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Abstract 

A quantum measurement model based upon restricted path-integrals 
allows us to study measurements of generalized position in various one­
dimensional systems of phenomenological interest. After a general overview 
of t he method we d iscuss the cases of a harmonic oscillator, a bistable 
potent ial and two coupled systems, briefly illust rating their applications. 

PACS: 03.65.Bz, 06.30.-k, 74 .50.+r 
Key words: Quantum measurements , Bell inequalities 

Recent efforts in high precision experiments have shown that the fundamental lim­
itations to a measurement due to quantum mechanics play a crucial role to develop 
more and more sensitive instruments [1] . As a by-product quantum measurement 
theory, a topic quite isolated from the frontier of physics some decades ago, has 
been revived and new experiments have been proposed for its better understand­
ing. Models of quantum measurement theory comparable t o the outcomes of the 
experiments are therefore welcome. Here we describe some of the results obtained 
using one of these models, originally developed in [2] (see also [3] for a complete 
account of the approach). The goal of this paper is twofold: to discuss specific ex­
amples of systems in which quantum measurement theory plays a crucial role and 
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to show that they are all described within the unified context of the model we use. 
For reasons of space we do not deal here with a comparison of our approach to the 
other ones described elsewhere in these Proceedings [4]. Moreover, we remand the 
interested reader to the mentioned references of our papers for more details. 

A MODEL FOR IMPULSIVE MEASUREMENTS 

In classical mechanics the effect of a sequence of measurements on the subse­
quent dynamics is negligible. In quantum mechanics instead the execution of a 
measurement, either continuous or stroboscopic, influences the system. In this last 
case it is therefore important to include the effect of an actual measurement on 
the dynamics of the observed system. This has been obtained by Mensky [2, 3] 
through the path-integral approach (other similar approaches have been proposed 
in [4]). In this framework the propagator of a system described by a Lagrangian 
.C(x(t), .i(t ) , t), and undergoing a continuous measurement of its position between 
the times 0 and T, with result a(t) and instrumental uncertainty tl.a, is written as 
a weighted path-integral: 

K[aJ(x",T;x',O) = { x(r)=x" V[x(t)]exp{~ r .C(x(t) ,.i(t),t)dt}wraJ[x], (1) 
l x(O)=x' n Jo 

where 

W[aj[x] = exp {- 2tl.~27 f [x(t)- a(t)]2dt} . (2) 

The most natural way to represent an impulsive measurement of posit ion at time 0 
is as limit of a continuous one for infinitesimal time intervals. In this approximation, 

(:r:' - a. )2 

limK[a(t)J(x",T;x',O) = Ka(x" ,x' ) = e-~ K (x",O;x' , O) (3) 
7'~0 

where a = a(O ). Let us suppose that 'l.j! (x, t) be the wavefunction of a system 
subjected to an impulsive measurement of position at time t, with result a. Since 
K(x", 0; x', 0) = 8(x" - x') , it follows 

J+oo { (x - a)2 } 
'l.j! (x, t+) = R[t/IJ(a) - oo dyKa(x, y) 'l.j! (y , c)= R[t/IJ(a) exp -

2
tl.a2 'l.j!( x, c). 

(4) 
where R[t/IJ(a) is a renormalization constant. The effect of the measurement is 
therefore a Gaussian filtering around the measurement result. This is similar to 
the usual measurement theory of von Neumann. The latter is simply recovered by 
choosing for the measurement operator the discontinuous and therefore less realistic 
form 

w~ N. ex 0( X - [a - tl.a])O( [a + tl.a] - X) . (5) 

For a sequence of impulsive measurements the Gaussian reduction ( 4) is alterna­
tively followed by free evolution periods tl.T (quiescent time). The probability that 
the N th measurement gives a result aN , when the results of the previous N -1 ones 
are known, is expressed through 

P a, ,a2, ,aN- I(aN) =: +=l('lj;at .a2, ,a"(t;t) l 1.j;a,,a2, ,aN(t;t)) l2,, 

f_= I( 1f;a,,a2, .,a,v(t;t) l 1.j;a1,a2, .. ,aN(ft) )I- daN 
(6) 
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which allows one to evaluate the effective uncertainty defined as 

A 2 _ 2 J (aN - ii)2 Pa,M, .. ,aN-l (aN) daN 
u.aeff - J p ( ) d . 

a1 ,a2, .. ,aN- 1 aN aN 
(7) 

where ii is the most probable measurement result. The effective uncertainty t.aef 1 
expresses the spreading of the possible measurement results [5] and is equal to t.a, 
the instrumental error, in the classical limit. In a quantum regime t.aeff is always 
larger or equal to t.a. A convenient situation for evaluating the t.aef 1 is available 
in the case of impulsive measurements when energy eigenstates and eigenvalues of 
the system are known. In such a case the evolution of the state during the quiescent 
time is obtained once an expansion in terms of energy eigenstates of the output of 
a measurement is made and the numerator of (6) can be rewritten as 

(8) 

where c}:,v) is the projection coefficient on the mth eigenstate lm) at the N 1h mea­
surement. Thus from the energy eigenstates expansion of the initial wavefunction 
it is possible to derive the effective uncertainty 

(9) 

where 

(10) 

N ( . ) def ( I , (TIN - i il !:>.1" , ) 1 } Bml t.T, t.a, al) a2 , .. , UN = m W a N . e li 'WaN - ; l . 
]= 1 

(11) 

For quantum measurements on harmonic oscillators, having energy levels equally 
spaced, t he optimal quiescent time is half the oscillat ion period and all can be eval­
uated without approximations. This is already known for the limit case of instan­
taneous and infinite accuracy measurements as seen using the canonical approach: 
the commutator for the position at different times gives [6] 

i!i 
[i:(t + t.T),x(t)] = - sin wt.T 

mw 
(12) 

which implies that for two instantaneous measurements of position spaced by mul­
tiples of half period of oscillation the observable is quantum nondemolition. The 
path integral formalism allows us to extend such a result to finite accuracy and 
finite duration measurements, as shown in [5]. It turns out that the effective un­
certainty holds values very close to the instrumental uncertainty only for quiescent 
times which are multiples of half period of the harmonic oscillator. The optimal 
measurements of position for a harmonic oscillator are also known in literature as 
quantum nondemolition measurements [1, 6], and are quite important for the de­
tection of small displacements like pulses of gravitational waves of astrophysical 
ongm. 
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QUANTUM MEASUREMENTS IN SQUIDS 

Superconducting Quantum Interferometer Devices (SQuiDs) have been pro­
posed to test macrorealism versus quantum mechanics. A global understanding of 
quantum mechanics and its relationship to the classical limit requires to extend its 
validity to the macroscopic world. In this domain the conflict between its structure 
and the classical sense of physical reality cannot be overcome [7] and experiments 
aimed to compare the predictions of the two worldviews are crucial. By realism 
here we mean that "a macroscopic system with two or more macroscopically dis­
t inct states available to it will at all times be in one or the other of these states" 
(m acr-oscopic realism) as well as that "it is possible, in principle, to determine the 
state of the system with arbitrarily small perturbation on its subsequent dynamics" 
(non-invasive m easurability at the macroscopic leve0 [8]. This leads to a quantita­
t ive test by introducing inequalities between correlation functions of observables of 
a macroscopic system, a superconducting quantum interferometer device subjected 
to a sequence of repeated measurements of magnetic flux. The proposal of Leggett 
and Garg [8] has been criticized due to the limitations given by quantum mechanics 
to the accuracy obtainable in a set of repeated mea.surement of the same observ­
able [9]. However, measurement schemes following that path have been proposed 
both using a set of SQuiDs and two-level mesoscopic systems [10]. We have stud­
ied quantitatively optimal strategies for repeated measurements of magnetic flux in 
bistable potentials which can schematize the SQuiD bchavionr [11]. It turns out 
that measurement strategies must be chosen in a particular way to minimize the in­
fluence of the previous measurements on the state of the observed system: quantum 
nondemolit ion strategies for the measurement of the magnetie flux in a SQuiD have 
to be implemented. The magnetic flux in a SQuiD is schematized, if the coupling 
to the external environment can be neglected, through the effective potential 

(13) 

where cp is the trapped magnetic flux, a generalized coordinate describing the sys­
tem, 11 and A are parameters associated to the superconducting circuit. This allows 
us to describe the system in terms of pure states '1/J (cp). Since general arguments 
exist on the fundamental noise introduced by any linear amplifier [12], the problem 
of the measurement of flux in a superconducting circuit is independent upon the de­
tailed scheme used to detect the quantum state of the SQuiD. As already discussed 
in [5] the optimality of the measurement is dictated by the spectral properties of the 
system. The asymptotic collapsed wavefunction can be expanded in terms of the 
eigenstates of the system and an optimal measurement is obtained provided that the 
quiescent time is commensurable to the characteristic t imes for the wavefunction 
reformation 

(14) 

where Ei, E7 are the energy eigenvalues which have maximal projections on the 
asymptotic state. The two eigenstates which maximally contribute to the wave­
function reformation after tunneling arc those corresponding to the first two eigen­
values, whose splitting is related to the tunneling period. The effective error 6.1> eff 

reached after a series of mesurement pulses has minima close to 6.1> when the qui­
escient time 6.T is a multiple of the tunnelling period T12 . Unless the measurements 
are repeated with this periodicity noise due to the measurement process is fed into 
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the system affecting the following measurements. In the case of the potential of 
Eq. (13) we have numerically evaluated the eigenstates using a selective relaxation 
algorithm [13]. The predictability of the measurement outcome is affected by the 
uncertainty due to the previous measurements. One can minimize this by simply 
using optimal quiescent t imes which are analytically determined through (14) once 
the eigenvalues and the eigenstates are given. 
The general hypotheses under which we have obtained this result allows us to con­
clude that a direct experimental test of temporal Bell-type inequalities in principle 
should remain possible even in a pure quantum mechanical framework, without any 
classical assumption on the measurement process such as noninvasivity [8]. How­
ever, this happens only if the repetition times between consecutive measurements 
which violates Bell inequalities are compatible with the optimal quiescent times. 
Otherwise either the inequalities are not violated or quantum noise is introduced 
in the successive measurement, making it invasive [11]. A preliminary analysis on 
which we will refer in the future shows that this is the case. The region of violation 
occurs when the two quiescent times required to have a set of three possible mea­
surements are both of the order of half of the tunnelling period. Unfortunately for 
such periodicities the effect of the measurement is such that the spreading on the 
possible results induced by the measurement does not allow one to distinguish be­
tween the two wells of the bistable potential. As a consequence violation of temporal 
Bell inequalities cannot be observed. 

QUANTUM MEASUREMENTS IN PENNING TRAPS 

Penning traps consist of a combination of static magnetic and electric fields 
where a single charged particle, for instance an electron, can be stored for long t imes 
[14]. A magnetic field confines the motion in a cylinder whose size is determined 
by the strenght of the magnetic field itself. A further confinement along the axis of 
the cylinder is obtained through a quadrupole electrostatic field creating a harmonic 
force parallel to the magnetic field. Thus the motion of the electron is a combinat ion 
of a harmonic motion along the axis of the cylinder and a circular motion, called 
cyclotron motion, completely decoupled in the non-relativistic limit. They become 
coupled , with the spin too, by including relativistic corrections. In this case the 
Hamiltonian of an electron in a Penning t rap is 

where ac and at are the annihilation and creation operators associated to the cy­
clotron motion, z, P z are position and momentum for the axial motion and Ciz is 
the projection of the spin on the z-axis. The interactions among the three degrees 
of freedom have small coupling constants proportional to c- 2 . 

Recently it has been proposed to measure the energy of t he cyclotron motion 
of an electron in a Penning trap in a quantum nondemolition way [15]. A mea­
surement of the energy associated to the cyclotron motion is obtained throu,[[l- che 
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measurement of the axial motion of the trapped particle provided that the spin is 
preassigned. A detailed analysis of the dynamics of such a measurement is still 
missing, and the model discussed here can be applied to this situation. We note 
two peculiarities of such an application. Firstly, one is dealing with the case of 
non-quadratic terms in the Hamiltonian and numerical analysis is mandatory. Sec­
ondly, this is an example of an indirect measurement, in which the informations 
obtained on one degree of freedom allow one to measure some other quantities re­
lated to another degree of freedom coupled to the first (in this particular case the 
cyclotron energy through the direct measurement of spin and axial motion of the 
electron). The simplest prototype of systems in which indirect measurements are 
defined could consist of two coupled harmonic oscillators with only one subjected 
to measurement. In the particular case of position measurements the corresponding 
Hamiltonian could be written as 

where the two oscillators are linearly coupled with strenght / ', and the measurement 
term directly affects only the first oscillator. It is easy to realize that, due to the 
coupling, a restriction of the paths in the coordinate space of the first oscillator will 
induce a restriction of the paths also in the second oseillator, therefore defining an 
indirect effective uncertainty !:la2eff. A perturbative evaluation of such a quantity 
in the case of Eq. (16) is ongoing and we will refer on it in the fu ture. 
The interest of the above problem goes beyond the Penning traps application, and 
involves topics such as gravitational wave antennae coupled to a transducer [16] and 
quantum measurements of energy in microwave cavities [17]. 

\Vc acknowledge M. B. Mensky for collaboration and stimulating discussions. 
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