
File: 595J 553501 . By:CV . Date:27:06:96 . Time:14:41 LOP8M. V8.0. Page 01:01
Codes: 4373 Signs: 2050 . Length: 51 pic 3 pts, 216 mm

Annals of Physics � PH5535

annals of physics 248, 95�121 (1996)

Measurement Quantum Mechanics and Experiments
on Quantum Zeno Effect

Carlo Presilla

Dipartimento di Fisica, Universita� di Roma ``La Sapienza,'' and INFN, Sezione di Roma,
Piazzale A. Moro 2, Rome, Italy 00185

Roberto Onofrio

Dipartimento di Fisica ``G. Galilei,'' Universita� di Padova, and INFN, Sezione di Padova,
Via Marzolo 8, Padua, Italy 35131

and

Ubaldo Tambini

Dipartimento di Fisica, Universita� di Ferrara, and INFN, Sezione di Ferrara,
Via Paradiso 12, Ferrara, Italy 44100

Received June 8, 1995

Measurement quantum mechanics, the theory of a quantum system which undergoes a
measurement process, is introduced by a loop of mathematical equivalencies connecting pre-
viously proposed approaches. The unique phenomenological parameter of the theory is linked
to the physical properties of an informational environment acting as a measurement apparatus
which allows for an objective role of the observer. Comparison with a recently reported
experiment suggests how to investigate novel interesting regimes for the quantum Zeno
effect. � 1996 Academic Press, Inc.

1. Introduction

The description of the measurement process has been a topic debated from the
early developments of quantum mechanics [1�3]. Besides being a basic issue in the
interpretation of the quantum formalism it has also a practical interest in predicting
the results of experiments pointing out some paradoxical aspects of the quantum
laws when compared to the classical ones. The development of devices whose noise
figures are close to the quantum limit makes these experiments within the tech-
nological feasibility and demands for a systematization of the theory of quantum
measurement with deeper understanding of its experimental implications [4, 5].

In ordinary quantum mechanics measurements are taken into account by
postulating the wave function collapse [1]. This approach has the unpleasant
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feature of introducing an extra assumption in the theory which, moreover, regards
only instantaneous and perfect measurements. In the last twenty years relevant
steps have been made in upgrading the von Neumann postulate with more realistic
and satisfactory approaches. These approaches essentially recognize that a
measured system is not isolated but in interaction with a measurement apparatus.
The way this basic fact is taken into account in the evolution law of the measured
system has been developed according to different languages and points of view.

A group algebra approach to the problem of an open quantum system was
proposed by postulating (completely positive) semigroup properties for the dynami-
cal law of a system in interaction with a Markovian environment [6, 7]. In this
case the open system is described by a semigroup master equation later successfully
used in modeling quantum optics experiments [8]. The semigroup master equation,
still preserving positivity and trace of the density matrix operator, introduces
decoherentization by dynamically quenching the off-diagonal elements of the den-
sity matrix, a key property used to explain the absence of superposition states in a
measurement apparatus [9] or in a general macroscopic system [10, 12] thought
as systems interacting with an environment. Open quantum systems were gathered
to measured systems by obtaining an all alike semigroup master equation for a con-
tinuous measurement process [12] modeled by repeated instantaneous effect-valued
measurements [13], i.e., partial localization or decoherentization kicks [14] given
to the density matrix at random values of the measured observable.

In the model [12] the semigroup master equation comes out only after averaging
the instantaneous results of the measured observable with probability distribution
in agreement with standard quantum mechanics [15]. In absence of this average,
i.e., for a particular selection of the measurement outcomes, a nonlinear stochastic
differential equation was proposed to describe the evolution of the density matrix
during a continuous measurement process [16]. Since in this case during the
measurement process the density matrix coincides with its square, a nonlinear
stochastic differential equation could be derived for the corresponding wave func-
tion [17] crowning previous attempts to include the Lu� ders postulate [18], a
generalization of the von Neumann one to selective measurements, into a stochastic
Schro� dinger equation [19]. This equation, obtained also in the framework of the
quantum filtering theory [20], is a special case of the more general quantum state
diffusion equation for open systems [21]. Its nonlinearity can be avoided only
renouncing to make predictions on the outcome of the measured observable.
Indeed, a linear stochastic differential equation was proposed for the so called a
posteriori states [22, 23], i.e., those unnormalized states which describe the quan-
tum system when the measurement result is already known.

As originally suggested by Feynman [24] the path integral approach to quantum
mechanics is a quite appropriate framework for incorporating the effect of a
measurement. The hint was picked up by modeling a continuous measurement of
position having a certain result (selective measurement) by a restriction of the
Feynman path integral [25]. The method was extended to measurements of a
generic observable, function of momentum and position, by a restriction of the
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quantum propagator in the phase-space formulation [26, 27]. The restriction was
originally proposed as a Gaussian functional damping the paths proportionally to
the time-averaged squared difference between the value taken by the observable on
the paths and the measurement result, normalized to a given variance [28].
However, the corresponding quantum propagator has desirable dynamical semi-
group properties if the Gaussian restriction is chosen linear in time [29] which is
equivalent to make the previously proposed variance scaling with the inverse of the
measurement time [30].

The modifications introduced in the quantum propagator by the restricted path
integral approach can be incorporated into an effective Hamiltonian depending on
the selected measurement result. An effective wave equation was then derived which
is linear in the wave function if the selected measurement result is considered
known [31�33]. On the other hand, if the selected measurement result is to be
determined according to the evolution of the measured system the effective wave
equation is read as a nonlinear stochastic differential equation. Equivalence to the
previously proposed stochastic equations occurs [34].

The selective constraint imposed to the restricted path integral approach can be
removed by summing over all possible measurement outcomes. In this way a non-
selective process described by a density matrix was obtained [35]. The effect of the
interaction with the measurement apparatus modifies the corresponding quantum
propagator through an influence functional [36] which turns out to be equivalent
to those obtained with other methods [12, 37, 38].

From the above incomplete list of approaches, apart from an evident difference
in the languages, a rather unified picture of the problem of quantum measurement
emerges. It deserves uprising to the systematic theory of a quantum system evolving
under the effect of a measurement process. Such theory, named, for brevity,
measurement quantum mechanics, is formally presented in Section II.

A less formal introduction to measurement quantum mechanics is attainable
through the analysis of a model of measurement device which is rather general. This
is important not only as a justification of the formal approach to the theory but,
above all, for clearly defining the meaning of a measurement in relation to the
observer. As noted by Cini [39] paradoxical features arise from not considering the
objective role of the observer in a measurement process. The evolution of a
measured system in interaction with a measurement apparatus can not depend on
the observer looking or not at the pointer of the apparatus. In order to take into
account such objectivity the measurement apparatus must be classical with respect
to the observer [39]. In Section III we propose a simple model of measurement
apparatus shaped as an environment of particles linearly interacting with the
measured system and in contact with a heat reservoir at a fixed temperature [40].
In the high temperature limit the particles behave as an informational environment
which extracts information in objective way. Noticeably, the formal structure of
measurement quantum mechanics is obtained in the same limit.

A further analysis of measurement quantum mechanics is given in Section IV in
connection to a recent optical experiment [41] showing quantum Zeno effect.
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Comparison of the experimental results with the theoretical predictions indicate
that the experiment [41] was performed in a regime of very strong coupling of the
measurement apparatus with the measured system. Repetition of this experiment or
similar ones in a weaker coupling regime is desirable for investigating interesting
quantum features.

Some final remarks are given in Section V.

II. Measurement Quantum Mechanics

In this section we show the mathematical equivalence of the five approaches to
the problem of measurement in quantum systems briefly described in the intro-
duction. The demonstration is organized in steps relating neighboring pairs of
approaches and giving rise to the equivalence loop sketched in Fig. 1. No one of
these equivalence steps is novel. However, we reconsider all them in a unified
framework and language with naturally emerging definitions for concepts as selec-
tive and nonselective measurements as well as a priori and a posteriori analysis of
a measurement process. As a result we get a theory which takes into account the
effect of a measurement process in ordinary quantum dynamics through a
phenomenological parameter coupling the measured system to the measurement

Fig. 1. Measurement quantum mechanics: connections among different approaches.
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apparatus. We enter the loop of Fig. 1 at the group algebra approach to the master
equation and go on in the clockwise sense.

The dynamics of a system interacting with an environment is conveniently
described in terms of a reduced density matrix operator \̂(t) obtained by tracing
out the environment variables from the density matrix operator of the whole
system+environment. The unitary evolution of \̂(t) for the isolated system is
modified to an irreversible one by the interaction with the environment. In the limit
of a Markovian environment a dynamical law described by a completely positive
semigroup has been postulated [6, 7] resulting in the following master equation for
the reduced density matrix operator

d
dt

\̂(t)=&
i
�

[H� (t), \̂(t)]+
1
2

:
&

([L� &(t) \̂(t), L� &(t)-]+[L� &(t), \̂(t) L� &(t)-]) (1)

where H� (t)=H� ( p̂, q̂, t) is the Hamiltonian operator for a general nonautonomous
system and L� &(t) are the Lindblad operators representing the influence of the
environment on the system.

The above equation is thought to describe the general case of an open quantum
system. The evolution of a quantum system subjected to a measurement process is
a particular case where the environment is the measurement apparatus and the
Lindblad operators are proportional to the measured quantities. If, for simplicity,
we consider the measurement of a single observable represented by the Hermitian
operator A� (t)=A� ( p̂, q̂, t), the corresponding Lindblad operator can be chosen as
L� (t)=L� (t)-=}(t)1�2 A� (t). Note that we allow for an explicit time dependence of
A� (t) in order to include the case of general observables such as the continuous
quantum nondemolition ones [42]. The function }(t) has dimensions [}]=
[t&1A&2] and represents, as we shall see in the next section, the coupling of the
measured system to the measurement apparatus. The measurement process is con-
tinuous in time and the measurement coupling is time dependent as requested in the
description of a general experimental situation.

Due to the presence of commutators in the right hand side of (1) the trace of the
reduced density matrix operator is a conserved quantity which we assume to be
unity

Tr \̂(t)=1. (2)

We shall see later, when introducing selective measurements, that the reduced den-
sity matrix operator \̂(t) corresponds to an incoherent mixture of pure states
associated to selective processes. In antithesis, the process described by \̂(t) is called
nonselective and Eq. (2) can be interpreted as a normalization relation for the prob-
ability distribution over the selective processes. According to this interpretation, the
result of a nonselective measurement a(t) and its associated variance 2a(t)2, can be
evaluated by the trace rules

a(t)=Tr[A� (t) \̂(t)] (3)
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and

2a(t)2=Tr[(A� (t)&a(t))2 \̂(t)], (4)

respectively. Here overlining is used to denote the statistical average over the selec-
tive measurement results a(t) to be defined in the following together with the
corresponding probability distribution.

The equivalence of the master Equation (1) to a density matrix propagator
expressed in terms of an influence functional is our first step in the loop of Fig. 1.
By moving to the coordinate representation of the reduced density matrix operator

\(q1 , q2 , t)=(q1 | \̂(t) |q2) (5)

the corresponding evolution equation becomes the partial differential equation

�
�t

\(q1 , q2 , t)=_&
i
�

H \&i�
�

�q1

, q1 , t++
i
�

H \&i�
�

�q2

, q2 , t+
&

1
2

}(t) _A \&i�
�

�q1

, q1 , t+&A \&i�
�

�q2

, q2 , t+&
2

& \(q1 , q2 , t)

(6)

which can be transformed into the integral equation

\(q"1 , q"2 , t")=| dq$1dq$2G(q"1 , q"2 , t"; q$1 , q$2 , t$) \(q$1 , q$2 , t$). (7)

The two-point Green function (density matrix propagator) G has a phase-space
path-integral representation which can be derived by standard methods [35, 40].
For a small time interval 2t one has

(q"1| \̂(t") |q"2)=(q"1 | \̂(t"&2t) |q"2) +(q"1|
d
dt

\̂(t"&2t) |q"2) 2t+O(2t2). (8)

By using Eq. (1) and inserting at the appropriate places the four identities

| dp (1)
1 | p (1)

1 )( p (1)
1 | | dq (1)

1 |q (1)
1 )(q (1)

1 | | dp (1)
2 | p (1)

2 )( p (1)
2 | | dq (1)

2 |q (1)
2 )(q (1)

2 | (9)

where

(q | p)=
1

- 2?
exp \ i

�
pq+ (10)
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we get

\(q"1 , q"2 , t")=|
dp (1)

1

2?�
dq (1)

1 |
dp (1)

2

2?�
dq (1)

2

_exp \ i
� _ p (1)

1

q"1&q (1)
1

2t
&H( p(1)

1 , q (1)
1 , t"&2t)& 2t

&
1
2

}(t"&2t) [A( p (1)
1 , q (1)

1 , t"&2t)&A( p (1)
2 , q (1)

2 , t"&2t)]2 2t

&
i
� _ p (1)

2

q"2&q (1)
2

2t
&H( p (1)

2 , q (1)
2 , t"&2t)& 2t+

_\(q (1)
1 , q (1)

2 , t"&2t)+O(2t2). (11)

By iterating this relation N times with 2t=(t"&t$)�N and then taking the limit
N � �, a functional measure arises

d[ p] d[q]q", t"
q$, t$ = lim

N � �
`
N

n=1

dp(n)

2?�
`

N&1

n=1

dq(n) (12)

with boundary conditions imposed only to the q(t) paths. By comparison with
Eq. (7) we conclude

G(q"1 , q"2 , t"; q$1 , q$2 , t$)=| d[ p1] d[q1]q"1 , t"
q$1 , t$ | d[ p2] d[q2]q"2 , t"

q$2 , t$

_exp \ i
�

S[ p1 , q1]&
i
�

S[ p2 , q2]&Z[ p1 , q1 , p2 , q2]+
(13)

where

S[ p, q]=|
t"

t$
dt[ pq* &H( p, q, t)] (14)

Z[ p1 , q1 , p2 , q2]= 1
2 |

t"

t$
dt }(t)[A( p1 , q1 , t)&A( p2 , q2 , t)]2. (15)

The effect of the measurement in the two-point Green function is represented by the
functional exp(&Z) which reduces to the identity for }(t)=0, i.e., in absence of a
measurement process. The functional exp(&Z) is the Feynman�Vernon influence
functional [36] evaluated by tracing out the degrees of freedom of the environment
in the phase-space path-integral formulation of quantum mechanics. As we shall
see in the next section, the influence functional approach allows us to give an

101MEASUREMENT QUANTUM MECHANICS



File: 595J 553508 . By:CV . Date:27:06:96 . Time:14:41 LOP8M. V8.0. Page 01:01
Codes: 2813 Signs: 1654 . Length: 46 pic 0 pts, 194 mm

enlightening interpretation of the nonselective measurement processes with an
explicit expression of the parameter }(t).

The second step in the equivalence loop of Fig. 1 is accomplished by a formal
manipulation of the influence functional [35]. By using the identity

exp \&
1
2 |

t"

t$
dt }(t)[A( p1 , q1 , t)&A( p2 , q2 , t)]2+

=| d[a] exp \&|
t"

t$
dt }(t)[A( p1 , q1 , t)&a(t)]2&|

t"

t$
dt }(t)[A( p2 , q2 , t)&a(t)]2+

(16)

where the functional measure arises by slicing the interval [t$, t"] into N � � sub-
intervals at times t (n)=t"&n 2t with 2t=(t"&t$)�N, i.e.,

d[a]= lim
N � �

`
N

n=1

da (n) �2}(t (n)) 2t
?

, (17)

the two-point Green function G can be decomposed into a couple of one-point
Green functions G[a]

G(q"1 , q"2 , t"; q$1 , q$2 , t$)=| d[a] G[a](q"1 , t"; q$1 , t$) G[a](q"2 , t"; q$2 , t$)* (18)

where

G[a](q", t"; q$, t$)=| d[ p] d[q]q", t"
q$, t$ exp \ i

�
S[ p, q]&|

t"

t$
dt }(t)[A( p, q, t)&a(t)]2+ .

(19)

This one-point Green function is the phase-space generalization of the restricted
path-integral approach originally proposed on physical grounds as a damping of
the Feynman paths incompatible with the measurement result [25]. Here the
measurement result is the function a(t) which, according to the interpretation of the
functional measure d[a], is, in general, continuous but not differentiable. If we
assume that the measured system is in a pure state |�(t$)) at the beginning of the
measurement process, i.e.,

\(q$1 , q$2 , t$)=(q$1 | �(t$))(�(t$) | q$2) =�(q$1 , t$) �(q$2 , t$)*, (20)

Eq. (18) allows us to introduce a pure state |�[a](t)) which is the evolution at time
t>t$ of the initial one |�(t$)). Indeed, the reduced density matrix can be thought
as the functional integral

\(q1 , q2 , t)=| d[a] �[a](q1 , t) �[a](q2 , t)* (21)
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with the wave function of the pure state defined by the one-point Green function
G[a]

�[a](q", t")=| dq$ G[a](q", t"; q$, t$) �(q$, t$). (22)

The decomposition (18) introduces the announced statistical description of a non-
selective measurement process in terms of selective processes corresponding to
different measurement results a(t) and characterized by a certain probability dis-
tribution. Due to Eq. (21) the conservation of the trace of the reduced density
matrix operator gives

1=| d[a]&�[a](t)&2. (23)

Therefore, &�[a](t)&2 is the probability distribution for the selective process with
measurement result [a]. Once the probability distribution is known, the nonselec-
tive measurement result (3) and variance (4) which, according to (21), are written
also as

a(t)=| d[a](�[a](t)| A� (t) |�[a](t)) (24)

and

2a(t)2=| d[a] (�[a](t)| (A� (t)&a(t))2 |�[a](t)) , (25)

can be expressed in terms of the selective results a(t) by

a(t)=| d[a]&�[a](t)&2 a(t) (26)

and

2a(t)2= lim
{ � 0 + | d[a]&�[a](t)&2 (a(t)&a(t))(a(t&{)&a(t)), (27)

respectively. The equivalence between (24) and (26) as well as that one between
(25) and (27) can be demonstrated explicitly by using the definition of the func-
tional measure d[a] and the functional expression of the wave function �[a](q, t).
The prescription { � 0+ in (27) is used to avoid the divergence which occurs by
integrating the term a(t)2.

The third step of our equivalence loop, namely the existence of a differential
equation for the wave function �[a](q, t), follows from the same standard method
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used for the reduced density matrix. The explicit representation of the functional
integral giving the one-point Green function G[a] allows us to write the difference
of the wave function between two close times t and t+2t up to terms O(2t2) and
find the differential equation

�
�t

�[a](q, t)=_&
i
�

H \&i�
�

�q
, q, t+&}(t) _A \&i�

�
�q

, q, t+&a(t)&
2

& �[a](q, t).

(28)

The mathematical properties of this differential equation crucially depend on two
possible ways of analyzing a selective measurement process. A first possibility is to
consider an analysis a posteriori. The result of the measurement a(t) is already
known and one wants to complete the quantum mechanical information on the
measured system by evaluating the associated wave function �[a](q, t). In this case
Eq. (28) is an effective wave equation linear in the wave function. This equation is
deterministic but not regular, in general, depending upon the nature of the function
a(t). The effect of the measurement appears as an anti-Hermitian term added to the
Hamiltonian of the unmeasured system. Due to this term the norm of the wave
function �[a](q, t) is not conserved in agreement with the probabilistic normaliza-
tion (23).

A second possibility is to consider an analysis a priori. The result of the measure-
ment a(t) is to be predicted not deterministically but randomly with probability dis-
tribution &�[a](t)&2. Equation (28) becomes a stochastic differential equation non-
linear in �[a](q, t). This can be seen more explicitly by introducing an appropriate
noise '[a](t) which relates the selective result a(t) to the expectation value of the
operator A� (t) in the state |�[a](t)). Comparison of (24) and (26) allows us to write

a(t)=
(�[a](t)| A� (t) |�[a](t))

(�[a](t) | �[a](t))
+'[a](t) (29)

where '[a](t) is defined by

| d[a] &�[a](t)&2 '[a](t)=0. (30)

The nonlinearity of the stochastic equation for �[a](q, t) is made clear by inserting
(29) into (28). This stochastic equation is also unconventional in the sense that it
contains the square of the noise term '[a](t).

It is evident that Eq. (28) is fully appropriate in the a posteriori analysis of a
selective measurement process. However, in the a priori analysis one has to deal
with an unconventional stochastic equation containing a complicated noise func-
tion defined in terms of a time-dependent probability distribution. It would be more
desirable to have a standard stochastic equation with a white noise. This can be
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achieved, together with the fourth step in our equivalence loop, by a change of
variable in the measurement result. Analogously to Eq. (29) we write

a(t)=a[!](t)+
!(t)

2 - }(t)
(31)

where a[!](t) is considered known for the moment and !(t) is a noise whose charac-
terization is obtained through the following considerations. The two-point Green
function already decomposed in (18) into a couple of one-point Green functions
G[a] with functional measure d[a] can alternatively be decomposed into another
couple of one-point Green functions G[!]

G(q"1 , q"2 , t"; q$1 , q$2 , t$)=| d[!] G[!](q"1 , t"; q$1 , t$) G[!](q"2 , t"; q$2 , t$)* (32)

with Gaussian measure

d[!]= lim
N � �

`
N

n=1

d!(n) �2t
2?

exp(&1
2 !(n)22t) (33)

which makes G[!] exponentially linear in !

G[!](q", t"; q$, t$)=exp \|
t"

t$
dt

1
4

!(t)2+ G[a](q", t"; q$, t$)

=| d[ p] d[q]q", t"
q$, t$ exp \ i

�
S[ p, q]&|

t"

t$
dt }(t)

__[A( p, q, t)&a[!](t)]2&2[A( p, q, t)&a[!](t)]
!(t)

2 - }(t)&+ .

(34)

With respect to the Gaussian measure d[!], the noise !(t) has average

!(t)=| d[!] !(t)=0 (35)

and covariance

!(t1) !(t2)=| d[!] !(t1) !(t2)=$(t1&t2), (36)

i.e., it is a white noise. As in the previous case, the reduced density matrix can be
written as a functional integral

\(q1 , q2 , t)=| d[!] �[!](q1 , t) �[!](q2 , t)* (37)
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over pure states with wave functions �[!](q, t) defined by

�[!](q", t")=| dq$ G[!](q", t"; q$, t$) �(q$, t$). (38)

According to the expression of the Green function G[!] , the integral statement for
�[!](q, t) can be transformed into an operatorial expression by the usual slicing
procedure

|�[!](t"))=T� exp \|
t"

t$
dt _&

i
�

H� ( p̂, q̂, t)&}(t)[A� ( p̂, q̂, t)&a[!](t)]2

+- }(t)[A� ( p̂, q̂, t)&a[!](t)] !(t)&+ |�[!](t$)) (39)

where T� means chronological ordering. By introducing the Wiener process dw(t)=
!(t) dt with Ito algebra dw(t)2=dt and dw(t)2+n=0 (n>0), Eq. (39) is recognized
as the formal solution of the following Ito stochastic differential equation [43]

d |�[!](t))=_&
i
�

H� ( p̂, q̂, t)&
1
2

}(t)[A� ( p̂, q̂, t)&a[!](t)]2& |�[!](t)) dt

+- }(t)[A� ( p̂, q̂$, t)&a[!](t)] |�[!](t)) dw(t). (40)

In (40) we still have to specify the function a[!](t). According to the decomposition
(37), the conservation of the trace of the reduced density matrix operator gives

1=| d[!](�[!](t) | �[!](t)) . (41)

Since the Gaussian measure d[!] is normalized, up to a zero-average fluctuation
we have (�[!](t) | �[!](t)) =1. The normalization of the state |�[!](t)) uniquely
determines the expression of a[!](t). Indeed, by evaluating the Ito differential

d (�[!](t) | �[!](t)) =2 - }(t) (�[!](t)| A� (t)&a[!](t) |�[!](t)) dw(t)+O(dt3�2)

(42)

we see that the norm of the state |�[!](t)) is conserved only if we impose

a[!](t)=(�[!](t)| A� (t) |�[!](t)) . (43)

In this case the stochastic differential equation (40) becomes the nonlinear quantum
state diffusion equation proposed in [16, 20, 21].

Unlike the effective wave equation (28), the quantum state diffusion equation
(40) is suitable for the a priori analysis of the selective processes but awkward when
dealing with the a posteriori analysis. Indeed, in the latter case one should guess the
noise realization !(t) giving rise, according to (31) and (43), to the known value of
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the measurement result a(t). As in the decomposition of the reduced density matrix
in terms of the pure states |�[a](t)) , the nonselective measurement result (3) and
variance (4) can be expressed in terms of the pure states |�[!](t)) by

a(t)=| d[!](�[!](t)| A� (t) |�[!](t)) (44)

and

2a(t)2=| d[!](�[!](t)| (A� (t)&a(t))2 |�[!](t)) , (45)

respectively.
As fifth and final step, the equivalence loop of Fig. 1 is closed by regaining the

starting differential equation for the reduced density matrix operator

\̂(t)=|�[!](t))(�[!](t)| (46)

where overlining means functional integration with measure d[!]. By using Ito
algebra we get

d\̂(t)=d |�[!](t))(�[!](t)|+|�[!](t)) d (�[!](t)|+d |�[!](t)) d (�[!](t)|

=\&
i
�

[H� (t), \̂(t)]&
1
2

}(t)[A� (t), \̂(t)]]+ dt+O(dt3�2) (47)

which is Eq. (1) with the previously discussed choice for the Lindblad operators.

III. Influence Functional from an Informational Environment

Deeper insight into the problem of measurement in quantum mechanics can be
gained by completing the formal discussion of the previous section with general but
explicit models for a measurement process. For this purpose the influence functional
approach is a quite appropriate one and some attempts have already been done in
this direction [29, 37, 38, 44, 45]. Here we discuss the measurement process in
terms of an informational environment made of particles linearly interacting with
the measured system and in contact with a heat reservoir at fixed temperature. Each
particle selectively measures the evolution of the system while the collection of them
represents an apparatus performing a nonselective measurement. This model has
two nice features. Firstly, it is simple from a mathematical point of view and the
corresponding influence functional can be evaluated exactly [40]. Secondly, very
clear and controllable approximations can be made on the influence functional in
order to reduce it to the formal expression given in the previous section. These
approximations are physically related to the fact that the informational environ-
ment can be defined as a many-body system in which each particle, still interacting
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quantum mechanically with the measured system, behaves classically from the point
of view of the observer. Only in this case the decision of the observer to look or not
to look at the pointer of the instrument does not influence the result of the
measurement itself [39].

We start by considering the Hamiltonian of a measured system interacting with
an environment

Htot=H+Henv (48)

where H=H( p, q, t) is the Hamiltonian of the measured system with phase-space
coordinates p and q and Henv is the Hamiltonian of the interacting environment is
made by different sets of particles with mass M and phase-space coordinates Q&n

and P&n , where & labels the sets and n the particles in each set. The particles of each
set & interact linearly with an observable A&( p, q, t) of the system through a func-
tion *&(t) which transduces a displacement of the observables A& into displacements
of the coordinates Q&n

Henv=:
&n \

P2
&n

2M
+

M|2
&n

2
[Q&n&*&(t) A&( p, q, t)]2+ . (49)

The interaction of the nth particle of the environment with the & th observable is
characterized by a proper angular frequency |&n . In terms of spectral response we
can say that each particle measures the Fourier component of *&(t)A&( p, q, t) at its
proper angular frequency |&n .

We assume that at time t$ the system is described by the density matrix
\(q$1 , q$2 , t$) and each particle of the environment is at thermal equilibrium with
temperature T. Since the equilibrium value for the coordinates Q&n depends on the
coordinates p and q, the assumption of thermal equilibrium at time t$ implies a
correlation between the environment and the system at the same instant of time
[46]. The density matrix for the total system at time t$ can be written as

\tot(q$1 , Q$1 , q$2 , Q$2 , t$)=\(q$1 , q$2 , t$) \env($Q$1 , $Q$2 , t$) (50)

where

\env($Q$1 , $Q$2 , t$)=`
&n
�M|&n

?�
tanh \ �|&n

2kB T+
_exp \&

M|&n

2� \ $Q$2
1&n+$Q$2

2&n

tanh(�|&n�kBT )
+

2$Q$1&n$Q$2&n

sinh(�|&n �kBT )++ (51)

and

$Q$&n=Q$&n& 1
2*&(t$)[A&( p$1 , q$1 , t$)+A&( p$2 , q$2 , t$)]. (52)

The initial displacements $Q$&n are uniquely expressed in terms of the values
assumed by the measured observable at the initial points p$1 , q$1 , t$ and p$2 , q$2 , t$ by
requiring translational and time reversal invariance [46].
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The steps required to get the expression of the influence functional are standard
[36, 40]. At time t">t$ the reduced density matrix of the system, obtained by
tracing out the coordinates of the environment in the total density matrix

\(q"1q"2 , t")=| dQ" \tot(q"1 , Q", q"2 , Q", t"), (53)

can be obtained by propagating the initial density matrix \(q$1 , q$2 , t$)

\(q"1q"2 , t")=| dq$1 dq$2 G(q"1 , q"2 , t"; q$1 , q$2 , t$) \(q$1 , q$2 , t$) (54)

by the two-point Green function

G(q"1 , q"2 , t"; q$1 , q$2 , t$)=| d[ p1] d[q1]q"
1 , t"

q $
1 , t$ | d[ p2] d[q2]q"

2 , t"
q $

2 , t$

_exp \ i
�

S[ p1 , q1]&
i
�

S[ p2 , q2]+ F[ p1 , q1 , p2 , q2] (55)

where S[ p, q] is given by (14) and the influence functional F is

F[ p1 , q1 , p2 , q2]=| dQ" | dQ$1 dQ$2 | d[P1] d[Q1]Q", t"
Q $

1 , t$ | d[P2] d[Q2]Q", t"
Q $

2 , t$

_exp \ i
�

Senv[P1 , Q1 , A1]&
i
�

Senv[P2 , Q2 , A2]+
_\env($Q$1 , $Q$2 , t$) (56)

with

Senv[P, Q, A]=|
t"

t$
dt \:

&n

P&nQ4 &n&Henv(P, Q&*A, t)+ . (57)

In the above formulas the notation P, Q, $Q is a shortening for [P&n], [Q&n],
[$Q&n] and *, A for [*&], [A&]. The integrations in (56) are Gaussian and can be
performed giving

F[ p1 , q1 , p2 , q2]=`
&

exp \&|
t"

t$
dt |

t

t$
ds *&(t)[A&( p1 , q1 , t)&A&( p2 , q2 , t)]

_(:&(t&s) *&(s)[A&( p1 , q1 , s)&A&( p2 , q2 , s)]

+i;&(t&s)
d
ds

(*&(s)[A&( p1 , q1 , s)+A&( p2 , q2 , s)]))+ (58)
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where the two kernels

:&(t&s)=
M
2�

:
n

|3
&n coth \ �|&n

2kBT+ cos[|&n(t&s)] (59)

and

;&(t&s)=
M
2�

:
n

|2
&n cos[|&n(t&s)] (60)

describe fluctuation and dissipation phenomena, respectively [40].
Now we turn the attention to the requirement that the environment is informa-

tional, i.e., classical with respect to the observer so that the readout of information
through the coordinates Q has an objective value. Since a classical system is one
whose quantized structure can not be appreciated we must impose the thermal
fluctuations to be large in comparison to the quanta of the environment

kBT>>�|&n . (61)

In this case we have

:&(t, s)=
MkB T

�2 :
n

|2
&n cos[|&n(t&s)]. (62)

Memory effects in the fluctuation and dissipation kernels are an inessential com-
plication which can be avoided by assuming an ensemble of particles in the environ-
ment with a continuous spectrum of frequencies. If, for simplicity, we choose the
same frequency density dN&�d|=0�?|2 for each set & we get

:
n

|2
&n cos[|&n(t&s)]&|

�

0
d|

dN&

d|
|2 cos[|(t&s)]=0$(t&s). (63)

Of course, the above assumption of continuous frequency spectrum implies that
the condition (61) can not be satisfied in the whole frequency range [0, +�[ by
a finite temperature. Therefore, we should assume the condition (61) to be valid
only in a finite range [0, |max] which contains the most significant part of the
Fourier spectrum of *&(t) A&( p, q, t) and is relevant in monitoring the measured
observables. In this case the condition (61) allows us to neglect the dissipation
term, proportional to (60), with respect to the fluctuation one, proportional to (62).
In conclusion, the influence functional for an informational environment can be
written as

F[ p1 , q1 , p2 , q2]=`
&

exp \&1
2 |

t"

t$
dt }&(t)[A&( p1 , q1 , t)&A&( p2 , q2 , t)]2+ (64)
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with

}&(t)=*&(t)2 2M0kBT
�2 . (65)

Equations (64) and (65) generalize to more than one monitored quantity the
expression of the functional already introduced in (15) for nonselective
measurements. Note that }&(t) can be written as }&(t)=*&(t)2�_2{ where _2=
��2M0 and {=��kBT. The two parameters _ and { can be made indefinitely small
by increasing the density of meters (particles) in the informational environment
proportional to 0, or their temperature T, respectively. These characteristic length
and time play the role of similar parameters introduced ad hoc in the spontaneous
localization [10] and in the restricted path-integral [28] approaches.

We close this section by evaluating the measurement result arising as a readout
from the informational environment and its corresponding variance. The observer
reads the result of the nonselective measurement of the &th observable by looking
at a pointer which responds to the coordinates of the measurement apparatus. This
response is a weighted sum over the proper frequencies of the informational
environment and is characterized by a normalized response function `&n such that
the pointer displacement and its variance are

P&(t)=:
n

`&n Q&n(t) (66)

2P&(t)2=:
n

`&n2Q&n(t)2 (67)

where

Q&n(t)=Tr[Q� &n \̂tot(t)] (68)

2Q&n(t)2=Tr[(Q� &n&Q&n(t))2 \̂tot(t)]. (69)

Due to the condition (61) the thermal relaxation time of the measurement
apparatus turns out to be much smaller than the characteristic timescales of the
measured system. This allows us to use an adiabatic approximation for the total
density matrix operator and factorize it as

\̂tot(t)& \̂(t) \̂env(t) (70)

where \̂(t) is the reduced density matrix operator of the system which takes into
account the influence of the informational environment and \̂env(t) is the density
matrix operator of the informational environment at thermal equilibrium around
the instantaneous value of the measured observables. In the representation of the
environment coordinates \̂env(t) has matrix elements
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(Q1 | \̂env(t) |Q2)=`
&n
�M|&n

?�
tanh \ �|&n

2kBT+
_exp \&

M|&n

2� \$Q� 1&n(t)2+$Q� 2&n(t)2

tanh(�|&n �kBT )
+

2$Q� 1&n(t) $Q� 2&n(t)
sinh(�|&n �kBT ) ++

(71)

which are operators with respect to the system coordinates through the dis-
placements

$Q� &n(t)=Q&n(t)& 1
2*&(t)[A� &( p̂1 , q̂1 , t)+A� &( p̂2 , q̂2 , t)]. (72)

In this case the traces in (68) and (69) contain Gaussian integrals over the environ-
ment coordinates which can be performed giving

Tr[Q� &n \̂tot(t)]=*&(t) Tr[A� &(t) \̂(t)] (73)

Tr[Q� 2
&n \̂tot(t)]=

�

2M|&n
coth \ �|&n

2kBT++*&(t)2 Tr[A� &(t)2 \̂(t)]. (74)

In the limit (61) and for a continuous spectrum of frequencies with the previously
chosen density we have

P&(t)=*&(t) a&(t) (75)

2P&(t)2=| d| `&(|)
dN&

d|
kBT
M|2+*&(t)2 2a&(t)2 (76)

where a&(t) and 2a&(t)2 are given by (3) and (4), respectively.
Up to the transduction factor *&(t) and *&(t)2, respectively, Eqs. (75) and (76) are

the result of the measured observable A& and its variance read from the pointer. The
result of the measurement is the nonselective outcome of the observable A&

obtained from measurement quantum mechanics. The measurement variance is the
sum of a classical variance associated to the measurement apparatus and the quan-
tum variance associated to the measured system. The nonselective result and
variance (75) and (76) can be expressed in terms of selective processes. The decom-
position of a&(t) and 2a&(t)2 has already been discussed in the previous section.
Concerning the decomposition of the variance associated to the measurement
apparatus we note that the nonselective measurement performed by the informa-
tional environment is achieved by summing over the frequencies of the particles in
the environment. Therefore, the contribution to the measurement variance given by
the selective process at frequency | is kBT�M|2 as expected from the equipartition
theorem.

Equation (76) sets the definition of classical and quantum measurements. The
first ones are those characterized by a dominance of the variance associated to the
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measurement apparatus, i.e., by a dominance of the thermal (or Brownian) noise.
In the second ones the quantum variance of the measured system is larger than the
thermal noise. This second case promises a richer variety of experimental scenarios
because the measurement variance depends on the preparation of the measured
system and�or the strength of the coupling to the measurement apparatus.

4. Experiments on Quantum Zeno Effect

In many experimental situations one is dealing with an average of measurements
on an individual quantum system each time prepared in the same initial state or a
single measurement on an ensemble of independent identical quantum systems with
the same initial conditions. In both cases or in a combination of them averaged
measurement results, instead of individual measurement results, are actually
registered as outcome of the experiment. According to the discussion of section II
we have two ways for theoretically reproducing the outcome of such an experiment.
We can consider a priori selective measurements and obtain the experiment out-
come by averaging the corresponding selective results in the sense of Eq. (44). We
can also consider a nonselective measurement and evaluate the experiment outcome
directly from Eq. (3). The choice between the two methods may depend on the par-
ticular problem one is faced to. The method based on a nonselective process is more
direct but it is based upon the solution of a master equation for the reduced density
matrix operator which could be much more difficult than solving many times the
the diffusion state equation (40) and averaging the selective measurement results. In
this section we will deal with an experimental situation which can be described by
a simple 2 by 2 density matrix. The choice of the direct method based on nonselec-
tive measurements is, therefore, the natural one.

Let us consider a system with time-independent Hamiltonian and discrete energy
spectrum

H� |n) =En |n). (77)

The evolution of the system subjected both to an external time-dependent pertur-
bation V� (t) and to a continuous nonselective measurement of the observable
represented by the operator A� is given by

d\̂(t)
dt

=&
i
�

[H� +V� (t), \̂(t)]&
1
2

}(t)[A� , [A� , \̂(t)]]. (78)

An interesting situation is attained in the case the external perturbation V�
stimulates the system to make transitions among the unperturbed levels n and the
occupancy of some of these levels is measured. At what extent does the measure-
ment disturb the stimulated transitions? Eventually, inhibition of the stimulated
transitions due to the occupancy measurement occurs and one has an example of
what is called quantum Zeno effect [47�53].
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From a theoretical point of view a two-level system is the simplest one for study-
ing the interplay between the effects of the measurement process and of the external
perturbation. This situation has been also experimentally investigated [41]. An
ensemble of about 50009Be+ ions was stored in a Penning trap. Two hyperfine
levels of the ground state of 9Be+, created by a static magnetic field and hereafter
called levels 1 and 2, were driven by a radiofrequency, resonant between levels 1
and 2, turned on for T=256 ms. The amplitude of the radiofrequency was adjusted
to make the initially vanishing occupancy of level 2 to be unity at time T in absence
of other disturbances. During the radiofrequency pulse, n optical pulses of length
{=2.4 ms and frequency equal to the transition frequency between level 1 and a
third level 3 were also applied. The number of photons emitted in the spontaneous
transition 3 � 1, the transition 3 � 2 being forbidden, was roughly proportional to
the occupancy of level 1. The optical pulses acted, therefore, as a measurement of
the occupancy of level 1. The occupancy at time T of level 1 was observed to be
frozen near its initial unity value, i.e., the stimulated transition 1 � 2 in the period
T to be inhibited, proportionally to the number n of optical pulses.

Before trying a direct interpretation of the experiment [41], let us consider the
case of a continuous measurement of the occupancy of level 1 in a two-level system
subjected to stimulated transitions. In the representation of the unperturbed
Hamiltonian H� where \nm=(n| \̂ |m) we assume a perturbation V� with matrix
elements V11=V22=0 and V12=V*21=V0ei|(t&t0) with V0 real and |=
(E2&E1)��+$|. In the same representation the matrix elements of the measured
occupancy of level 1 are A11=1 and A12=A21=A22=0. The master equation for
the reduced density matrix operator then gives

\* 11(t)=&
i
�

[V12\21(t)&\12(t) V21]

\* 22(t)=&
i
�

[V21\12(t)&\21(t) V12] (79)

\* 12(t)=_&
i
�

(E1&E2)&
}
2& \12(t)&

i
�

[V12\22(t)&\11(t) V12]

and \21(t)=\12(t)*. The measurement coupling } is assumed constant. By
assuming and subtracting the first two equations we find

\* 11(t)+\* 22(t)=0

(80)\* 22(t)&\* 11(t)=
4
�

Im( \12(t) V21)

\* 12(t)=_&
i
�

(E1&E2)&
}
2& \12(t)&

i
�

V12( \22(t)&\11(t)).
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The first equation is the conservation of the trace of the reduced density matrix
operator in the case of a nonselective measurement, \11(t)+\22(t)=1. By defining

\12(t)=exp(i|(t&t0))[:(t)+i;(t)] \22(t)&\11(t)=#(t) (81)

with :, ; and # real, the other two equations give

:* (t)=&
}
2

:(t)+$|;(t)

(82);4 (t)=&
}
2

;(t)&
|R

2
#(t)&$|:(t)

#* (t)=2|R;(t)

where we have introduced the Rabi angular frequency

|R=2
V0

�
. (83)

The above system has a simple solution for $|=0 (resonance) and in this case we
get

\11(t)=
1
2

&
1
2

e&(1�4) }t _( \22(0)&\11(0)) \cos(wt)+
}

4w
sin(wt)+

+Im( \12(0) ei|t0)
2|R

w
sin(wt)& (84)

\12(t)=e&(i��)(E 1&E 2) t&(1�4) }t&i|t0 _Re( \12(0) ei|t0) e&(1�4) }t+Im( \12(0) ei|t 0)

_\cos(wt)&
}

4w
sin(wt)+

&i( \22(0)&\11(0))
|R

2w
sin(wt)& (85)

where

w=- |2
R& 1

16 }2. (86)

The angular frequency w coincides with the Rabi angular frequency |R when }=0.
In this case the effect of the measurement disappears and the system oscillates
between levels 1 and 2 with angular frequency |R . In the opposite limit of strong
measurement coupling the frequency w is imaginary and an overdamped regime is
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achieved in which transitions are inhibited. The border between the two regimes is
at w=0 corresponding to a critical measurement coupling

}crit=4|R=8
V0

�
. (87)

The behavior of the measured occupancy of level 1 which, according to Eq. (3),
turns out to be \11(t) is shown in Fig. 2 for different values of the measurement
coupling starting from initial conditions \11(0)=1 and \12(0)=0. The transition
between the Rabi-like regime and the Zeno-like regime is marked by the disappear-
ing of the oscillatory behavior at }=}crit .

The quantum variance associated to the nonselective measurement of level 1 can
be evaluated according to Eq. (4) and is \11(t) \22(t). It vanishes in the limit of
strong measurement coupling and oscillates with angular frequency |R between 0
and 1�4 in the opposite limit } � 0. At the critical measurement coupling }=}crit ,
after a short transient of the order of |&1

R , the quantum variance approaches the
constant and maximum value (1�2)2.

It is worth to note that an identical behavior of the reduced density matrix
operator is obtained if we consider H� as the measured quantity. In this case Eqs.
(84) and (85) still hold with the substitution } � }E (E2&E1)2 where }E is the
measurement coupling associated to the measurement of H� . This observation allows

Fig. 2. Measurement result \11(t) during the nonselective measurement of occupancy of level 1 in a
two-level system simultaneously driven by a resonant perturbation as a function of the adimensional
quantity }crit �}. The system is prepared in level 1 at time t=0.
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us to compare Fig. 2 with Fig. 1 of Ref. [27] where the quantum Zeno effect for
the same two-level system investigated here was analyzed a posteriori in the case of
a single selective measurement of energy. As expected, quantitative differences
between nonselective measurements and single selective measurements are obtained
but in both cases Zeno inhibition occurs for strong measurement coupling. The
behavior shown in Fig. 2 agrees also with that found in [54, 55] where the quan-
tum Zeno effect is analyzed within the quantum trajectory approach [56].

The discussion relative to Fig. 2 can be made general. In the limit } � 0 the
influence of the measurement disappears and ordinary quantum mechanics is
recovered. In the limit } � � the influence of the measurement dominates and the
average measurement result (3) as well as the corresponding variance (4) are frozen
into the values assumed at the beginning of the measurement. In the case of
Fig. 2 these values are \11(0)=1 and \11(0) \22(0)=0, respectively. Moreover, in
the limit } � � the off-diagonal elements of the reduced density matrix operator
vanish and a classical behavior is obtained.

In order to recover the results of the experiment [41] the previous analysis for
a continuous nonselective measurement with } constant must be generalized to a
series of measurement pulses spaced by intervals of no measurement. According to
the experimental procedure we consider n nonselective measurements of the
occupancy of level 1 with coupling } during the intervals [ jT�n&{, jT�n],
j=1, ..., n, with {=2.4 ms and T=256 ms. During the remaining part of the inter-
val [0, T] the system is subjected only to the radiofrequency perturbation at
|=2?_320.7 MHz whose amplitude V0 is fixed by the condition |R=?�T that
gives, in absence of measurement, \22(T )=1 if \22(0)=0. Since the radiofrequency
is resonant $|=0. The time evolution of the reduced density matrix operator
corresponding to the described process is obtained by successive iterations of (84)
and (85) with the same formulas evaluated for }=0. The theoretical probability for
the transition 1 � 2 at the end of the interval T

Pth
1 � 2(n, })=1&\11(T) (88)

can be compared with the corresponding experimental data Pexp
1 � 2(n) available

for n=1, 2, 4, 8, 16, 32, 64. The uncertainty for the experimental transition
probabilities is estimated to be 2P=0.02 [41].

In Fig. 3 we show the sum of the squared differences between the theoretical and
experimental transition probabilities normalized to the experimental uncertainties,
the /2, as a function the phenomenological parameter }�}crit . In the same figure we
show also the probability Q(/2 | &) that the observed value for the chi-square
should exceed the value /2(}�}crit) by chance. In our case the number of degrees of
freedom is &=7&1. The two arrows indicate the chi-square value obtained by
the same authors of [41] using a theoretical model based on the instantaneous
von Neumann collapse without (higher value) or with (lower value) corrections for
the finite duration of the measurement pulses, the effect of optical pumping from
level 2 to level 1 and the measured value of |R . Depending upon the statistical
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Fig. 3. Behavior of /2=�n |Pth
1 � 2(n, })&Pexp

1 � 2(n)| 2�2P2 as a function of }�}crit in fitting the experi-
ment [41]. The dashed line is the probability Q(/2 | 6) that the chi-square should exceed the value
/2(}�}crit) by chance. The two arrows indicate the chi-square value obtained in [41] by a model based
on instantaneous von Neumann collapse without (higher value) or with (lower value) corrections for
finite measurement-pulse duration, optical pumping and measured value of |R .

confidence level we adopt, from Fig. 3 we see that values of }�}crit-102 are
required to fit properly the experimental data. The minimum value of /2 obtained
from measurement quantum mechanics slightly differs from the /2 obtained on the
basis of the von Neumann postulate including experimental corrections.

It is neither surprising nor exciting that measurement quantum mechanics is able
to explain the experimental results of Ref. [41] in terms of a strong Zeno inhibi-
tion. Not surprising because measurement quantum mechanics contains more naive
approaches to the problem of quantum measurements as the von Neumann
postulate, for instance, which was already shown to reproduce the experimental
results. Not exciting because strong Zeno inhibition as well as full Rabi oscillations
are two trivial extreme regimes. However, measurement quantum mechanics tells us
that another interesting and unexplored regime exists. It is the regime which occurs
when the measurement coupling is comparable to the critical value. In this case a
strong competition between stimulated transitions and measurement inhibition
takes place as clearly recognized from Fig. 2 and also from the analysis of the
corresponding quantum variance, \11\22 , which gets maximum at }=}crit .
Measurement quantum mechanics suggests us also how to explore this regime. In
order to make }�}critt1 we should decrease } and�or increase }crit with respect to
the values used in [41]. According to the discussion of section III } can be
decreased by reducing the density of particles in the informational environment. In
the experiment [41] the ``particles'' of the informational environment are the
excited modes of the photon vacuum. Their density can be reduced by lowering the
intensity of the optical radiation acting as a measurement probe. On the other
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hand, Eq. (87) shows that }crit can be increased by means of the amplitude V0 of
the perturbation which stimulates the Rabi oscillations. In the experiment [41] this
amounts to increase the intensity of the radiofrequency radiation. Of course, by
increasing V0 the Rabi angular frequency increases too so that the condition
|R=?�T used in [41] can be maintained only by decreasing the period T and,
consequently, the duration of the measurement pulses. The possibility to vary the
strength of the coupling is also related to the opportunity of looking for
decoherence effects in the same experiment. Indeed, from Eq. (85) we see that the
off-diagonal elements of the density matrix vanish exponentially with time constant
{dec=4�}. For an appropriate measurement coupling, i.e., a proper intensity of the
optical radiation, {dec could be experimentally accessible by optical homodyne tomo-
graphy techniques [57�59] and decoherence phenomena could be investigated.

5. Conclusions

Measurement quantum mechanics has been introduced by showing the equiv-
alence among formalisms developed with the aim of including the effect of the
measurement on the dynamics of a quantum system. The theory contains one
parameter, the measurement coupling, for each measured observable.

The measurement couplings can be expressed in terms of the detailed properties
of a measurement apparatus which extracts information from the measured system
in objective way, i.e., independently of the presence of an observer looking at the
pointer of the apparatus. The definition of quantum and classical measurements
then emerges naturally according to the dominance, in the uncertainty of the poin-
ter, of the classical fluctuations due to the apparatus or of the quantum fluctuations
due to the measured system.

Alternatively, one can introduce the measurement couplings as phenomenological
parameters to be inferred from comparison with experimental data, as in the
example of the quantum Zeno effect.

Ordinary quantum mechanics is obtained as a limit case for vanishing measure-
ment couplings. In the opposite limit of infinite measurement couplings the
dynamics of the measured system is frozen and classical. Both limits are not inter-
esting, the first one because there is no measurement and the second one because
there is no quantum dynamics to measure. Interesting physics is in between and
measurement quantum mechanics is a tool for designing experiments in this inter-
mediate regime.
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