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Abstract. - We propose an electromechanical transducer based on a resonant-tunnelling 
configuration that, with respect to the standard tunnelling transducers, allows larger tunnelling 
currents while using the same bias voltage. The increased current leads to a decrease of the shot 
noise and an increase of the momentum noise which determine the quantum limit in the system 
under monitoring. Experiments with micromachined test masses at 4.2 K could show dominance 
of the momentum noise over the Brownian noise, allowing observation of quantum-mechanical 
noise at the mesoscopic scale. 

Recently a novel electromechanical transducer based upon vacuum tunnelling of electrons 
has been proposed to detect displacements of a macroscopic mass [1]. A variation of the 
distance between the test mass and a tip changes the tunnelling current and whenever small 
fractions of the current are appreciable, corresponding displacements of the test mass, which 
are small fractions of the De Broglie wavelength of the tunnelling electrons, are also 
detectable. The relevance of this new class of transducers has been emphasized expecially 
concerning detection of gravitational waves using bar antennae [1, 2], design of quantum 
standard of current in metrology [3] and study of quantum-mechanical noise at the 
mesoscopic scale [4]. 

Vacuum tunnelling transducers are intrinsically quantum limited [5]. The small output 
capacitance allows to neglect the back-action noise due to the amplifier following the 
transducer in the detection chain with respect to the quantum uncertainties coming from the 
tunnelling process in itself. In this last process two uncorrelated sources of noise have been 
identified. Firstly, the shot noise due to the discrete nature of the electric charge is 
responsible for a position uncertainty of the test mass. Secondly, the fluctuations in the 
momentum imparted by the electrons to the test mass give rise to a momentum uncertainty 
of the test mass. The product of these two quantities is of the order of li/2 reaching exactly 
this value in the case of a transducer schematized by a square-well barrier [6]. 
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Brownian noise arising from the coupling of the test mass to the environment usually 
dominates over the quantum noise and destroys the quantum properties of the test mass. 
Suppression of the Brownian noise contribution is crucial for improving the sensitivity of 
position transducers until the standard quantum limit is reached and eventually surpassed as 
required in high-precision experiments in general relativity [7]. Moreover, repeated 
monitoring at a quantum level of sensitivity of a single degree of freedom of a macroscopic 
mass is relevant to understand quantum measurement theory [8]. It is therefore important to 
study mechanisms for which the quantum noise can be made dominant with respect to the 
Brownian noise. In this letter we propose the use of resonant vacuum tunnelling transducers 
to achieve such a goal. We will apply the uncertainty principle to a double barrier in which 
resonant tunnelling occurs and we will compare the noise figures to the corresponding 
non-resonant case. 

Let us consider a tunnelling transducer driven by an incident current I, i.e. I is the 
current which should flow in the device if the tip and the test mass were in contact. Due to 
this current, during a sampling time tlt the number of electrons which attempt to tunnel 
across the vacuum gap, the number of incident electrons hereafter, is given by 

I 
N = etlt. (1) 

In a first stage we suppose that all the incident electrons have the same energy E, after we 
will discuss the case of a biased device with electrons having Fermi distribution. Let T(E, l) 
be the transmission coefficient at energy E for a distance l between the tip and the test mass. 
A fraction T of the N incident electrons gives rise to a measured tunnelling current IT = TI. 
Due to the discrete nature of the charge carriers a shot noise in the measured tunnelling 
current IT inversely proportional to YN arises. The test mass position is inferred by means of 
the tunnelling current through the dependence of the transmission coefficient on the distance 
l and a shot noise position uncertainty tl.A for the test mass also arises [6]: 

ll.A2 = lll2 = _!_T(l- T) I ar ~-2 
N N ol . (2) 

This uncertainty has been expressed in terms of the uncertainty Ill due to a single electron 
incident at energy E. At the same time the N incident electrons impart a momentum 
uncertainty /l,. to the test mass [6]: 

(3) 

where tlp is the test mass momentum uncertainty due to a single electron incident at energy 
E. On the basis of ref. [4] tlp 2 = (J;!Jm)2

- J;.fJm, where Jin is the incident electron flux 
and J; and J;, are the momentum and momentum-squared fluxes transferred by the electron 
to the test mass, i.e. the momentum and the momentum-squared fluxes evaluated in the 
vacuum zone. 

The two quantum noise sources increase the energy of the test mass. If we schematize the 
test mass by a harmonic oscillator at rest with mass M and angular frequency w the energy 
increase in the sampling time tlt will be 

tle = ~ + iMw2 tl.A2
• (4) 

This can be considered as the exchange of energy between the test mass (measured object) 
and the electrons (meter) due to the quantum measurement process in the time tlt. 

Superimposed to the two quantum noise sources there is the Brownian motion of the test 
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mass coupled to the external environment. Taking into account also this contribution [9] the 
total variation of the test mass energy in the time At will be 

A~ 1 hsfJ 
Ae = 2M + 2Mw2 A')..2 + QwAt, (5) 

where fJ is the thermodynamical temperature of the reservoir schematizing the external 
environment and Q the mechanical quality factor expressing the relaxation of the harmonic 
oscillator in the thermal bath. The total energy introduced by the quantum measurement 
process and by the thermodynamical reservoir may be converted into a total effective 
displacement !:...;, representing the sensitivity of the transducer for a measurement of 
duration At, through the relation Ae = M w2 A~ 

2 Al
2 

( Ap
2 

kafJe ) 
M = 2N +N 2M2w2 + MwQI . (6) 

In this formula the dependence upon the number of incident electrons has been emphasized to 
show that both for small values of N, when the shot noise is dominant, and for large values of 
N, when the sum of the momentum uncertainty and of the thermal noise is dominant, large 
values of the effective displacement are obtained. A minimum value for the effective 
displacement will be achieved in an intermediate situation: 

1 
2k 8 fJMwe 

+ . 
QAp2J 

(7) 

This optimal sensitivity corresponds to the quantum limit when the thermal contribution is 
negligible, i.e. when 

2k 8 fJMwe 
1 _:::....._ __ « . 

QAp2[ 
(8) 

For instance in a square-well tunnelling transducer we have exactly AlAp = h/2[4,6] and 
when the inequality (8) holds we get the standard quantum limit Afopt = h/2Mw, for an 
optimal number of incident electrons Nopt = hMw/2Ap 2

• 

The requirement of thermal noise negligible with respect to quantum momentum noise is 
difficult to satisfy for a single-barrier tunnelling transducer [ 4]. Due to the small value of the 
single-electron momentum uncertainty Ap one has to use a large incident current /, a high 
mechanical quality factor Q, a small test mass Manda low temperature 8 in order to satisfy 
the inequality (8). A different situation arises in a resonant tunnelling transducer. In fig. 1 we 
show a possible scheme for a transducer based upon a double-barrier potential. A double 
junction or an impurity zone is grown on the surface of the test mass producing an effective 
potential barrier against the current flow. When the tip is put near the test mass a resonant 
double barrier is achieved. At a resonance energy the transmission coefficient T ·= 
= 4T1Td(T1 + T2)

2 of the double barrier may be expressed in terms of the transmission 
coefficients T 1 and T 2 of each single barrier [10]. A variation of the distance l between the tip 
and the test mass changes the transmission coefficient T 1 • For T 2 » T 1 , as in the situations 
we will analyse in the following, the simple relationship holds 

oT T oT1 
ar"" r1 ar · (9) 

With respect to the single-barrier case we have at resonance a single-electron position 
uncertainty smaller by a factor T/T1 and, because of AlAp == h/2, a larger single-electron 
momentum uncertainty. 
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Fig. 1. - Schematic view of a resonant tunnelling transducer and corresponding effective 
one-dimensional double-barrier potential. 

Fig. 2. - Comparison of various quantities vs. the energy E of the incident electrons for a resonant 
double-barrier (solid) and a single-barrier (dot-dashed) transducer. From the top to the bottom, 
respectively: transmission coefficient T, position uncertainty til, momentum uncertainty tip, both due 
to tunnelling of a single electron, and position-momentum uncertainty product in units of fz. The 
example corresponds to the choice of GaAs tip and test mass having an AlAs barrier and parameters 
(see fig. 1) b -a = 20 A, c - b = 50 A, d - c = 20 A, V 0 = 4 eV, V1 = 1 eV and effective electron mass 
m = 0.1 m •. The single-barrier case is obtained with the same parameters except d - c = 0. 

A quantitative comparison of a resonant tunnelling transducer to a non-resonant one is 
shown in fig. 2. In the former case around the resonance energy the position and momentum 
uncertainties transferred by a single incident electron to the test mass have a value 
respectively smaller and larger than in the corresponding non-resonant case. At the same 
time their product remains close to h/2. It should be observed that for both resonant and 
non-resonant cases the shape of the momentum uncertainty l:lp closely follows the shape of 
the transmission coefficient T. Indeed we can define a momentum uncertainty per single 
tunnelling electron as l:lpf = l:lp 2 /T """ 2m V0 which only depends upon the vacuum barrier V0 

and the effective electron mass m. This consideration allows to rewrite the inequality (8) in 
terms of the tunnelling current IT and of l:lpf instead of the corresponding quantities for the 
incident electron 

2ks0M(J)e 
1 _;;;....__2 - « . 

Ql:lpTIT 
(10) 

It is evident that this inequality is better satisfied for a resonant configuration because in this 
case a larger tunnelling current IT for a given incident current I may be obtained. 

The influence of a Brownian noise source is shown in fig. 3. A non-negligible Brownian 
noise with a ratio ojQ = 10-5 K causes a worsening of the optimal sensitivity M~pt by a factor 
1Q2 with respect to the case 0/Q = 0 in a non-resonant transducer. On the other hand, in the 
same conditions a resonant transducer working at the resonance energy retains an optimal 
sensitivity close to the quantum limit. 
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Fig. 3. - Optimal sensitivity .:lc;~pt vs. the energy E of the incident electrons for a resonant double 
barrier with coherent tunnelling (solid) and in the presence of sequential tunnelling (dashed, r = 0.95) 
and single-barrier (dot-dashed) transducer in the case of two different values of the ratio 8/Q (the two 
curves are undistinguishable for 8/Q = 0). We have chosen M = 10-10 kg, w = 2dW s-I, I= 1 A (Ir = 
""' 10-6 A and IT = 10 -s A for the single and double barriers, respectively) and the parameters of the 
barriers as in fig. 2. 

Fig. 4. - Optimal sensitivity .:l~ vs. the bias voltage 4> between the tip and the test mass for a resonant 
double barrier with coherent tunnelling (solid) and in the presence of sequential tunnelling (dashed, 
r = 0.95) and a single-barrier (dot-dashed) transducer in the case of two different values of the ratio 8/Q. 
We have chosen a Fermi energy EF = 0.02eV, a transverse surfaceS= 10-9m2 Ur= 10-6 A and Ir= 
= 10-4 A for the single and double barriers, respectively) and all the other parameters as in fig. 3. 

In a more realistic approach one has to consider not only the effect of the Brownian noise 
but also the partial loss of quantum-mechanical coherence due to inelastic scattering. If the 
escape time of the electrons from the well "esc is longer than the inelastic-scattering time -ri 
the coherent tunnelling current decreases and it is only partially compensated by a sequential 
tunnelling current [11]. In the situation described in fig. 3 we have Teec = [2(c - b)jv] 2/(T 1 + 
+ T 2) = 10 -u s, where v is the velocity of the electrons at the resonance. If inelastic phonon 
scattering is assumed to dominate, we estimate "i = 10 -Is s. The loss of coherence can be 
included by introducing a phenomenological factor y which is related to the damping of the 
wave function due to inelastic scattering and expressed in terms of -ri through the relationship 
2-ri = [2(c- b)/v]/(1 - y) [12]. By using the estimated value of "i in our configuration, we get 
y = 0.95 and the effect of the decoherence is shown in fig. 3 as a less pronounced peak which 
still allows for an order of magnitude improvement when compared to the single-barrier 
configuration. Such improvements, both in the fully coherent configuration (i.e. y = 1) and in 
the presence of inelastic scattering, shown in fig. 3 are limited to an energy range of the order 
of the resonance energy width. 

Production of ballistic electrons with energy spread smaller than the resonance energy 
width is within the current semiconductor technology capabilities [13]. A similar gain may 
also be obtained using a biased device in which a Fermi distribution of electrons gives rise to 
the tunnelling current. By integrating over the transverse states the energy distribution of 
the incident electrons, representing the differential form of eq. (1), is expressed by [14] 

(11) 



338 EUROPHYSICS LETTERS 

where Sis the transverse surface, ~ is the bias voltage and E F the Fermi energy. This allows 
to evaluate the integrated shot noise position uncertainty 

(12) 

and the integrated momentum uncertainty 

(13) 

By repeating the same arguments of the monoenergetic case an optimal sensitivity may be 
obtained at a proper sampling time: 

~..2 = ~).~" 
~opt Mw 1 

2kBOMw 
+ . 

Q~TI-/~t 
(14) 

The product ~). ~" remains close to h/2 and the quantum limit is reached when the second 
term inside the square root is negligible. Due to the constancy of the quantity ~Pi = 
= ~p 2 /T = 2mV0 this condition is expressed again by the inequality (10) in terms of the 
tunnelling current IT, 

I_ emSkBO J"'ln[ 1+exp[(EF-E)jkBO] ]TdE 
T- 2TI-h3 

0 
1+exp[(EF-E-e~)/kBO] · 

(15) 

In fig. 4 we show the dependence of the optimal sensitivity as a function of the bias voltage 
for the same thermal contributions of fig. 3 with and without the effect of inelastic scattering. 
Despite the integration over all the available electrons the improvement in the use of the 
resonant configuration at the proper bias voltage remains one order of magnitude with 
respect to the single-barrier situation. Moreover, the optimal sensitivity has a slight 
dependence upon the inelastic-scattering processes. 

Resonant tunnelling may be relevant for improving the sensitivity of the tunnelling 
transducers proposed to detect gravitational waves. In this class of transducers the 
sensitivity is limited, apart from 1/f noise which strongly depends upon the materials used 
for the test mass and the tip, by the shot noise. Due to the increased tunnelling current in a 
resonant configuration the shot noise is decreased (1 ). For the same reason the momentum 
noise contribution is enhanced and studies of macroscopic quantum noise due to the 
interaction between the electrons and the test mass are more easily performed. From fig. 3 
and 4 it turns out that experiments for detecting quantum noise at 6 = 4.2 K seem also 
feasible provided that a quality factor Q ~ 106 at that temperature can be achieved. Thus 
experimental studies of the quantization of a macroscopic degree of freedom of a 
micromachined test mass may open interesting prospects in mesoscopic mechanics. In 
particular, coherence properties of such single macroscopic oscillators, e.g. the creation of 
distinguishable states of a harmonic oscillator already proposed in a quantum optics 
framework [16], and its destruction through the influence of the reservoir can be 
investigated. 

(1) Recent measurements indicate that the shot noise in a double barrier is further reduced below 
the theoretically expected value, see [15]. 
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Additional Remark. 
After the submission we have been aware of an experiment perfonned with an optical 

resonator based on tunnelling of frustrated light which is the optical counterpart of the device 
we proposed here [17]. 

* * * 
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pointing us out ref. [15]. This work has been supported by INFN, Italy. 
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