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Chaotic Properties of Quantum Many-Body Systems in the Thermodynamic Limit
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By using numerical simulations, we investigate the dynamics of a quantum system of interacting
bosons. We find an increase of properly defined mixing properties when the number of particles
increases at constant density or the interaction strength drives the system away from integrability. A
correspondence with the dynamical chaoticity of an associatedmber system is then used to infer
properties of the quantum system in the thermodynamic limit. [S0031-9007(96)01693-6]

PACS numbers: 05.45.+b, 03.65.—w, 73.40.Gk

Classical Hamiltonian systems are usually termedspace and time coordinates, respectively. As a conse-
chaotic if their trajectories show local exponential in-quence, if the initial condition is a realization of a mix-
stability, i.e., a positive Lyapunov exponent [1]. This ing stochastic process in space this is transformed by the
definition reflects the generally nonlinear character of thelynamics into a mixing stochastic process in time at any
differential equations of the classical motion. Here wepoint in space. If the system is in equilibrium at some
will refer to this situation aslynamical chaos. temperaturel’, the initial conditions to be considered are

At quantum level, every system is described by a lineatypical realizations of the stochastic process correspond-

Schradinger equation and dynamical chaos is not possibléng to the equilibrium Gibbs measure. We shall call the
One can resort to a definition of quantum chaos basedhaotic behavior of noninteracting or linearly interacting
on the correspondence principle. It is often assumednany-body systemg&inematical chaos. Clearly, in the
but not rigorously proved, that classically chaotic system&ases considered in [8,10] Lyapunov exponents are zero
give rise to quantum mechanical spectra whose statisticilecause the dynamics in the thermodynamic limit is the
properties are well described by random matrix theorylimit of the finite-dimensional dynamics.
[2]. Indeed, a large class of numerical examples [3] In this paper we want to investigate what happens
and recent theoretical work [4] indicate that the nearesivhen a nonlinear interaction is switched on, i.e., the
neighbor level spacing (NNLS) distribution of systemsHamiltonian describing the system is not quadratic. We
which are classically chaotic is well approximated by abegin by recalling the general definition of mixing given
Wigner distribution [1]. in [8,10]. Let us considelV interacting particles in a

The above statements refer to confined systems with wolumeV C R? described by the HamiltoniaA and let
finite number of degrees of freedom. Quantum mechaniA and B be two local observables. We shall say that
cally these systems are characterized by a discretthe system has the property of quantum mixing in the
spectrum. The situation is different if we consider athermodynamic limit if the following holds:
many-body system in the thermodynamic limit, i.e., when

the numberN of particles tends to infinity at constant lm NI,'vnl ANB) = Nl,'vnl (A4) NI.'vnl (B), 1)
density. In this limit the spectrum is, in general, continu- NIv=e NV=p o NIV
ous, and true chaotic phenomena are not excluded [5,6].where

One should state clearly from the outset that in the Tr e H/keT

thermodynamic limit chaotic behavior, in the sense that(---) = A(t) = el/MHI o=/ WA
the system is mixing, can appear through a mechanism
which has nothing to do with the nonlinearity of the in- As a rule, the limits on the left-hand side of (1) must be
teraction but is connected with the possibility of trans-taken in the order indicated. However, for the systems
forming space chaos into time chaos. This is true botldiscussed in [8,10] the limits can actually be inverted, and
at classical and quantum levels as it is illustrated in theve shall assume that this applies also to the interacting
case of an infinite system of linearly interacting oscilla-systems considered in this paper.

tors classical [7], or quantum [8], and in the case of a gas Since, even if the interaction is nonlinear, the finite-
of noninteracting particles classical [9], or quantum [10].dimensional dynamics is quasiperiodic, Lyapunov expo-
To clarify the point in question let us consider the case ohents are zero for any finit¥ and, therefore, also in the

a one-dimensional lattice of classical harmonic oscillatorshermodynamic limit [11]. We expect, however, an influ-
coupled in such a way that it may be considered as thence of the nonlinearity on the mixing properties of the
discretization of the wave equation in one space dimensystem. In particular, we expect that the strength of the
sion. As it is well known the solutions of this equation nonlinearity will affect the rate of convergence of the
depend on the combination =+ ¢z, wherex andt are the limit in (1) once the thermodynamic limit has been taken.

b}

Tr e—H/ksT
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If N is finite, as will be the case in computer simulations, o BT

we expect the difference La) N=L=5,
(A()B) — (A)(B) ) N N L

to oscillate in time with an averaged amplitude [see i Al
Eq. (5)] which decreases when the interaction drives the
system away from integrability. This amplitude should
decrease also when the interaction strength is kept fixed
andN increases withV /V constant.

We consider a system @ spinless bosons of charge
g moving in a one-dimensional lattice with sites and

described by the Hamiltonian
L
=1

0.0 K4

~

~

Re[(A(t) B)—(A)(B)]

. i 9T —ioats
H = Z[ajajaj - ﬂj(eleaj+1aj + e ”gaj aj+1)]
J

L
ATt a o
+ D a4 450, 3) S ¥
j=1 B ¥
N B . B
where index correspondenge+ L = j is assumed. The 0 10 20 30 40
operator&;-r creates a boson in the sjieanda;, 8, andy; t (1/7n)

are the site, hopping, and interaction energies, respectivel . : o
Dirichlet or periodic boundary conditions can be chosen(}ill;3 'a%{d ﬁialegtff(%) gf {;g?gctté%]p(grgmfem T_hé ;ygtem

In the first case the sites lie on a segment and wggput  has periodic boundary conditions with /¢y = 0.3, @ = 0,
0 and® = 0. In the second case the system represents 8 = 5, and y = 5 (solid line) or y = 0 (dashed line).
ring threaded by a line of magnetic fluk. The phase The local operators considered are= B = &,:‘Hak + &Z&kﬂ
factors ared = 27 ¢/ poL, Wheregy = hc/q is the flux — with k = 3.

quantum. The system (3) has wide interest. Its time-

dependent mean-field approximations have applications

to molecular dynamics and nonlinear optics [12] and to

electron transport in heterostructures [13]. ing indicator
For finite L and N the dimension of the Fock space ;
spanned by the system (3) is finite and given by kip = lim \/L[ dt' (A(#)B) — (AY(B)2.  (5)
_ t—® t 0
(N +L—1)!
b= N'(L — 1! ° ) L SN )
: : Mixing implies thatx;z = 0. If A or B commutes with

The_ D-dimensional matrix representing the Hamiltoniany,e Hamiltonianfl, (A(1)B) — (AXB) is identically zero
(3)in thie base of the Fock stateg ---nr),i = 1,....D, 4t zero temperature. The limit (5) can be evaluated
wheren; is the occupation number of thigh site in the  exactly and in Fig. 2 we show its value for the same
ith Fock state and ;_, nj = N, can be diagonalized by observables of Fig. 1 as a function of the rajigg at
standard numerical methods with negligible errors. zero temperature. For fixed, «;; depends only on
We have calculated the quantity (2) for different localthis ratio. Since the system considered is integrable for
operatorsA and B and forN = 7 with N/L = 1. Fig- vy =0 and B8 = 0 we expect a minimum ok, that
ure 1 shows typical results obtained at zero temperaturg, a maximal chaoticity, between these two limits. For
for A= B =a). a + alags, with k = 3. For sim- & =0 and N/L = 1, this minimum should take place
plicity, in the numerical simulation we put, 8, andy atvy/B ~ 1. The results shown in Fig. 2 confirm this
independent of the sitg. The number of particles and expectation as well the decreasexqf, whenN increases
sites consideredy = L = 5 andN = L = 7, may look at constant density. Similar results are obtained at finite
very small, but one has to remember that the complexitgemperature.
of the system is given by the Fock dimensibrwhich is There is a naturat-number system associated with a
126 and 1716, respectively. Up to such valuedDolve  system of bosons like the one we consider. This is ob-
observe that the amplitude of the oscillations of (2) de-tained by constructing a mean-field approximation which,
creases in the presence of nonlinear interaction. By conwhen quantized, reproduces the exact quantum equation
paring Figs. 1(a) and 1(b), we have also evidence of @& the second quantization formalism [14]. We now pro-
decrease of these oscillations with increasivicat con-  vide evidence that there exists a strict correspondence be-
stant density. tween the dynamics of this-number system and that of
To make the above discussion quantitative we measurtae quantum system by evaluating the maximal Lyapunov
the oscillating behavior of (2) by introducing the follow- exponent of the mean-field dynamics as a function of the
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FIG. 2. Mixing indicator (5) at zero temperature for the FIG. 3. Rescaled maximal Lyapunov exponerit/y of the
system of Fig. 1 as a function of the ratjg/ 3. mean-field system (6) as a function of the rati6g for « = 0,

B=mnN=L=5, ¢/d = 0.3, and periodic boundary con-
ditions. The initial mean-field componenis(0) are arbitrary

. . . . . complex numbers witthz;(0)]* = 1/L.
interaction strengtly. Nonlinear mean-field equations for prex nd withe; (O) /

the system (3) can be written as [15]

il 4 zi(t) = [a; + 2(N — Dy:lz;(0)]*z;:(0) sands. To get an idea of what happens when we increase
dr ™ ! 7 / further the number of particles, we make the reasonable
— Bi1e2; (1) — Bje z;01(1), (6) hypothesis that the chaotic behavior increases if the same
' ' ' happens for the correspondingnumber system. The nu-
wherez;(t) is the amplitude of the mean field in the site merical evaluation of the maximal Lyapunov exponent of

J. Conservation of the single-particle probability the mean-field dynamics is feasible also for large values
L of N andL. We now show that the chaotic behavior of
Z |Zj(t)|2 =1 (7)  the mean-field evolution of our system increases mono-
j=1
and of the single-particle energy 05 L —
L S i
Flz,2"]1 = D {ajlz;(0P + (N — Dy;lz; (0l ; g 8
Jj=1 0.4 — 8 =
- [Bj*lelezj'fl(t) + ,Bje_l()ZjH(f)]Z;(t)} i o & 8
® z °3[ o D -
N - o0
is a crucial constraint for a correct numerical simulation £ i oH
of (6).The corresponding maximal Lyapunov exponent< 92 [~ o ]
A can then be numerically evaluated with negligible i o ]
errors [14]. In order to use a dimensionless quantity 01 o ]
we consider the rescaled exponevit/y when the ratio i 1
v/B is varied at fixedB. In fact, A depends on both i
B and y/B. The curve in Fig. 3 shows thai//y 0.0 gkl ck
has a pronounced maximum in the same region wher: 10 10 10 10 10
p g
ki3 has a minimum. This means that the tendency tc N

chaoticity of the finite quantum system and the chaoticityr|G. 4. Maximal Lyapunov exponent of the mean-field
of its c-number counterpart have the same qualitativesystem (6) as a function of the numbar of particles at
behavior away from integrability points. This aspect canconstant densityN/L = 1. We havea =0, 8 = 7, and

: : ; ‘ : =nL/(N — 1) with ¢/¢y =0 and Dirichlet boundary
be analyzed in greater detail and will be discussed in %’onditions (squares) ang /¢ — 0.3 and periodic boundary

subsequent pgblication. conditions (diamonds). The initial mean-field componen(e)
The numerical study of the quantum system (1) beare chosen in order to have the same single-particle energy for
comes prohibitive for values dp larger than a few thou- any value ofwn.
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