
PHYSICAL REVIEW A VOLUME 51, NUMBER 2 FEBRUARY 1995
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The infiuence of continuous measurements of energy with finite accuracy is studied in various
quantum systems through a restriction of the Feynman path integrals around the measurement
result. The method, which is equivalent to considering an efFective Schrodinger equation with a
non-Hermitian Hamiltonian, allows one to study the dynamics of the wave-function collapse. A
numerical algorithm for solving the efFective Schrodinger equation is developed and checked in the
case of a harmonic oscillator. The situations, of physical interest, of a two-level system and of
a metastable quantum well are then discussed. In the first case, the Zeno inhibition observed in
quantum optics experiments is recovered and extended to nonresonant transitions, and in the second
case we propose an observation of the inhibition of spontaneous decay in mesoscopic heterostructures.
In all the considered examples, the efFect of the continuous measurement of energy is a freezing of
the evolution of the system proportional to the accuracy of the measurement itself.

PACS number(s): 03.65.Bz, 12.20.Fv, 79.60.Jv

I. INTRODUCTION

Technological progress in the measurement of physical
quantities, especially in quantum optics, in the physics of
superconducting coherent devices such as superconduct-
ing quantum interference devices (SQUIDs), in the study
of mesoscopic structures and in experimental gravitation,
has revived the 50-years old debates on foundations of
quantum theory [1,2]. Collapse of the wave function, re-
peated measurements on a single object, and inhibition
of transitions under the effect of measurements are now
also the language used by the experimentalists involved
in this so-called quantum phenomenology. Ideal exper-
iments which were thought in the 1930s to sharpen the
paradoxical aspects of quantum theory when confronted
with classical physics are now feasible. This originates
a demand for quantitative predictions of quantum mea-
surement theory. In general, among the observables of
interest for the experimenters a crucial role is played by
canonical coordinates and energy. The first kind of ob-
servable has been discussed extensively especially in con-
nection with the fundamental limitations in the accuracy
of position measurements [2,3]. In this paper we discuss
a quantum measurement model which allows one to de-
scribe the general features of an energy measurement in-
dependently of the particular measuring apparatus used
to perform it. The model is based upon restriction of
path integrals around the measurement result. After a
general description of the technique in Sec. II we ana-

lyze the case of a harmonic oscillator in Sec. III. This
allows us to check the numerical technique on a well es-
tablished potential. The analysis turns out to apply to
more physical situations in Secs. IV and V. In Sec. IV
the case of a two-level system is analyzed and its link to
the quantum Zeno effect is established. In Sec. V the
case of a properly designed heterostructure is analyzed
to study the feasibility of an experiment exploiting spon-
taneous decay of localized electron states. This allows
also for a comparison between the pat¹integral model of
energy measurement and a more concrete one taking into
account the detailed properties of a meter. In Sec. VI
the conclusions are given: inhibition of the evolution of
a system is obtained whenever measurements of energy
are performed on it in the quantum regime of sensitivity.

II. CENERAL FORMALISM

As a consequence of the interaction between the mea-
sured and the measuring systems, decoherentiz ation
arises. The phenomenon can be derived in the &ame-
work of standard quantum mechanics by summing over
the degrees of freedom of the measuring system [4]. The
measured system then evolves, influenced by the inter-
action with the measuring system in such a way that
the off-diagonal terms of its density matrix get damped.
Of course, the exact evolution equation for the density
matrix of the measured system depends on the specific
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nature of the measuring system, which is inconvenient if
general considerations are of interest. The path-integral
formalism with constraints added to force the system to
move in a space region [5] or along an individual Feynman
path [6] is a simple and effective tool for describing the
essential features of a continuous measurement without
reference to meter-dependent details. Here we will make
use of the restricted path-integral approach proposed by
Mensky [7,8].

Two different situations can arise: a prediction on the
evolution of the measured system is requested before
the continuous measurement is performed; a complete
quantum mechanical description of the measured system,
namely its wave function, is desired after the continuous
measurement has been performed. In the first case, the
a priori analysis, the outcome of the measurement is un-
known and a sum over all possible results should be con-
sidered. The evolution of the measured system (during
the measurement) is described by the density matrix. In
the second case, the a posteriori analysis, the outcome of
the measurement is known and a sum over all Feynman
paths compatible with the result should be considered.
The measured-system evolution is described by the wave
function. In both cases, the influence of the measurement
on the evolution of the measured system is represented
by a restriction of the possible choices (density matrix
elements or paths) according to a weight functional. The
strength of the restriction, measuring the amount of dis-
turbance per unit time fed by the measuring apparatus
into the measured system, completely defines the mea-
surement operation.

The a posteriori analysis has been shown to be very
effective in understanding the accuracy of measurements
of position in nonlinear systems, monitored in a contin-
uous [9] and impulsive way [10]. Here we will show how
it applies to the case of measurements of energy. Let us
suppose that a continuous measurement of energy with
result E(t) has been performed. The probability axnpli-
tude for the measured system going &om point q at time
0 to point q' at time t in the configuration space during
the measurement is

The weight functional m~@j restricts the integration
around the measurement result. From a formal point
of view a very simple and useful choice for m~@~ is a
Gaussian functional

iUi~~[q, p] = exp
~

K[H(t') ——E(t')] Ct'
~

.

t .

mi j[q] = exp
~

— . [q(t') —x(t')] dt'
~

A

coincides with that obtained for a measuring apparatus
made by an infinite set of quantum oscillators, each inter-
acting with the measured system within the length scale
A and for a time interval w. A similar calculation in the
case of a continuous measurement of energy allows us to
interpret v and ~ as the characteristic time and energy
scales of the interaction between the measuring and the
measured systems. In other words, 7. and e are the dura-
tion and the error of each microscopic measuring event.
An interpretation in terms of the macroscopic measure-
ment operation is also possible. If the measurement lasts
a time Dt = Nw we can write e = ve = LtLE where
b,E = e/~¹ Here KE represents the error of the con-
tinuous measurement and it decreases, as expected, with
the squared root of the measurement time.

Due to the choice of the weight functional, the proba-
bility amplitude can be written in the form

I

(q', &; q, 0) = d[q]d[J]e' ~' ~' "~~~~"l~"', (4)
q

where we introduced the effective Hamiltonian

H, yy = H — (H —E) .
ih 2

7 6
(5)

We note that the effective Hamiltonian (5) is not Hermi-
tian. However, the eigenstates of the Hamiltonian H of
the unmeasured systein are also eigenstates of (5). We
have just a modification of the time evolution of these
eigenstates with a damping proportional to the differ-
ence between the corresponding eigenvalue and the mea-
surement result. This allows us to dynamically describe
the process of an incomplete and/or not instantaneous
collapse of the state of the measured system.

Let us consider the case of H with a discrete energy
spectrum

HP„(x) = E„g„(x).
let @(x,0) be the state of the systexn at the beginning
of the measurement. We expand this state in the base

Due to the presence of a fourth power of the momentum
in H, ~y the functional integral (4) is meaningless from a
rigorous point of view and we will use it only in a formal
way to get a differential equation of motion. During the
measurement the evolution of the system is given by the
modified Schrodinger equation

19
ih vP(x, t) = H, yg—@(x,t).Bt

The constant r, has dimensions 1/[(time) x (energy) ]
and can be put in the form K = we . The constants
7 and e have a well defined meaning in relation to the
specific nature of the measuring apparatus. Konetchnyi,
Mensky, and Namiot [ll] have demonstrated that in the
case of a continuous measurement of position the corre-
sponding weight functional

(8)

with the normalization P ~c (0)~ = 1. By inserting (8)
in (6) we have an evolution equation for the coefficients
c (t)
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with solution

(io)

inite eigenva uel E = E the wave function of the mea-
sured system approaches the eigenstate P; to the same
extent to which LE gets smaller. In the limit of an in-
finitely precise measurement a complete collapse o t e
wave function is obtained.

At the generic time t during the measurement the mea-
sured system is completely described by the wave func-
tion

D t th sence of the anti-Hermitian part of H, ff,
@(x,t) loses its initial normalization according o e se-
lection rule impose yd b the measurement resu t. e
probability to have the measured system in the eigen-
state n at time t is

III. MEASUREMENTS IN A HARMONIC
OSCILLATOR

Here we apply the general formalism introduce in the
prece ing sec ion od t t the case of a harmonic oscillator de-
scribed by the Hamiltonian

h2 0 1H= — + —mu) z.
2m gx2 2

(IS)

This simple system allows us to show wit analytical
tools the mechanism of the continuous collapse due to
an energy measurement. It allow s us also to test the nu-
merical method described in Appendix A that we will use
in the analysis of more complicated systems.

The evolution of a wave function collapsing during an
energy measurement is shown in g.Fi . 1. We consider an
initial Gaussian state

At the end of the measurement t = Lt, the probabilities
P have a simple interpretation in term s of the total er-
ror 4E of the measurement. % hen LE )) ~~

simplicity we consi er'd the case of a constant measure-
ment result E in the following discussion) the amount o

the probability to have the system in the eigenstate n

ever, the above inequality cannot be vayu for all n an
a generic state of the system, i.e., containing contri u-
tions &om all n, is always disturbed by the measuremen
at some extent. If the measurement result is some e—

1
2' 2 ) (i4)

w ic a owsah' h 11 a simple analytical evaluation of 2:, t) in
s. The an-f the harmonic oscillator eigenstates. e an-

ericalalytical results difFer less than 0.1% from the numerica
results shown in ig. o ah F' 1 btained with the algorithm of Ap-

A I the absence of measurement, i.e., LE = oo,
t dth os-the wave function remains a Gaussian wit its wi os-

cillating with period vr/cu. When the measuremen is
effective only the prospection of ~ zx t on the eigenstate
with energy c oses o el t t the measurement result survives.
The collapse is gradual and only for very precise an /or

t/at=0 t/inst=1/6 t/tent=1/3 t/st= i

M
I I I

b

1.5
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I I I I I
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FIG. 1. Evolution of the wave-function
collapse under a continuous measurement of
energy in a armh rmonic oscillator. Each panel
shows, at di6'erent times and for di8'erent
measurement errors, the squared modulus of
the wave function during a measurement with
constant result E —Acr. The ini-
tial wave function is a Gaussian of width
cr = +25/mu and we set b,t = sn /u,
5 = 2m = 1, u = 5 x 10 . In the right-most
panenels corresponding to the time t = At the

us ofdashed line indicates the squared modulus o
the eigenfunction Pq towards w ic the ixn-

tial state collapses for a finite AE.

0.0 —2 —1 0 1 2 K/0'
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long lasting measurements is it fully accomplished. This
behavior constitutes the basis of an efFective relaxation
method for numerically computing eigenvalues and eigen-
states of Schrodinger operators [12].

Besides its simplicity, the harmonic oscillator is quite
inappropriate for d.escribing the interplay between energy
measurements and stimulated transitions, a situation of
wide interest in the applications, especially in quantum
optics. Indeed, due to the constant spacing of the spec-
trum, under a forcing term at resonance all the levels
are occupied and no stationary regime for the stimulated
transitions among the levels can be obtained. Systems
with nonuniform level spacing or, for simplicity, two-level
systems should be considered.

IV. STIMULATED TRANSITIONS
IN A TWO-LEVEL SYSTEM

E2 (E2 —E)2

ct(t) = exp (
—e t — t —iqi)LtLE2

x c2(0) cos (u)t)

qc2 (0) —e ' "pcs (0) sin (u)t),
XtU

~h~~~ p = Vo/&t q = 6E/2&+ i& with & = [(E2 —E)'—
(Eq —E) ]/2b, tb E, and m = gq + p . The resonance
condition is measured by the parameter

6'E = Ru —(E2 —Eg).

In order to evidence the Zeno effect in a speci6c exam-
ple let us suppose that initially the system is in state 1
and the result of the continuous measurement is E = Eq.
The probability Pq(t) to have the system at time t & Zt
in state 1 is

The interplay between the transitions stimulated in
a system by an external perturbation and the efFect of
a continuous measurement of energy have been recently
discussed within the present formalism [13]. It turns out
that the so-called quantum Zeno paradox introduced in
[14—16] and observed in [17] is a particular example of
the inliuence of the meter on the measured system (see
also [18] for the debates following [17]). Here we discuss
the differences between on-resonance and ofF-resonance
perturbation. The case of oK-resonance transitions is im-
portant especially for schemes of measurements of energy
in electromagnetic cavities based upon dispersive tech-
niques recently proposed [19].

I.et us return to the general formalism of Sec. II. Tran-
sitions among the levels of H are obtained under the ac-
tion of an appropriate external perturbation V(t) which
is added to the efFective Hamiltonian of Eq. (5). The de-
composition of the state @(t) in terms of the eigenstates
P„of the unmeasured and unperturbed system can be
used again. The evolution equation for the coefBcient
c„contains also a term proportional to the perturbation
strength and nondiagonal in the index n,

—c„(t) = —— E — [E„—E(t)] c (t)

P (,)
lc~(t)l'

lc (t)l' + lc (t)l'
1

27
Vo

hQ —i SE/2+A~ cot(mt)

where

t() = — V02 —
~

hO — 6E i—1, ( i

and

(E2 E~)2

0 (21)

When the measurement error is large, i.e., 0 m 0, the
system oscillates between levels 1 and 2 with Rabi &e-
quency /4V02 + 6E2/h. Complete transitions to level 2,
i.e., Pz ——0, are obtained only with a resonant pertur-
bation bE = 0. In the opposite limit of accurate mea-
surements, when m is imaginary, an overdamped regime
is achieved in which transitions are inhibited. A criti-
cal damping is observed when m is minimal, i.e. , at a
measurement error

b.E,„;t, = (E2 —Eg) Volt ' (22)

where V- (t) =(t-IV(t)l& )
A particularly simple picture is obtained for a two-level

system with energies E~ and E2. Assuming a perturba-
tion potential V~g ——V22 ——0 and Vj2 = V2x = Voe'
with VD real, the solution of the system (15) is

(E~ —E)2

c~(t)=exp( —i t — t+tqt)ltd E2

x cy(0) cos (Q)t)

sin (u)t)
qcq(0) + e' "pc2(0)

'EQJ

which defines the borderline between the Rabi-like behav-
ior (bE ) bE „,t, ) and the Zeno-like inhibition (bE (
b.E,„;q) in terms of the instrumental accuracy of the me-
ter. The behavior of Pq(t) is shown in Fig. 2 for hE = 0
and in Fig. 3 for hE g 0 for difFerent choices of the mea-
surement error bE. In panels (a) we show the Rabi-like
behavior (solid line) in comparison with the correspond-
ing results with no measurement performed (dashed line).
Even in this regime the measurement has the eEect of
slightly decreasing the transition frequency. In panels (c)
we show the Zeno-like behavior (solid line) in comparison
with the full inhibition occurring for b,E -+ 0 (dashed
line). In panels (b) we show the behavior in the critical
regime just above (solid line) and below (dot-dashed line)
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FIG. 2. Probability Pi(t) to observe a two-level system m
state 1 during a measurement of energy and undunder the inQu-
ence of a resonant perturbation. The system is in state 1 at
time t = 0 and the result of the measurement is E = Eq con-
stant. The measurement error is AE = oo ~~dashdashed line& and
b,E = 2b,E,„,t, (solid line) in panel (a), AE = 1.07AE, ;t,

anel (b), and b,E = 0.5AE,„;q (sohd line) and bE = 0
(dashed line) in panel (c). We set bt = 10vrh/Vs and
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FIG. 4. Nondecaying probability P(t) for electrons gener-
ated inside the metastable well shown in the inset during a
continuous measurement of energy achieved by restriction of
the eynman pa s.h F ths The measurement result is the energy o

ofthe resonant s a e an wet t t d we set v = Ii/s for different values o

LE = LE „,q. Notice that in the off-resonance case the
oscillatzons in ell the Rabi regime do not reach zero even in
the absence of measurement. Moreover they get dampe
in the presence of measurement even if the system is far
from the critical region due to the imaginary term in Eq.
(20). On the other hand, no significant difFerence is ob-
served between on-resonance and ofF-resonance cases in
the Zeno regime. There the effect of the measurement is
so strong as to completely dominate any external pertur-
bation.

V. SPONTANEOUS DECAY
FROM A QUANTUM WELL
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FIG. 3. As in Fig. 2 but for a nonresonant perturbation
with bE = (E2 —Eg)/2.

The experiment designed to study the quantum Zeno
effect in atomic spectroscopy has been considered by
some authors as not representative of the whole para-
dox because stimulated transition is used to connect two
difFerent levels. In this section we discuss a proposal for
observation of the quantum Zeno effect in systems sub-
jected to spontaneous emission. The system we uiscuss is
schematically depicted in the inset of Fig. 4. Metastable
states are obtained in a semiconductor heterostructure

&om a collector region. Let f be the point separating
the collector region [f, +oo (&om the well region) —oo, f]
For simplicity we suppose equal valence-band offsets V0

and we neglect electron-electron interaction. Electrons
generated inside the well, e.g. , by a laser pulse, relax al-
most instantaneously in the el state (the low-lying state
of the uantuin well) and then start tunneling outside
the well. The validity of this picture implies a tunnel-
ing tame muc great' h eater than the phonon relaxation time,
i.e., a barrier width L not too small. On the other hand,
we suppose the tunneling process to be faster than ra-

0diative and nonradiative electron-hole recom )nations so
that electrons leave the el of the well only via tunne-
ing into the collector. In the absence of measurements
an exponexponential decay of the charge trapped m the we
is obtained. As explained in Appendix 8, the sing e-
well Inetastable potential has a low-lying resonance state
Pi(x) with complex eigenvalue Ei —iT'i/2 which almost
coincides in the well region with the el state Pi (x). Elec-

tially in the e1 state, i.e., their wave function.
is vP(x, 0) Pi(x) for x & f. The probability to have an
electron in the region ]

—oo, f] at time t, the nondecaying
probability, is

f
P(t) = Ig(x, t) I'dx

—OO

( )
—„-'(E —'

/2)iI2d —I' i/s (2S)1

Notice that P(t) is related to the electronic charge Q(t)
measured in the collector region by Q(t) = Ne[l —P(t)],
N being the number of electrons photogenerated in the
well and e the electric charge.

Let us suppose that an energy measuremenent with
known result is performed on the collected charge. A
practical realization of such a kind of meter is obtained
by growing a second barrier of width L separated by a
well of width l &om the measured system (see the inset
of Fig. 5). The meter system acts as a filter allowing on y
the charge in a certain energy window to enter the collec-
tor region. The center and width of the energy window
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FIG. 5. Nondecaying probability P(t) (upper solid line) for
electrons generated inside the same metastable well of Fig. 4
but during a continuous measurement of energy achieved
by the model meter shown in the inset (dashed line). The
lower solid line is obtained in the absence of measurement.
The dashed lines are the results of Eq. (23) (lower line) and
Eq. (26) (upper line).

P(t) = —
I& (*)

1
1

( )
—-*„(E2—rg/2)tI2d

—I'gt//h + —I'2t/h1—
2

' (26)

the bare electron mass. With these parameters the first
resonance level evaluated as explained in Appendix B is
Eq ——3.72 x 10 eV and I ~

——6.99 x 10 eV.
Now we turn to the measurement performed with the

model meter previously discussed. Since the measure-
ment result has been chosen to be E = Eq, we have

= l. We also set I = L. The measured system cou-
ples quantum mechanically with the meter system in a
well-known manner. The previous first resonance splits
into two resonant states Px(x) and Pq(x) for which we
evaluate Eq ——3.45 x 10 eV, I'q ——2.86 x 10 eV
and E2 ——4.01 x 10 eV, I'2 ——4.35 x 10 eV. As-
suming that the electrons are initially in the e1 state
of the unmeasured system, i.e., their wave function is
@(x,0) [Px(x) + $2(x)]/~2, for x ( f, we have

where

(Ei —iri/2 —E) tI2d r,tyt/s—(24)

The decay of the electron measured to be inside the well
in the e1 state is &ozen proportionally with the measure-
ment precision. Equation (25) is rigorously valid only for
e )) I"i. For e ( I'i/2 it gives an absurd negative decay
rate; however, already for e + I"q the results obtained
from (25) are in good agreement with the nuxnerical sim-
ulations reported in Fig. 4. In the numerical simulations
P(t) is obtained &oxn the wave function evaluated in a
space-time lattice with the algorithm described in Ap-
pendix A. We have chosen I = 60 A, L = 50 A, Vq ——0.1
eV, and an electron eH'ective mass m = 0.1mo, mo being

are specified by the well width l and the barrier width
L of the meter, respectively. The energy measurement
modifies the exponential decay of Eq. (23) depending on
the measurement result and accuracy. We will report
a comparison between the description in terms of the
restricted path-integral method and the description in
terms of the above-mentioned specific meter.

Since we are interested in following in time the prob-
ability P(t) [or the collected charge Q(t)] without spec-
ifying the duration of the xneasurement, it is convenient
to express the measurement feedback through the micro-
scopic quantities v and e. Notice that there is only one
degree of freedom in choosing these constants, the com-
bination 7 e only being relevant. We set w = h/e, leaving

as a free parameter. By assuming that the result of the
energy measurement is constant E = Eq, the nondecay-
ing probability is

f
P(t) Ip (x)e x(E, —tr~/2)t

Notice that the nondecaying probability includes inte-
gration over all the space but the collector region, i.e.,
] —oo, f] includes the meter. The rough prediction of
Eq. (26) is shown in Fig. 5 (dashed line) in comparison
with the corresponding exact numerical simulation (solid
line). The exact probability P(t) decays, oscillating
around the curve of Eq. (26) with frequency (E2 —Ex)/h.
The model meter considered with barrier width I
is expected to represent an energy measurement of pre-
cision e I'x I'2 and duration w h/I'x. Indeed, a
comparison of Fig. 4 and Fig. 5 shows that this prediction
is confirmed.

In the example we have discussed the realization of
the backaction of the meter, i.e, its in6uence on the
measured system, is quite evident. As the barrier acting
as a meter measures the energy of the transmitted elec-
trons with increasing accuracy, the resonances get nar-
rower and the reQected current increases, coming back to
the measured system. In the opposite limit, when the
measurement is not accurate, the re6ected current and
the consequent backaction on the measured system are
negligible.

The results obtained within the restricted path-
integral formalism both in this section and in the previ-
ous one depend on the Gaussian ansatz (2) for the weight
functional. This choice is not only mathematically con-
venient but corresponds to a specific, still quite general,
model of measuring apparatus obeying the quantum-
dynamical semigroup property [11,20]. Therefore quali-
tative agreement with the results obtained in a real mea-
surement must be expected. On the other hand, detailed
behaviors in a real measurement could be taken into ac-
count only by an accurate modeling of the employed me-
ter. A comparison of Fig. 4 and Fig. 5 helps to clarify this
point in a specific example. The restricted path-integral
prediction correctly reproduces the main feature of the
barrier-modeled meter, namely, the variation of the de-
cay time constant with respect to the unmeasured-system
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case. On the other hand, the oscillations of P(t) in Fig. 5
superimposed to the smooth decay curve (dashed line)
have a period her/(E2 —Ei) and are the coherent oscil-
lations of the charge between the well of the system and
the well formed by the barrier meter. Of course these os-
cillations are not obtained in the restricted path-integral
approach. This is a desirable feature when looking at a
general formulation of quantum theory of measurement.

equation is transformed into a set of algebraic equations
by discretizing the space-time x ti-n an appropriate two-
dimensional lattice. Let us suppose that we want to fol-
low the temporal evolution of the initial state g(x, 0)
during the time interval [O, t ]. Let [x;,x ) be
the space interval where the wave function @(x,t) can be
considered localized for 0 & t & t . The space-time
lattice is defined by setting

VI. CONCLUSIONS j =0, 1, 2, . . . , J+1 (A1)

The time evolution of various systems during a con-
tinuous measurement of energy has been studied within
a very general formalism. It has been shown that, re-
gardless of the specific realization of the meter, the mea-
surement causes a partial &eezing of the time evolution of
the system. This fact is already known in quantum optics
where a Zeno-like experiment has been performed. The
generality of our approach allows us not only to recover
the quantum optics case but also to describe quantita-
tively a proposal for analogous experiments using man-
made mesoscopic structures. In this case one could have
the possibility to test Zeno inhibition on systems mani-
festing spontaneous decay with easier control of the pa-
rameters of the structure under measurement.

Our model can be considered as a quantitative dynam-
ical approach to the energy-time uncertainty relationship
already debated in the literature [21,22]. Let us define the
inhuence time 8 = 5/I' yy

—5/I'i expressing the modifi-
cation of the spontaneous decay time under the inQuence
of an energy measurement with error e. By using Eq.
(25) in the appropriate limit of validity e )) I'i we have

h ( I'i l h,—
I
1+ —

I

—— (27)I', q 2) I'i 2

High precision measurements of energy lead to changes
of the evolution tiine scales for the measured system. In
the limit of an ideal, infinite accuracy, measurement the
evolution of the system is completely &ozen and the so-
called quantum Zeno efFect is recovered.

APPENDIX A: NUMERICAL SIMULATIONS

t + nest, n = 0, 1,2, . . . , N (A2)

(J+1)bx = x —x

NLt =t (A4)

The wave function reduces on the lattice to a matrix

vP(x, t) m @,", (A5)

where @0 are known. The efFective Hamiltonian operator
II~yf 1s

H, yg= H — (H —E)
ih 2

(' 2ihE&~ H
ih H2 ih

T6 j Te
(A6)

and includes the action of the Hamiltonian H
(5 /2m)8 —/Dx2+ V(x, t) and its square H on vP(x, t).

The action of H on @(x,t) gives

H@(x, t)m (Hg),".

52

~, (@,"+i —20,"+0," i) + V,"0,"

where the total number of points in the lattice is related
to the lattice constants Lx and Lt by

Here we brieQy discuss the algorithm used for the nu-
merical simulations of Eq. (6). The partial differential

I

where V. = V(x~, t ). For H2 we have

(A7)

The discretization of the operator ih8/Bt is obtained
with the Cayley approximation for the exponential time
evolution operator

- —1
' K&t

25
iLt
25 (A9)

iLt1+ H~tf(t + At) vp(t + At)
2hwhich preserves unitarity for K Hermitian and is correct

G(Et ) for K time independent. In our case H,yf de-'
pends on time and is the sum of a Hermitian term and

H, gg(t) @(t), (A10)

2

H q(x, t) M (H VP),
" =

~ ~ (@,"+2 —4@,",+6@,"—4@,",+@," )+ V,"V,"@,".

q2mBx2)
h2

V,",@,". , —2V~"Q,"+ V~",g,". , + V,."(g,". , —2',". + g,". ,) . (AS)

I

an anti-Hermitian one. The Cayley approximation is still
the right discretization scheme since it avoids the stabil-
ity problems arising &om the Hermitian part. The finite
difFerence equation for the time evolution is the Crank-
Nicholson scheme
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which corresponds in the lattice to the following linear system:

yn+1 + p n+1@ n+1 + (1 + an+1)@n+1 + pn+1@n+1 + @n+1

&@ +2 ~ & +~+'(1 a )@ ~ ~@ ~ &&"-2 (A11)

where V(x) = Vp 1[ j + Vp lp, ,) + Vp l[g ~), (B1)

iat ( n'
2res (2mAx2)

ibad t 1 ih

(A13)
ihLt 2ih

, (E —V,")
2mkx2 7 6

Vn (E Vn) 2

2h,
(A14)

(;, + X,",+') y,". +' = (a,, —X,",) @,", i, q = 1, . . . , 1
(A15)

By using the condition g ~
= vpp = @&+~

—
@&+2

—0
which reflects the fact that the wave function is local-
ized in [x;,x ], we can write Eq. (All) in matrix
notation,

where a & 6 & c & d & f and 1[ s~ means 1 for a & x & 6
and 0 elsewhere. The eigenfunctions of the stationary
Schrodinger equation

h2 02
+ V(x) P„(x) = A„g„(x)

Al

(B2)

ekp~
)

g+ eikz

p„(x) = A ~ C+e"*
D+eikx

/+ ekp x

+ gy
—e—ikx

—kp~

+ D—e—ik~

+ F-e-"*

x(a
a(x(b
6&x(c
c(x(d
d&x

are such that P (x) oc exp (i+A x), for x ~ oo. We
also observe that, as a special case of the method of
complex scaling [23], P„(x) is of class L2 on the con-
tour p = ]

—oo, f] U e' [f, +oo[ if 8 ) 0 is conve-
niently chosen. In the limit of f —d large, we approxi-
mate E with the eigenvalues of the con6ning potential
V (x) = Vp 1[ [+Vp 1[s j+Vp 1[g + [. The functions

where the matrix 'R is 5-diagonal where

(aV &7

P2
0

0 . . . 0
P2
as Ps . . . 0
&s a4 ~"

0
0
0
0

o
0

0
and

2m
Q2

2m
(Vp —E„)

(B4)

(B5)
0 0
0 0

( o o

0 0
0 0
0 0
0 0

&7 s
y

0

&7 s
QJ
&7 ~

y

~Z-2

~J—1

y

~Z —1 jJ

are the bound states for the potential V (x) when F+ =
0. The C requirement at the points a, 6, c, and d gives

(A16)
ePika

B+ = . e"' (ik + kp),2ik (B6)

Starting from QP. the solution of the above system at each
time step gives the unknown @"+ in terms of the known

2
. Notice that the matrix 'R does not depend on time

if the potential V is time independent.
Due to its 5-diagonal nature the linear system in

Eq. (A15) is solved by LU (lower-unit upper) decomposi-
tion accomplished through standard-library subroutines.
The number of iterations required for the solution grows
linearly with the matrix dimension J. The computer time
needed for the simulation of the full evolution is about
CN J, with C 7.6 ps in a VAX 7000-610 machine.

APPENDIX B: H.ESONANCE STATES
OF THE METASTABLE POTENTIAL

We want to derive a semiclassical formula for the res-
onances A = E —iI' /2 of the metastable square-well
potential

e~kpb
C = B+e'" (k +ik)+B e '" (k haik)

0

(B7)

e~ikc
[C+.""('k+k, ) + C-.-""(k ~ k.)],2xk

(B8)

e~kpdF+ = [D+e'" (kp + ik) + D e '""(kp p ik)I .
2k0

(B9)

The eigenvalues E are found by solving numerically the
equation F+(E ) = 0. The normalization of P„(x) is
achieved by choosing
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2kp
+ ([B+[ + [B [ ) (b —a) + 2Re B+B e'"( +

k
e2kpc e2kpb e—2kp 6 e2kpc

+2Re C+C c —6 + C+ + C

+ (~D+~ +(D
~ ) (d —e) + 2Re [D+D *e' ~ + ~) + ~P (BIO)

Once E„ is known, the corresponding I can be found
by observing that in the limit of f —d large we have the
semiclassical approximation

ekpx
)

B+e'Lkx +
C+ekp~ +4-(*) =A& D+;i..
F+ekp~ +
@+eikx

—ikxB e
C—e—kpx

—ik~e
F—e—kpx

x&a
a&z&b
b&x&c
c&x&d
d(z( f
f&z

(B11)

with A, B+, C+, D+, and F evaluated as above and
E+, G+ obtained through the Ci requirement at f,

I

By multiplying the stationary Schrodinger equation (B2)
with P„' and the complex conjugate equation with P„and
subtracting the two results, after integration in ]

—oo, f+],
we Bnd

a' dy„(f+)r„ ld„(*)l'd* =
2

2™ "d d. (f')') .

(B14)

By using Eq. (B13) in the right-hand side and approxi-
mating P„P„ in the integral, we get

F+ F— P + —2kPfA: +ik
kp —ik (B12)

t2 Skk2r
2m, k + k 1 —[AE e "oI[2/2ko' (BI5)

F— P —kP f—ikf2k
e

kp —ik (BI3) The above results apply also to the case of a single-well
metastable potential by setting a = b = c.
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