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We study the dynamics of classical and quantum systems linearly interacting 
with a classical environment represented by an infinite set of harmonic oscillators. 
The environment induces a dynamical localization of the quantum state into a 
generalized coherent state for which the n --+ 0 limit always exists and reproduces 
the classical motion. We describe the consequences of this localization on the 
behavior of a macroscopic system by considering the example of a Schrodinger 
cat. 

INTRODUCTION 

The problem of how classical behavior is regained from quantum mechanics in 
the macroscopic limit can be conceptually solved by recognizing that a macroscopic 
system is never completely isolated by the external world. It has been argued1• 

2
• 3 that 

the interaction with an environment can, after a transient whose duration presumably 
depends on the coupling strength, drive the totality of the admissible states of the 
Hilbert space into those having classical limit, formally n --+ 0. 

In a recent paper in collaboration with R. Onofrio and M. Patriarca4
, we sub

stantiated this conjecture by analyzing the dynamics of general classical and quantum 
systems linearly interacting with an infinite set of degrees of freedom. Here, we briefly 
review the main results of this model and describe in detail how the pathologies of a 
simple Schrodinger cat are cured by the presence of the environment. 

DYNAMICS OF SYSTEMS INTERACTING WITH AN ENVIRONMENT 

Let us consider a system described by the classical Hamiltonian 

p2 
H(p, q, t) = 

2
m+ V(q, t) ( 1) 

We model its interaction with a classical environment by a linear coupling to an infinite 
set of degrees of freedom {Pn, Qn}· The Hamiltonian for the total system is 

Htot = H(p, q, t) + Hm(P, Q - q) , (2) 

Quantum Communication, Computing. a11d Measurement 2 
Editerl by Kumar et al., K.luwer Academic I Plenum Publishers, New York, 2000. 359 



where 

(3) 

The classical dynamics of the system modified by the environment is described 
in terms of equations obtained by formally solving the harmonic motion of {Pn, Qn}· 
For an environment having frequencies { wn} distributed with density dN / dw = O(n -
w)2mr/rrMw2 , we get, for times» n-1

, the Markovian evolution 

dp(t) = - [rp(t) + oq V(q(t), t)] dt + J2mrkBT~(t)dt 

dq(t) = p(t) dt 
m 

(4) 

(5) 

with initial conditions p' and q' at timet' . If the the initial conditions {P~, Q~} of the 
environment are chosen as a realization of the equilibrium Gibbs measure at temper
ature T, then ~(t) is a realization of a stochastic process in time with respect to the 
same measure with properties ~(t) = 0 and ~(t)~(s) = J(t - s). Therefore, Eqs. (4,5) 
are stochastic Langevin equations. 

In alternative to the detailed stochastic description, we may be interested to de
termine the average behavior of the system obtained by considering all the possible 
realizations of the initial conditions of the environment. In this case, the system is 
described by a probability density W(p, q, t) solution of the Fokker-Plank equation 
associated to ( 4-5) 

with initial conditions W(p, q, t') = o(p- p')o(q- q') . 
The classical analysis can be repeated at quantum level. Besides obvious technical 

modifications, there is now a conceptual difference. Since we do not know how to 
describe the coupling of classical and quantum degrees of freedom, we must start with 
a quantum description of both the system and the environment. The condition of 
classical behavior of the environment can be reintroduced later by asking that the 
thermal energy k8 T is much larger than the energy spacing of the highest-frequency 
oscillators hn. If this high temperature condition is satisfied, for times » n- 1 the 
system is described by the nonlinear stochastic Schrodinger equation 

di1/J1~1 (t)) = -* [s(_p, ij, t) + ~(Pii + ii.P)] I1/J1~1 (t))dt 
-~[.At .A+ a(t)*a(t)- 2a(t)*A]I1/J[~J(t))dt +[.A- a(t)]ii/J[~J(t))~(t)dt, (7) 

where A= J2mrkBT/h2 ij+iJr/8mk8 T p, a(t) = (1/J[~J(t)IA I'Ij;[(J(t)), and ~(t) is a real 
white noise. 

A direct characterization of the average properties of the quantum system is also 
possible. By introducing the reduced density matrix operator 

p( t) = I1/J1~1 ( t)) ( 'lj;I(J ( t) I (8) 

and the associated Wigner function 

1 I (i ) z z W(p, q, t) = 
2
rrh dz exp hpz (q- 2ie(t)iq + 2), (9) 
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from Eq. (7) we obtain 

atw(p, q, t) = [ - ~ aq + E (~rn (2n ~ l)!a;n+lv(q , t)a;n+l 

!i?i ] + 8p (Jp + TT_tikBT8v) + 16mkBTa; W(p, q, t). (10) 

Note that (7) and (10) reduce to the corresponding quantum equations for an isolated 
system when 1 = 0. 

W(p,q,O) h 

0.5 

0 

-0.5 

-1 

W(p,q,O) h 

0.5 

0 

-0.5 

-1 

a) 

p/P 

b) 

Figure 1. Wigner function at time 0 corresponding to the cat state (16) for kBTfh:y = 100. In case 
a) we have P = 20VfuWY and Q = 2Jm"(/h while in b ) P = lOOVfuWY and Q = lOJm"ffh. 

DYNAMICAL LOCALIZATION INTO A COHERENT STATE 

In the previous section, we have described the equations which govern the dynamics 
of classical and quantum systems in interaction with a classical environment. Now, we 
show that the quantum dynamics reduces to the classical one when the limit h --t 0 
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is taken. Note that this is not always possible in the case of an isolated system where 
well known pathological limits are encountered5 . 
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Figure 2. As in Fig. 1 but at the adimensional time 1t = !10-3 . Note that the adimensional 
characteristic time (20) is about ~10-2 in case a) and 10- 4 in case b). 

It is possible to demonstrate rigorously6
•
4 that for a system with potential 

1 
V(q, t) = vo(t) + v1(t)q + 2mw~q2 (11) 

after a time which, in the worst case, is of the order of Jn/rk8 T t he solutions of Eq. 
(7) become of the form 

1-rPi~J(t)) = exp [ -*cp(t)J ip(t)q(t)), (12) 

where cp(t) is real, p(t) = (-rf.;[~J(t)ifil-rPi~J (t)), q(t) = (-rf.;[{J(t)i<ll-rPi~J(t)), and 

(qlp(t)q(t)) = (2na:)- 114 exp {-
1 

-
4
;t;q [q - q(tW + ~p(t)[q- q(t)]} . (13) 
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The state (13) defined in terms of the parameters 

2 h 
(T =

q m 

2 -apq-

12 - w~ + .j('Y2 - w~)2 + 16 (!kBT/h) 2 

32 (!kBT/h)2 (14) 

(15) 

is a generalized coherent state which admits then----* 0 limit. Moreover, the convergence 
into this coherent state takes place in a time which vanishes for n ----* 0. Therefore, a 
linear system like (11) always has classical limit at any time t > t' even if the n ----* 0 
limit does not exist at the initial timet'. Since the contribution to the Green function 
of Eq. (7) due the system-environment coupling is of the form q2n-1

, these results 
apply in the limit n ----* 0 also to nonlinear systems. 

We illustrate the consequences of the localization into a coherent state induced 
by the coupling with the environment by analyzing the evolution of a cat state. For 
simplicity, consider a free quantum particle which at timet' = 0 is in the superposition 
state 

(
1 1 1 1 ) 

1~(0)) = N 1-P- -Q) + 1- - P-Q) 
2 2 2 2 

(16) 

where I± ~p ± ~Q) are coherent states (13-15) with w0 = O_and N is a normalization 
factor_ The state (16) has no classical counterpart. Indeed, its corresponding Wigner 
funct ion 

W(p,q,O) = N 2 
{ W~P-~q(p,q) + W_~p~q(p,q) + Woo(p,q) 2cos [~Q + *p]} (17) 

does not have n ----* 0 limit due to the presence of the last oscillating term. In Eq. 
(17) , we indicated with Wpoqo (p, q) the Wigner function of the coherent state [p0q0 ) 

having limit Wp0 q0 (p , q) ~ J(p- Po)J(q- q0 ). In more physical terms, if we consider 
a macroscopic limit, for instance increase the values of P and/or Q , the oscillating 
interference term in (17) never disappear contrarily to common sense. An example of 
this pathological behavior is shown in Fig. 1. 

At a later time, the situation is different . By solving Eq. (10) with the initial 
condition ( 17), we find the following expression for the Wigner function 

W(p, q, t) = N 2 {Wlp_lq(P, q, t) + W_lP+lq(P, q, t) + Woo (P, q, t) 
2 2 2 2 

Xe-CP-Q+EP- Q(t) 2 COS [pT p_Q(t) + q<l>p_q(t)] }· (18) 

The definitions of Wp0q0 (p, q, t), Cp_q, L:p_q(t), T P- Q(t) , and <l>p_q (t) can be found 
in Ref. 4. The functions Wp0q0 (p, q, t) are solution of Eq. (10) with initial condi
tion Wp0 q0 (p, q). In the h----* 0 limit, they reduce to phase-space probability densities 
w;~q0 (p, q, t) solution of the classical Fokker-Plank equation (6) with initial condition 
J(p- Po)J(q- qo). The exponential t erm exp[-CP-Q + Ep_q(t)] vanishes for h----* 0 at 
any t > 0 and 

(19) 

The classical limit is equivalently reached for large values of P and/or Q. An estimate 
of the critical values of P and Q for which the Wigner function changes from (18) 
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to (19) can be obtained by observing that 'I:p_o(t) = CP-Q - tjT + O(t2
) with t he 

characteristic time T given by 

(20) 

Note that T(P, Q) --+ 0 when P and/or Q diverge. At a chosen time t > 0, we have 
quantum behavior for T(P, Q) » t (microscopic system) and classical behavior for 
T(P, Q) « t (macroscopic system) . An example of this quantum-to-classical transition 
is shown in Fig. 2. 

Finally, we note that EP- Q(t) , 1 p_Q(t) , and <l>p_Q(t) vanish fort--+ oo so that in 
this limit the Wigner function becomes 

The classical limit, formally h --+ 0, is reached only for a macroscopic system, not in 
the long time limit of a microscopic one. 

REFERENCES 

l. E. Joos and H. D. Zeh, z. Pliys. B 59: 223 (1985). 
2. W. H. Zurek, Pliys. Rev. D 24: 1516 (1981); 26: 1862 (1982) . 
3. M. Cini, Nuovo Cimento B 73: 27 (1983). 
4. C. Presilla, R. Onofrio, and M. Patriarca, J. Pliys. A 30:7385 (1997) . 
5. E. Schri:idinger, Natunvissenschaften 23: 807 (1935); 23: 823 (1935) ; 23: 844 (1935) [English 

translation by J.P. Trimmer, Proc. Am. Phi/os. Soc. 124: 323 (1980)). 
6. J. Halliwell and A. Zoupas, Pliys. R ev. D 55: 4697 (1997). 

364 


