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Chaotic Properties of Quantum Many-Body Systems in the Thermodynamic Limit
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By using numerical simulations, we investigate the dynamics of a quantum system of interacting
bosons. We find an increase of properly defined mixing properties when the number of particles
increases at constant density or the interaction strength drives the system away from integrability. A
correspondence with the dynamical chaoticity of an associatedc-number system is then used to infer
properties of the quantum system in the thermodynamic limit. [S0031-9007(96)01693-6]
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Classical Hamiltonian systems are usually term
chaotic if their trajectories show local exponential in
stability, i.e., a positive Lyapunov exponent [1]. Th
definition reflects the generally nonlinear character of t
differential equations of the classical motion. Here w
will refer to this situation asdynamical chaos.

At quantum level, every system is described by a line
Schrödinger equation and dynamical chaos is not possi
One can resort to a definition of quantum chaos ba
on the correspondence principle. It is often assum
but not rigorously proved, that classically chaotic syste
give rise to quantum mechanical spectra whose statist
properties are well described by random matrix theo
[2]. Indeed, a large class of numerical examples
and recent theoretical work [4] indicate that the near
neighbor level spacing (NNLS) distribution of system
which are classically chaotic is well approximated by
Wigner distribution [1].

The above statements refer to confined systems wit
finite number of degrees of freedom. Quantum mecha
cally these systems are characterized by a disc
spectrum. The situation is different if we consider
many-body system in the thermodynamic limit, i.e., whe
the numberN of particles tends to infinity at constan
density. In this limit the spectrum is, in general, contin
ous, and true chaotic phenomena are not excluded [5,6

One should state clearly from the outset that in t
thermodynamic limit chaotic behavior, in the sense th
the system is mixing, can appear through a mechan
which has nothing to do with the nonlinearity of the in
teraction but is connected with the possibility of tran
forming space chaos into time chaos. This is true bo
at classical and quantum levels as it is illustrated in t
case of an infinite system of linearly interacting oscill
tors classical [7], or quantum [8], and in the case of a g
of noninteracting particles classical [9], or quantum [10
To clarify the point in question let us consider the case
a one-dimensional lattice of classical harmonic oscillato
coupled in such a way that it may be considered as
discretization of the wave equation in one space dim
sion. As it is well known the solutions of this equatio
depend on the combinationx 6 t, wherex and t are the
4322 0031-9007y96y77(21)y4322(4)$10.00
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space and time coordinates, respectively. As a con
quence, if the initial condition is a realization of a mix
ing stochastic process in space this is transformed by
dynamics into a mixing stochastic process in time at a
point in space. If the system is in equilibrium at som
temperatureT , the initial conditions to be considered ar
typical realizations of the stochastic process correspon
ing to the equilibrium Gibbs measure. We shall call th
chaotic behavior of noninteracting or linearly interactin
many-body systemskinematical chaos. Clearly, in the
cases considered in [8,10] Lyapunov exponents are z
because the dynamics in the thermodynamic limit is t
limit of the finite-dimensional dynamics.

In this paper we want to investigate what happe
when a nonlinear interaction is switched on, i.e., th
Hamiltonian describing the system is not quadratic. W
begin by recalling the general definition of mixing give
in [8,10]. Let us considerN interacting particles in a
volumeV , Rd described by the Hamiltonian̂H and let
Â and B̂ be two local observables. We shall say th
the system has the property of quantum mixing in th
thermodynamic limit if the following holds:

lim
t!`

lim
N ,V!`

NyV!r

kÂstdB̂l  lim
N ,V!`

NyV!r

kÂl lim
N ,V!`

NyV!r

kB̂l, (1)

where

k· · ·l 
Tr . . . e2ĤykBT

Tr e2ĤykBT
, Âstd  esiy h̄dĤt Âe2siy h̄dĤt .

As a rule, the limits on the left-hand side of (1) must b
taken in the order indicated. However, for the system
discussed in [8,10] the limits can actually be inverted, a
we shall assume that this applies also to the interact
systems considered in this paper.

Since, even if the interaction is nonlinear, the finite
dimensional dynamics is quasiperiodic, Lyapunov exp
nents are zero for any finiteN and, therefore, also in the
thermodynamic limit [11]. We expect, however, an influ
ence of the nonlinearity on the mixing properties of th
system. In particular, we expect that the strength of t
nonlinearity will affect the rate of convergence of thet
limit in (1) once the thermodynamic limit has been take
© 1996 The American Physical Society
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If N is finite, as will be the case in computer simulation
we expect the difference

kÂstdB̂l 2 kÂl kB̂l (2)

to oscillate in time with an averaged amplitude [se
Eq. (5)] which decreases when the interaction drives
system away from integrability. This amplitude shou
decrease also when the interaction strength is kept fi
andN increases withNyV constant.

We consider a system ofN spinless bosons of charg
q moving in a one-dimensional lattice withL sites and
described by the Hamiltonian

Ĥ 
LX

j1

faj â
y
j âj 2 bjseiu â

y
j11âj 1 e2iu â

y
j âj11dg

1

LX
j1

gj â
y
j â

y
j âjâj , (3)

where index correspondencej 6 L  j is assumed. The
operator̂a

y
j creates a boson in the sitej, andaj , bj, andgj

are the site, hopping, and interaction energies, respectiv
Dirichlet or periodic boundary conditions can be chose
In the first case the sites lie on a segment and we putbL 
0 andu  0. In the second case the system represen
ring threaded by a line of magnetic fluxf. The phase
factors areu  2pfyf0L, wheref0  hcyq is the flux
quantum. The system (3) has wide interest. Its tim
dependent mean-field approximations have applicatio
to molecular dynamics and nonlinear optics [12] and
electron transport in heterostructures [13].

For finite L and N the dimension of the Fock spac
spanned by the system (3) is finite and given by

D 
sN 1 L 2 1d!

N! sL 2 1d!
. (4)

The D-dimensional matrix representing the Hamiltonia
(3) in the base of the Fock statesjni

1 · · · ni
Ll, i  1, . . . , D,

whereni
j is the occupation number of thejth site in the

ith Fock state and
PL

j1 ni
j  N , can be diagonalized by

standard numerical methods with negligible errors.
We have calculated the quantity (2) for different loc

operatorsÂ and B̂ and for N # 7 with NyL  1. Fig-
ure 1 shows typical results obtained at zero temperat
for Â  B̂  â

y
k11âk 1 â

y
k âk11 with k  3. For sim-

plicity, in the numerical simulation we puta, b, and g

independent of the sitej. The number of particles and
sites considered,N  L  5 andN  L  7, may look
very small, but one has to remember that the complex
of the system is given by the Fock dimensionD which is
126 and 1716, respectively. Up to such values ofD we
observe that the amplitude of the oscillations of (2) d
creases in the presence of nonlinear interaction. By co
paring Figs. 1(a) and 1(b), we have also evidence o
decrease of these oscillations with increasingN at con-
stant density.

To make the above discussion quantitative we meas
the oscillating behavior of (2) by introducing the follow
s,

e
he
d
ed

ely.
n.

s a

e-
ns
to

n

l

ure

ity

e-
m-
a

ure
-

FIG. 1. Real part of (2) as a function of time forN  L  5
(a) and N  L  7 (b) at zero temperature. The system
has periodic boundary conditions withfyf0  0.3, a  0,
b  h, and g  h (solid line) or g  0 (dashed line).
The local operators considered areÂ  B̂  â

y
k11âk 1 â

y
k âk11

with k  3.

ing indicator

kÂB̂  lim
t!`

s
1
t

Z t

0
dt0 jkÂst0dB̂l 2 kÂl kB̂lj2. (5)

Mixing implies thatkÂB̂  0. If Â or B̂ commutes with
the HamiltonianĤ, kÂstdB̂l 2 kÂlkB̂l is identically zero
at zero temperature. The limit (5) can be evaluate
exactly and in Fig. 2 we show its value for the sam
observables of Fig. 1 as a function of the ratiogyb at
zero temperature. For fixeda, kÂB̂ depends only on
this ratio. Since the system considered is integrable f
g  0 and b  0 we expect a minimum ofkÂB̂, that
is, a maximal chaoticity, between these two limits. Fo
a  0 and NyL  1, this minimum should take place
at gyb , 1. The results shown in Fig. 2 confirm this
expectation as well the decrease ofkÂB̂ whenN increases
at constant density. Similar results are obtained at fin
temperature.

There is a naturalc-number system associated with a
system of bosons like the one we consider. This is o
tained by constructing a mean-field approximation whic
when quantized, reproduces the exact quantum equat
in the second quantization formalism [14]. We now pro
vide evidence that there exists a strict correspondence
tween the dynamics of thisc-number system and that of
the quantum system by evaluating the maximal Lyapun
exponent of the mean-field dynamics as a function of th
4323
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FIG. 2. Mixing indicator (5) at zero temperature for th
system of Fig. 1 as a function of the ratiogyb.

interaction strengthg. Nonlinear mean-field equations fo
the system (3) can be written as [15]

ih̄
d
dt

zjstd  faj 1 2sN 2 1dgjjzjstdj2gzjstd

2 bj21eiuzj21std 2 bje2iuzj11std, (6)

wherezjstd is the amplitude of the mean field in the sit
j. Conservation of the single-particle probability

LX
j1

jzjstdj2  1 (7)

and of the single-particle energy

E fz, zpg 
LX

j1

hajjzjstdj2 1 sN 2 1dgjjzjstdj4

2
£
bj21eiuzj21std 1 bje2iuzj11std

§
zp

j stdj

(8)

is a crucial constraint for a correct numerical simulatio
of (6).The corresponding maximal Lyapunov expone
l can then be numerically evaluated with negligib
errors [14]. In order to use a dimensionless quant
we consider the rescaled exponentlh̄yg when the ratio
gyb is varied at fixedb. In fact, l depends on both
b and gyb. The curve in Fig. 3 shows thatlh̄yg

has a pronounced maximum in the same region wh
kÂB̂ has a minimum. This means that the tendency
chaoticity of the finite quantum system and the chaotic
of its c-number counterpart have the same qualitat
behavior away from integrability points. This aspect c
be analyzed in greater detail and will be discussed in
subsequent publication.

The numerical study of the quantum system (1) b
comes prohibitive for values ofD larger than a few thou-
4324
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FIG. 3. Rescaled maximal Lyapunov exponentlh̄yg of the
mean-field system (6) as a function of the ratiogyb for a  0,
b  h, N  L  5, fyf0  0.3, and periodic boundary con-
ditions. The initial mean-field componentszjs0d are arbitrary
complex numbers withjzjs0dj2  1yL.

sands. To get an idea of what happens when we increa
further the number of particles, we make the reasonab
hypothesis that the chaotic behavior increases if the sam
happens for the correspondingc-number system. The nu-
merical evaluation of the maximal Lyapunov exponent o
the mean-field dynamics is feasible also for large value
of N and L. We now show that the chaotic behavior of
the mean-field evolution of our system increases mon

FIG. 4. Maximal Lyapunov exponentl of the mean-field
system (6) as a function of the numberN of particles at
constant densityNyL  1. We have a  0, b  h, and
g  hLysN 2 1d with fyf0  0 and Dirichlet boundary
conditions (squares) andfyf0  0.3 and periodic boundary
conditions (diamonds). The initial mean-field componentszjs0d
are chosen in order to have the same single-particle energy
any value ofN .
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tonically and eventually becomes constant when the the
modynamic limit is approached. Figure 4 displays th
behavior of the maximal Lyapunov exponent of (6) up
to N  2000 for N  L andg . b, that is, in the region
of maximal chaoticity. We have a satisfactory evidenc
that the maximal Lyapunov exponent reaches a limitin
value which we assume to characterize the dynamics
the thermodynamic limit.

On the basis of these results we conclude that th
maximal chaoticity of the quantum system should als
increase steadily until the limitkÂB̂  0 is reached.

The approach that we have developed in this paper
clearly applicable to the study of the chaotic properties o
any quantum system and is complementary to the usu
search of quantum signatures of classical chaos.
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