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Abstract. We present a self-consistent approach to describe ambipolar tunnelling 
in asymmetrical double quantum wells under steady-state excitation and extend the 
results to the case of tunnelling from a near-surface quantum well to surface states. 
The results of the model compare very well with the behaviour observed in 
photoluminescence experiments in InGaAs/lnP asymmetric double quantum wells 
and in near-surface AIGaAdGaAs single quantum wells. 

1. Introduction 

The tunnelling of electrons and holes in quasi-two- 
dimensional semiconductor heterostructures is of great 
interest both for its physical interest-it is one of the 
most important quantum-mechanical effects observed in 
low-dimensional structures-and for its role in several 
nanometric devices and applications. Much work has 
been done concerning tunnelling in symmetrical and 
asymmetrical double quantum wells (ADQW). 

Tunnelling from a quantum well (QW) to surface 
states, in contrast, has received little attention, despite the 
great importance of gaining control over this mechanism. 
For a quantum well built in the neighbourhood of an 
unpassivated surface, an extra non-radiative recombination 
channel becomes available to elechons and holes if they can 
tunnel to surface states, with a consequent loss in emission 
efficiency from the quantum well. The importance of 
this effect has been demonstrated experimentally in recent 
papers and its dependence on surface banier thickness 
investigated [ 141. 

In the interpretation of the experimental results, both 
tunnelling to surface states and tunnelling between ADQW, 
a problem arises. Although in some cases holetunnelling 
rates can he comparable to the electronic ones, e.g. when 
heavy holes in one well move to a light hole state in the 
other well [5j, direct-gap III-V semiconductors have in 
general rather different tunnelling probabilities for electrons 
and holes due to the different effective masses [6,7]. The 
difference in tunnelling probability for the two carriers 
causes a dipole electric field across the tunnelling barrier 
to develop [S-111, so as to induce-via the quantum- 
confined Stark effect [12]-a peak shift of the excitonic 
recombination, and to affect the tunnelling probabilities 
towards an ambipolar regime, with equal tunnelling currents 
for electrons and holes. 
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The appearance of an electric field due to the spatial 
separation of electrons and holes in ADQW systems has 
already been discussed theoretically [131 in the framework 
of exciton tunnelling under impulsive excitation. In this 
paper we study the tunnelling of unpaired electrons and 
holes both in ADQW and in near-surface QW systems 
under steady-state excitation. Unlike the case of impulsive 
excitation, not discussed in this paper, the ambipolar regime 
is shown to be reached in this case for any excitation 
intensity. The consequently modified tunnelling properties 
are successfully compared with available experiments, i.e. 
the dependence of the emission efficiency ratio in ADQW 
systems on the excitation power and the tunnelling barrier 
width pj, the dependence of the tunneiling current on the 
barrier thickness [I] and the dependence of the Stark shift 
on the excitation level in a near-surface QW [SI. 

2. Tunnelling between two asymmetric quantum 
wells 

Here we describe the steady-state photoluminescence from 
two coupled asymmetric quantum wells under constant 
irradiation. The charges photogenerated inside the wells 

relevant time scales to the lowest hand of the respective 
well m d  611 it according to the Pauli principle. Electron- 
hole iiiiiiktion leads to exciton formation. Tunnelling 
betwen the two wells is essentially restricted to unpaired 

perturbation for the nearly uncoupled wells: as a matter 
of fact, the tunnelling current densities correspond to a 
first-order process for unpaired electrons and holes and 
to a second-order process for excitons. On the other 
hand photoluminescence is restricted to only excitonic 
recombination. 

and a2 be the widths of the two quantum wells 
ak b, ihe width of the barrier between them. We suppose 
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nl > a2 so that the bottom of the el  and hhl bands of 
well 2, E$) and E:;, are higher in energy than those of 
well 1, E::) and E${. Let GI and GI he the generation 
current densities of electron-hole pairs in the two wells. If 
ni and pi are the steady-state concentrations (number of 
particles per unit area) of electrons and holes in the well 
i = 1,2, the following rate equations hold 

0 = GI + J, - A I ~ I P I  (la) 
0 = G I  + Jb - A I ~ I P I  (16) 
0 = Gz - Je - AznZp2 (IC) 
0 = Gz - Jh - A m p 2  (14 
O=A,nlpl  -11 ( 1 4  
0 = A2nzp2 - Iz. (In 

The first two pairs of equations are the rate equations 
for the concentrations of unpaired electrons and holes in 
wells 1 and 2 respectively, and contain, in that order, 
the photogeneration and tunnelling current densities of the 
unpaired charges and the generation current density of 
excitons. The last two equations are the rate equations 
for the exciton concentrations in wells 1 and 2 and contain 
the photoluminescence current densities I1 and 12, which 
are the quantities we want to evaluate and compare with 
experimental results. 

The generation current density of excitons in well i 
is assumed to be proportional to the concentrations of the 
unpaired charges in the same well, hinipi, where Ai is the 
bimolecular exciton formation coefficient and is possibly 
dependent on the well size [14]. 

A little more complicated analysis is needed for the 
tunnelling Current densities Je and Jh. Transfer of electrons 
(holes) from the narrower well to the larger one occurs 
in a non-coherent two-step process. Quantum coherent 
tunnelling of electrons (holes) from an occupied state of 
the el  (hhl) band of well 2 to an equal-energy empty 
state of the el  (hhl) band of well 1 is followed by 
thermalization towards the lower energy states of well 1. 
When the barrier width b is not too small, which is also 
the range of validity of the above rate equations. the 
quantum coherent tunnelling process characterized by a 
time growing exponentially with b gets much slower than 
the thermalization process in well 1 (< 1 ps [15]) and this 
last can be neglected. 

The current densities for quantum coherent tunnelling 
are approximately proportional to the charge concentrations 
in well 2, and the proportionality factor, namely the 
tunnelling rate, is quite different for electrons and holes 
due to their different effective masses. Therefore, in a 
steady-state situation when Je = Jh. the concentrations of 
electrons and holes in each single well must be different 
and an electric field gets established in the barrier between 
the two wells. Moreover the electric field modifies the 
electron and hole tunnelling rates. The direction of the field 
is simply understood from the values of the tunnelling rates 
at zero field. As the electron tunnelling rate is expected in 

.this case to be much greater than the hole tunnelling rate, 
electrons’accumulate at well 1 and in a steady-state situation 

578 

nt > P I .  The electric field is directed from well 2 to well I 
and its value is given hy 

where n = nl - p1 = p2 - nz and is the permittivity of 
the harrier material. 

The tunnelling current densities depend on the electric 
field F through the dependence of the charge concentrations 
on F as well as through the dependence of the tunnelling 
rate on the energy shift between the bands of the two wells 
induced by F .  Assuming that the electric field is completely 
shielded inside the wells, this energy shift amounts to eFb.  
For a given value of F ,  the tunnelling current densities can 
be evaluated within perturbation theory in the case of a 
barrier that is not too thin. To first order the transition rate 
induced by a constant perturbation V between initial and 
final states continuously distributed in energy with densities 
dNi/dt and dNf/de, respectively, is I161 

This formula, when applied to the electron and hole states of 
the two uncoupled wells and divided by the transverse area 
A of the heterostructure, gives the following expressions 
for the tunnelling current densities: 

The integration takes into account the transitions from all 
the occupied states in the el  (hhl) band of well 2 (initial 
states) to the empty states in the e l  (hhl) hand of well 1 
(final states) at the same energy E measured from the bottom 
of the e l  (hhl) band of well 2. The densities of the 
available initial (final) states are obtained by multiplying 
the number of states per unit energy Ad2’ ( A d ’ ) )  by the 
appropriate occupation probability. Here = m!’/nh2 
(u t ’  = mf) /nh2) ,  i = 1,2, are the densities per unit area 
and unit energy of a two-dimensional ideal gas of fermions 
with mass m:) (mt’) and f ( x )  = l/[exp(x) + I] is the 
Fermi function. The Fermi energies for electrons (holes) 
are related to the concentrations in the corresponding well: 
% (I) = nfi2nl/m!l) + E:;) + eFb - E$) and e:’) = 
zh2n2/mL2) (e!’ = nh2p l /mf )  +E:\ - e F b  - E:\ and 
E$*) = rrA2pz/mf’). Finally, the perturbation potential 
V, (vh )  is the potential of the heterostructure (b finite) 
coupling the electron (hole) states evaluated by considering 
the wells as uncoupled (b infinite). Due to the exponentially 
vanishing tails of the electron (hole) wavefunctions, the 
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From these concentrations we evaluate a new electron 
tunnelling rate using equation (6) and from that new 
charge concentrations. After a few iterations, the electron 
tunnelling rate and the charge concentrations converge to 
the solution corresponding to the value of the electric field 
fixed at the beginning. At this point we compare the 
values of the tunnelling current densities. If J. z Jh the 
electric field is increased; if Je < Jh the electric field is 
decreased. The procedure is repeated until the steady-state 
condition Je = J h  is reached. Note that the existence of 
the ambipoiar regime does not rely upon the vaiue of the 
excitation intensity, i.e. G I  and Gz. However, the value 
of the electric field established in the steady state strongly 
depends on the excitation intensity. 

We illustrate the behaviour of the model by considering 
a practical exmpie ciose to the experimeniai situation 
investigated by Sauer et al [9]. We consider two 
Ino.5&@.ATAs quantum wells embedded between InP 
barriers with ai = 100 .& and a2 = 60 A. We use the 
following material parameters at T = 4.2 K [17]: A& = 

- m;-' - v.v++ m, 
m f )  = mf) = 0.38 m, m being the free electron mass, and 
E, = 13.9. Moreover we put A I  = h2 = 6 cmzs-' 1141. 
Since cxal,aaz < 1, where 01 is the optical absorption 
coefficient for the pump light, we take G I / G ~  = al/az 
and G2 = P / h v  where P is the absorbed power density 
and hv = 2.41 eV is the photon energy corresponding to 
514 nm laser light. Note that the transverse area A shown 
in equations (6) and (7) cancels out with the A-' from the 
squared matrix elements and is an irrelevant parameter. 

i n  figure i we show the caicuiated photoiuminescence 
intensity ratio II/Iz from the two wells as a function 
of the absorbed power density P for different values of 
the barrier width b. The self-consistent electric field F 
generated between the two wells in the same cases is 
shown in figure 2. When P is iower than a critical vaiue, 
which depends on the barrier width, the photoluminescence 
intensity ratio I l / I 2  approximately decreases as P-' and 
the electric field increases as P. When P reaches and 
exceeds the critical value an electric field of the order of 3- 
4 x  iij4 Vcm-! becomes estabiished, which slows down the 
tunnelling of electrons from well 2 to well 1 and enhances 
the photoluminescence from well 2. At very high absorbed 
power density the ratio I l l 1 2  tends to the value G I / G ~  
for two uncoupled wells. These results compare quite well 
with the cxperimeniai findings [Sj if one assumes a u.170 
excitation efficiency. 

A deeper understanding of the behaviour shown in 
figures 1 and 2 can be reached by an approximate solution 
of the self-consistent procedure described above. Let us 
first concenuaie on ibe dependence of iiie elecuic iieid, i.e. 
n, on the absorbed power density P. In the steady state we 
have = P&hr which combined with equations (8a) 
and ( 8 4  gives 

0 , ig j  ev, A& = 0,293 e", m F )  - ~ ~ ~ 1 9 1  - - - " A  

fi .," 

relevant contribution to the matrix elements comes only 
from the barrier region between the two wells [16]. In 
this region the potential V, ( v h )  has a magnitude of the 
order of the conduction (valence) band offset AEc (A&). 
More accurate expressions for V, (vh) ,  e.g. taking into 
account the distortion due to the electric field, have little 
influence on the final result and will be neglected. Explicit 
expressions for 0 of the electron and hole states and 
analytical evaluation of the matrix elements are given in 
appendix A. 

ine  iurmuas L W  ~ I C  LUMLCIUU~ GUIICLII u l j i i ~ i i i ~ ~  ~ a i l  

be simplified by noting that, due to the exponentially 
large difference between electron and hole tunnelling rates, 
we expect nz << nl. As a consequence, the electron 
Fermi energy $), i.e. the effective region of integration 

to be integrated in (4) except the Fermi function in well 2 
by their value at E = 0 (the bottom of the e l  band of well 2) 
we get J, = n&, where nl = J viZ)f[(t - ~ ~ * ) ) / k s T l  dc 
and 

r". c 1.. c.- .I.̂  ' ,,:-- ..' A--":.:-" --- 

i- nn...+in.. 1/11 i n  . r a n i  o m ~ l l  Rw mnrrwim~+;nn 211 f>r+-rc 
,I. ~ " o L , , Y , ,  ,7,, I O  ""J Il.1-1. "J '.yyI'Y*.".UY..6 UL. .-.U&= 

In the case of holes we expect p~ >-> PI so that cf) is 
noi smaii. Iiowevet, in iiiis case 6 9  c D i n m i  riie zero 
of energ is the bottom of the hhl band of well 2) and 
f [ ( ~  - &)/kBT]  N 0. Neglecting the smooth dependence 
of the matrix element on E in (5) we get Jh = p Z / S h  where 
pz = J vf'f)f[(c - c f ) ) / k s T ]  dc and 

Note that both the tunnelling rates l/re and l / S h  depend 
on the electric field through the matrix elements (see 
appendix A). In addition the electron tunnelling rate 
depends on F through the Fermi energy of well 1. 

If we think that the electric field, i.e. n,  and the 
tunnelling rates are known, we get the following solution 
for the initial set of rate equations: 

pi = nl - n (84 

p 2 = n 2 + n .  ( 8 4  

This result allows us to find the steady-state values of 
the electric field, of the charge concentrations and of the 
tunnelling rates by a recursive method. We proceed in 
the following manner. First of all we fix an electric 
field value corresponding to some negative electric charge 
concentration n in well 1. Then we evaluate the hole 
tunnelling rate and give a starting value to the electron 
tunnelling rate (for instance that obtained for nl = n)  so we 
can deduce some charge concentrations using equation (8). When P is not too high the second term in the square root 
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Figure 1 .  Calculated emission intensity ratio /,/I2 from two 
coupled asymmetric wells versus absorbed power density 
P for various values of the barrier width b. 
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Figure 2. Calculated electric field F which becomes 
established between the two wells, in the same cases as 
figure 1. 

is small and we get the simple self-consistent equation 

(10) 

In a first approximation the smooth dependence of 
the tunnelling rates on the electric field through the 
corresponding mahix elements can be neglected, so that 
rh is constant while T~ still depends on n through the 
Fermi function. The argument of the Fermi function in 
equation (6) is negative until the alignment of the electron 
bands is achieved due to the electric field, i.e. in the region 
n 5 ncit where ezbn,t/co6r = E,., - E,, . In this range 
T~ is approximately constant and much smaller than sh. On 
the other hand, for n > ncfil the electron tunnelling time 
increases exponentially with the dimensionless parameter 
eFb/kBT, i.e. with n. The behaviour of re@) imposes 
different solutions to equation (IO) at different values of the 
absorbed power density. At low P we have r,(n)P/hv (< 
n and therefore n Y rhP/hv.  At high P we have 
ze(n)P/hu >> n and therefore n Y nci1 is constant. The 
critical value of the electric field is related to the critical 
value of the absorbed power density by Pcit N hvn,fil/rh. 
Since Th increases exponentially with the banier width b,  
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Figure 3. Calculated normalized photoluminescence 
intensities /,//,, and 12//*= versus barrier thickness b for 
different absorbed power densities P. /i, is the 
photoluminescence intensity from well i in the limit b --f CO. 

Pdt decreases exponentially with increasing b in agreement 
with figure 2. 

The behaviour of n ( P )  allows us to understand also the 
features of figure 1. By approximating equation (8a) with 
112 N G2re/(l t nhzre) we get 

When P << Petit the electron tunnelling time is almost 
constant, nh& (< 1 and the ratio I l l 1 2  decreases as n-l ,  
i.e. P-I. The behaviour of II/Iz changes drastically at the 
critical power P,, due to the exponential change of re, and 
finally for n h z h  >> 1 the asymptotic value I1/Iz = G I / G ~  
is obtained. 

For the purpose of comparison with the following 
section, in figure 3 we show the behaviour of the calculated 
normalized photoluminescence intensities Ii/Iim, i = 1,2, 
in the same ADQW of figures 1 and 2 as a function of the 
barrier width b and for different absorbed powers. The 
normalization Ifm is the photoluminescence current density 
for b --f 00. The corresponding self-consistent electric field 
is shown in figure 4. The normalized photoluminescence 
intensity of well 2 (figure 3) vanishes at smaller b when 
the tunnelling current becomes higher. In this limit J, + 
Gz. At the same time the normalized photoluminescence 
intensity of well 1 tends to (Gl+J,)/G1 = l+Gz/GI. The 
self-consistent electric field (figure 4) gradually increases 
for decreasing b, until, in the tunnelling-dominated limit 
12/12;0 + 0, it vanishes exponentially. 

3. Tunnelling from a quantum well to surface 
states 

The considerations developed in the previous sections can 
be extended to describe the case where a single quantum 
well is close to a surface. This is another situation where 
tunnelling is followed by recombination [1-4, 81. Electron 
and hole bands of defect states localized at the surface play 
the role of the e l  and hhl bands of the missing well. In a 
steady-state situation the system can still he described by 
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and (7) with U:') = ui ' ) (O)  and U:') = uf)(O). If P I  > n t ,  
we have 

50 I I 
t I 
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Figure 4. Calculated electric field F which becomes 
established between the two wells in the same cases as 
figure 3. 

the rate equations (1) where the index 1 is associated with 
the surface and the index 2 with the well. Let nl and PI be 
the charge concentrations in the donor-like and acceptor- 
like surface bands. We can neglect the photogeneration 
of pairs at the surface so that GI = 0. Moreover 
hlnlpl = 11 represents the non-radiative recombination 
current density at the surface. Since electrons and holes 
recombine (through a multiphonon process) very fast with 
respect to the other relevant time scales, one is allowed to 
take hl + CO. 

The tunnelling current densities from the occupied 
states of well 2 to the empty surface states 1 are still given 
by the general expressions (4) and (5). Now, however, the 
surface densities $) and vf) are not constant in general. 
This implies the following definition for the corresponding 
Fermi energies: 

for the donor-like band, and 

for the acceptor-like band. As in the case of the two wells, 
we measure the energies from the bottom of the el  or hhl 
band of well 2. More importantly, U:') and u t )  depend on 
the material characteristics and can be orders of magnitude 
different. If U:]) < ut ' .  the effective mass difference 
between electrons and holes can be overcompensated by 
the difference in the surface densities, and holes can tunnel 
more effectively than electrons do. This is the case, for 
instance, at the GaAs-oxide interface [8,18]. In this 
case holes accumulate at the surface and in a steady- 
state situation P I  > nl .  The electric field still given by 
equation (2) turns out to be negative. 

As in the case of the two wells, the tunnelling current 
densities can be approximated by Je = n2/re and Jh = 
p2/rh. Now, however, we distinguish two cases. If 
nl > PI, the tunnelling rates are given by equations (6) 

When the elechic field and the tunnelling rates are 
known, the solution of the initial rate equations is still given 
by equation (8). With the conditions GI = 0 and hl CO 
we get the simpler formulas 

nl = n  ( 16b) 

PI = o  ( 1 6 ~ )  

p~ = n2 + n. (164 

The same recursive method as explained in section 2 allows 
us to find the steady-state values of the elechic field, of the 
charge concentrations and of the tunnelling rates. 

The evaluation of the luminescence intensity 12 implies 
the knowledge of the nature of the surface states. We 
can hy to get information on the surface states by fitting 
experimental photoluminescence data. We will concentrate 
on the specific example of an Alo.3Gq.7As surface with 1 
nearby GaAs quantum well [ 1.81. At an energy close 10 the 
bottom of the e l  band of well 2 the AIo.3Gq.yAs surface 
has only donor-like states belonging to the exponentially 
vanishing Urbach tail: 

Such states are assumed to be nodal hydrogenic wave- 
functions [19] with radius r, fixed by the depth into the 
gap. Their explicit expression is given in appendix B. We 
assume that at the top of the gap the state density is the 
two-dimensional density of free Al0.3Gq~As electrons with 
effective mass in:]', The parameter will be considered 
as a fitting parameter. According to equation (17) and 
equation (12) where we can assume E:;) = -CO, the Fermi 
energy for the donor-like surface band is 

On the other hand, at an energy close to the bottom of the 
hhl band of well 2 the Alo.3Gq.7As surface has a very 
high concentration of acceptor-like defect states [I  81. We 
schematize them again by nodal hydrogenic wavefunctions 
[ 191 but with radius rh to be considered as a second fitting 
parameter. These states are assumed to be distributed in 
energy with constant density U:'. The Fermi energy for 
the acceptor-like surface band is then 

(19) E!) = pl/uh (1)  + Ehhl (1) + eFb - Eml. (2) 
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Figure 5. Normalized photoluminescence ratio /z//zm of a 
near-surface well versus the surface barrier thickness b. 
Dots: experimental data from reference [I]; full curve: best 
fitting in terms of the self-consistent model. The incident 
power density is 6 = 0.5 W om2.  

The tunnelling matrix elements for the above surface states 
and surface densities are evaluated explicitly in appendix 
B. 

According to the experiment reported in [I] we choose 
the well width a2 = 60 A, the temperature T = 4.2 K, 
the photon energy hu = 1.608 eV and the incident power 
density Pi = 0.5 Wed. The incident efficiency is 
estimated to be 1% and we take G2 = 0.01 Pi/hu.  The 
relevant material parameters are [20]: AE, = 0.3 eV, 
AE,  = 0.128 eV, m:') = 0.091m, mp) = 0.067m, 
mf) = 0.34m, m being the free electron mass, and 
E, = 12. Moreover we put Az = 6 cm's-' [14]. We 
assume an acceptor-like surface state density v f )  = lOI4 
cm-'eV-' [21] with E t {  N 1 eV (the results we found 
do not depend crucially on this particular value). The free 
parameters, cc and rh, are fixed by fitting the normalized 
photoiuminescence intensity I z J I b  to the experimental 
data [ 11 obtained for different values of the barrier width 
b. A least-square-error proceture gives the unique solution 
t, = 12 meV and rh = 11 A. In figure 5 a comparison 
is made between the ratio I z / l b 3  calculated with these 
values, and the experimental data. 

Because of the presence of two parameters the 
agreement between theoretical and experimental data in 
figure 5 should be considered as a source of information 
for these two parameters in the case when the model is 
$,did r2t!!c: 
A reliable check of the validity of our model is obtained 
by comparing the theoretical values of the self-consistently 
estimated electric field F with the values deduced from 
measured Stark shifts as a function of the QW excitation 

a function of the barrier thickness b, for different values 
of the incident power. It is seen that, for high levels 
of excitation, the field approaches values of order 105 
Vcm-' and keeps increasing when the barrier becomes 
thinner. Direct comparison with experiment is made for 
an 80 A thick barrier, a choice dictated by the wide laser 
power range where data were available for this moderately 
tunnelling sample. To obtain the value of the electric field 
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Figure 6. Calculated electric field F across the surface 
barrier versus the surface barrier !hickne?;s b for different 
incident power densities fi. 

0 

from the measured Stark shift AEp we use the relationship 
AE,  = KF31z, empirically deduced from known results in 
the literature [22,23]. The constant K is fixed by requiring 
that the electric field obtained from the measured Stark 
shifi AEp = 0.33 meV, corresponding to an incident power 
density Pi = 0.68 Wcm-', coincides with the calculated 
value. We obtain K = 1.25 x meV (V C I I - ~ ) - ~ / ~ ,  
which compares well with the values extracted from the 

and reference 1231, K r, 0.6 x lo-' meV ( V ~ m - l ) - ~ / ~ .  
The comparison between the calculated and experimen- 

tally deduced electric fields is shown in figure 7 as a func- 
tion of the incident power density. The agreement is very - good for a power range extending over thxee orders of mag- 
nitude. The near-coincidence of the scale factor K with 
other independently obtained values should not be attributed 
much importance, on one hand because of the approxima- 
tions used in the model, e.g. density and distribution of 
surface states, and on the other hand because the exper- 
imental Stark shift is observed in the luminescence from 
the quantum well, where the field is non-uniform and pos- 
sibly different from its value in the barrier [SI. Instead, 

data reference c22j7 N 1 10-7 meV f lCm-~)-3/2,  



the correct functional dependence of the field on the exci- 
tation level is a clear confirmation that the self-consistent 
approach provides a reasonably accurate description of the 
whole process. 

4. Conclusions 

The photoluminescence efficiency in asymmetric double 
quantum wells and in near-surface quantum wells is 
strongly influenced by the tunnelling of both electrons and 
holes between the two wells, or the well and the surface 
states. The theoretical model presented here takes into 
account this effect and allows a quantitative prediction 
for the photoluminescence rates and the value of the 
electric field which needs to be established across the 
tunnelling banier in a steady-state situation. Experimental 
results regarding both m Q W  and near-surface QWs, namely 
changes in photoluminescence efficiency and peak shifts 
due to the self-induced electric field, are very well 
accounted for. 

Our model can be readily generalized to include the 
case of an externally applied electric field as well as the 
case of excitation that is not constant. 
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Appendix A. ADQW matrix elements 

We call z the coordinate orthogonal to the interfaces and 
suppose that the quantum well 1 is in -al 5 z 5 0 and 
the quantum well 2 in b 5 z 5 b + az. Firstly let us 
consider the case of electrons. As schematized in figure 8 
we assume a rectangular potential profile with left and right 
discontinuities !I/') = AE,  and VJ ' )  = AEc - eFb/2 for 
well 1 and V,(') = AEc+eFb/2 and v,") = AEc for well 2 
where F is the electric field in the barrier region 0 5 z 5 b. 
The electron wavefunctions at energy E ,  measured from the 
bottom of the e l  band of well 2, are 
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k!" = /- (As) 

for well 1 and 

for well 2. The energy E$) measures the bottom of the el 
band in the well i = 1 , 2  from the bottom of that well and 
is determined by solving 

( A l l )  
The phase shifts are = tan-'(k(''/kf)). i = 1,2.  The 
constants C('). i = 1,2,  are fixed by normalizing the 
wavefunctions @!): 

For E = 0 and with the assumption that V, in equation (6) 
vanishes everywhere but in the barrier region where V, = 
AE, ,  the tunnelling matrix element is 

(@:'lvel@f)) 
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Figure E. Energy-space diagram for electrons in the asymmetric double 
quantum well. 

In the case of holes we have a completely analogous 
situation where the relevant band is hhl instead of el. The 
expressions derived for electrons still hold for holes with 
the substitutions m:) + m t ) ,  i = 1.2, AEc + AE,, 
e F b  -+ -eFb. 

Appendix B. Near-surface QW matrix elements 

Following the notation of appendix A, the surface is defined 
by the plane z = 0 and well 2 is in b < z < b +uz. Firstly, 
we consider the case of electrons and we measure the 
energy from the bottom of the el  band of well 2. The state 
Qy)(x, y ,  z) is given by equation (A6). The donor-like 
surface state @ $ l ) ( x ,  y,  z )  is approximated by a truncated 
2p hydrogenic wavefunction [19]: 

where r = ,/-. The state is at an energy 
h2/8m!”r: below the bottom of the conduction band for the 
barrier material where the electron effective mass is m!l). 
By requiring this energy to correspond to E we determine 
the radius re, 

re = , (B2) 
h 

,/8mL1) @Ec - EZ) + e F b  - E )  
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Using parabolic coordinates q = (r - z ) / r c ,  5 = ( r+z ) / rc ,  
(o = tan-] ( y l x ) ,  the tunnelling matrix element between the 
well and surface states at E = 0 is 
(q I v, I @)) 

In the case of holes we have a completely analogous 
situation where the relevant band of well 2 is hhl instead 
of e l  and the acceptor-like surface state is given by 
equation (BI) with re + rh. Equation (B3) gives the 
tunnelling matrix element for holes with the substitutions 
r, -+ rh, AEc -+ AE,, eFb + -eFb. 
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