

. _ T2kR T1o (1) Tac (1) — Tre(p)The (1)
VimVa= gt 0 A e )
(16)

The transverse voltage arising from the thermopower
effect and the transverse voltage arising from the
multiple-lead effect are, in principle, both present in
any experiment involving a multiple-lead device. The
question has been already raised by Gusev, Kvan, and
Pogosov.!* In fact, the very current used to create a
temperature gradient through a mesoscopic sample may

0.6 P [
- '
SN ,
F \ / 4
L . ; ]
04 P
&> F \ / 1
g [ \ /
@
o0 A
L 0.2
> I
0.0 —
Ly AP P I B B
—-40 -20 0 20 40
I (uA)
FIG. 2. Example of the nonlinear behavior of the trans-

verse voltage Vi1 — V2 as a function of the applied current
I = V/R3s. The dashed line is the small current analytical
result of Eq. (14). The solid line is the numerical solution
of the system of Egs. (11) and (12). The parameter val-
ues are as follows: Ti2(u) = 0, Tis(u) = 0.3, Tes(u) = 0.5,
Tia(1) = 200 €V, T{y(1) = 200 eV ™7, Ts () = 200 eV ~7,
and Rs4 =100 Q.

cause a transverse voltage between open leads. In the
case of a four-lead device with two symmetric biased leads
this effect is quantitatively represented at small applied
current by Eq. (14) which has to be compared with the
thermopower voltage of Eq. (16).

A comparison between the two effects needs the eval-
uation of the transmission coefficients for each physical
device. However, in the experimental situation described
in Ref. 12 a great simplification arises. The open leads
1 and 2 are two quantum point contacts on the sides of
the symmetric channel 3-4. In this case the transmission
coefficient T}5 is small with respect to T13 = Ty4. The
transmission coefficient relevant in the thermopower ef-
fect T, ~ T12+T13+T14 reduces therefore to Ty, ~ 27T}3.
Analogously T5. ~ 2T»3. As a consequence the ther-
mopower and the multiple-lead transverse voltages have
the same dependence on the transmission coefficients
and their ratio can be evaluated without any quantum-
mechanical calculation:

(V1 —_ ‘/Z)th - 87'('2’923
(Vl — V2)ml 362

6A0
(RaaI)?’

(17)

Here R34 = V/I is the resistance of the biased channel.
In the experiment!? the channel 3-4 (of width W = 4 um
and length L = 18 um) is defined electrostatically in
a high-mobility two-dimensional (2D) electron gas in a
GaAs-(Al,Ga)As heterostructure. Assuming typical 2D
electron mobility u ~ 100 m? V~!s~! and carrier density
n ~ 3 x 1015 m~2 the resistance R34 turns out to be
around 100 Q. For a current I = 5 pA the authors of
Ref. 12 estimate an electron gas heating A8 ~ 2 K. With
these values at a lattice temperature § = 1.65 K the ratio
(V1 —V2)th/ (V1 — Vo)1 is of the order of unity. Using the
words of Biittiker,® this is an example that multiple-lead
effects are an essential step to understanding transport
in small systems.
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