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Abstract. – We present a simple derivation of a Feynman-Kac–type formula to study fermionic
systems. In this approach the real time or the imaginary time dynamics is expressed in terms of
the evolution of a collection of Poisson processes. This formula leads to a family of algorithms
parametrized by the values of the jump rates of the Poisson processes. From these an optimal
algorithm can be chosen which coincides with the Green Function Monte Carlo method in the
limit when the latter becomes exact.

A crucial issue in quantum Monte Carlo methods is the choice of the most convenient
stochastic process to be used in the simulation of the dynamics of the system. This aspect
is particularly evident in the case of fermion systems [1-4] due to the anticommutativity
of the variables involved which for long time have not lent themselves to direct numerical
evaluation. In a recent paper [5] progress has been made in this direction by providing exact
probabilistic expressions for quantities involving variables belonging to Grassmann or Clifford
algebras. In particular, the real time or the imaginary time evolution operator of a Fermi
system or a Berezin integral can be expressed in terms of an associated stochastic dynamics
of a collection of Poisson processes. This approach depends on an older general formula to
represent probabilistically the solution of a system of ordinary differential equations (ODE) in
terms of Poisson processes [8]. In this paper, we present a simple derivation of a similar formula
to study fermionic systems, in particular, the Hubbard model. However, the fermionic nature
of the Hamiltonian plays no special role and similar representations can be written down for any
system described by a finite Hamiltonian matrix. This formula leads to a family of algorithms
parametrized by the values of the jump rates of the Poisson processes. For an optimal choice of
these parameters we obtain an algorithm which coincides with the well-known Green Function
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Monte Carlo method in the limit when the latter becomes exact [6]. In this way we provide a
theoretical characterization of GFMC.

Let us consider the Hubbard Hamiltonian

H = −
|Λ|∑
i=1

|Λ|∑
j=i+1

∑
σ=↑↓

ηij(c
†
iσcjσ + c†jσciσ) +

|Λ|∑
i=1

γi c†i↑ci↑ c†i↓ci↓, (1)

where Λ ⊂ Zd is a finite d-dimensional lattice with cardinality |Λ|, {1, . . . , |Λ|} some total
ordering of the lattice points, and ciσ the usual anticommuting destruction operators at site i
and spin index σ. In this paper, we are interested in evaluating the matrix elements 〈n′|e−Ht|n〉
where n = (n1↑, n1↓, . . . , n|Λ|↑, n|Λ|↓) are the occupation numbers taking the values 0 or 1 [7].
The total number of fermions per spin component is a conserved quantity, therefore we consider
only configurations n and n′ such that

∑|Λ|
i=1 n′iσ =

∑|Λ|
i=1 niσ for σ =↑↓. In the following we

shall use the mod 2 addition n⊕ n′ = (n + n′) mod 2.
Let Γ = {(i, j), 1 ≤ i < j ≤ |Λ| : ηij 6= 0} and |Γ| its cardinality. For simplicity, we will

assume that ηij = η if (i, j) ∈ Γ and γi = γ. By introducing

λijσ(n) ≡ 〈n⊕ 1iσ ⊕ 1jσ|c†iσcjσ + c†jσciσ|n〉 =

= (−1)niσ+···+nj−1σ [njσ(niσ ⊕ 1)− niσ(njσ ⊕ 1)] , (2)

where 1iσ = (0, . . . , 0, 1iσ, 0, . . . , 0), and

V (n) ≡ 〈n|H|n〉 = γ

|Λ|∑
i=1

ni↑ni↓, (3)

the following representation holds:

〈n′|e−Ht|n〉 = E
(
δn′,n⊕NtMt

)
, (4)

Mt = exp
[ ∑
(i,j)∈Γ

∑
σ=↑↓

∫
[0,t)

log
[
ηρ−1λijσ(n⊕Ns)

]
dNs

ijσ −

−
∫ t

0

V (n⊕Ns)ds + 2|Γ|ρt

]
. (5)

Here, {N t
ijσ}, (i, j) ∈ Γ, is a family of 2|Γ| independent Poisson processes with parameter ρ

and Nt = (N t
1↑, N

t
1↓, . . . , N

t
|Λ|↑, N

t
|Λ|↓) are 2|Λ| stochastic processes defined as

N t
kσ =

∑
(i,j)∈Γ: i=k or j=k

N t
ijσ. (6)

We remind that a Poisson process N t with parameter ρ is a jump process characterized by the
following probabilities:

P
(
N t+s −N t = k

)
=

(ρs)k

k!
e−ρs. (7)

Its trajectories are piecewise-constant increasing integer-valued functions continuous from the
left. The stochastic integral

∫
dN t is just an ordinary Stieltjes integral∫

[0,t)

f(s,Ns)dNs =
∑

k: sk<t

f(sk, Nsk),
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where sk are random jump times having probability density p(s) = ρe−ρs. Finally, the symbol
E(. . .) is the expectation of the stochastic functional within braces. We emphasize that a
similar representation holds for the real time matrix elements 〈n′|e−iHt|n〉.

Summarizing, we associate to each ηij 6= 0 a link connecting the sites i and j and assign
to it a pair of Poisson processes N t

ijσ with σ =↑↓. Then, we assign to each site i and spin
component σ a stochastic process N t

iσ which is the sum of all the processes associated with
the links incoming at that site and having the same spin component. A jump in the link
process N t

ijσ implies a jump in both the site processes N t
iσ and N t

jσ. Equations (4) and (5)
are immediately generalizable to nonidentical parameters ηij and γi. In this case, it may be
convenient to use Poisson processes N t

ijσ with different parameters ρijσ.
We now show that the representation (4)-(5) follows from the general formula to represent

probabilistically the solution of an ODE system [8] and the expression of the matrix elements
of H. The matrix elements 〈n′|e−Ht|n〉 obey the ODE system

d
dt
〈n′|e−Ht|n〉 = −

∑
n′′
〈n′|H|n′′〉〈n′′|e−Ht|n〉. (8)

One may check that (4)-(5) is indeed solution of (8) by applying the rules of stochastic
differentiation. We have

E
(
δn′,n⊕Nt+dtMt+dt

)
=

=
∑
n′′

E
( ∏

(i,j)∈Γ

∏
σ=↑↓

δn′,n′′⊕dNte

∫
[t,t+dt)

log[ηρ−1λijσ(n⊕Ns)]dNs
ijσ ×

×e−V (n⊕Nt)dt+2|Γ|ρdt δn′′,n⊕NtMt

)
. (9)

For the Markov property, the expectation of the factors containing the stochastic integrals in
the interval [t, t+dt] can be taken separately. By expanding each one of them over all possible
numbers of jumps of the Poisson processes as

E
(

δn′,n′′⊕dNt e

∫
[t,t+dt)

log[ηρ−1λijσ(n⊕Ns)]dNs
ijσ

)
=

= δn′,n′′ e0 e−ρdt + δn′,n′′⊕1iσ⊕1jσ
elog[ηρ−1λijσ(n⊕Nt)] e−ρdtρdt + . . . =

= δn′,n′′ +
[
δn′,n′′⊕1iσ⊕1jσ

ηρ−1λijσ(n⊕Nt) −δn′,n′′ ] ρdt +O (
dt2

)
,

up to order dt we obtain

E
(
δn′,n⊕Nt+dtMt+dt

)
=

∑
n′′

[
δn′,n′′ +

∑
(i,j)∈Γ

∑
σ=↑↓

δn′,n′′⊕1iσ⊕1jσ
ηλijσ(n′′)dt−

−δn′,n′′V (n′′)dt

]
E

(
δn′′,n⊕NtMt

)
. (10)

Finally, we rewrite this relation as

dE
(
δn′,n⊕NtMt

)
= E

(
δn′,n⊕Nt+dtMt+dt

)−E
(
δn′,n⊕NtMt

)
=

= −
∑
n′′
〈n′|H|n′′〉E (

δn′′,n⊕NtMt
)
dt. (11)
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It is clear that the fermionic nature of the Hamiltonian H plays no special role in the above
derivation. For later use, note that summing (11) over n′ we have dE(Mt) = −E(HtMt)dt,
where

Ht ≡
∑
n′
〈n′|H|n⊕Nt〉 = −η

∑
(i,j)∈Γ

∑
σ=↑↓

λijσ(n⊕Nt) + V (n⊕Nt). (12)

In order to construct an efficient algorithm for evaluating (4)-(5), we start by observing
that the functions λijσ(n⊕Ns) vanish when the occupation numbers niσ⊕Ns

iσ and njσ⊕Ns
jσ

are equal. We say that for a given value of σ the link ij is active at time s if λijσ(n⊕Ns) 6= 0.
We shall see in a moment that only active links are relevant. Let us consider how the stochastic
integral in (5) builds up along a trajectory defined by considering the time-ordered succession
of jumps in the family {N t

ijσ}. The contribution to the stochastic integral in the exponent
of (5) at the first jump time of a link, for definiteness suppose that the link i1j1 with spin
component σ1 jumps first at time s1, is

log
[
ηρ−1λi1j1σ1(n⊕Ns1)

]
θ(t− s1),

where Ns1 = 0 due the assumed left continuity. Therefore, if the link i1j1σ1 was active at
time 0 we obtain a finite contribution to the stochastic integral otherwise we obtain −∞. If
s1 ≥ t we have no contribution to the stochastic integral from this trajectory. If s1 < t a
second jump of a link, suppose i2j2 with spin component σ2, can take place at time s2 > s1

and we obtain a contribution

log
[
ηρ−1λi2j2σ2(n⊕Ns2)

]
θ(t− s2).

The analysis can be repeated by considering an arbitrary number of jumps. Of course, when
the stochastic integral is −∞, which is the case when some λ = 0, there is no contribution
to the expectation. The other integral in (5) is an ordinary integral of a piecewise constant
bounded function.

We now describe the algorithm. From the above remarks it is clear that the only trajectories
to be considered are those associated to the jumps of active links. It can be seen that this
corresponds to the conservation of the total number of fermions per spin component. The
active links can be determined after each jump by inspecting the occupation numbers of the
sites in the set Γ according to the rule that the link ij is active for the spin component
σ if niσ + njσ = 1. We start by determining the active links in the initial configuration
n assigned at time 0 and make an extraction with uniform distribution to decide which of
them jumps first. We then extract the jump time s1 according to the probability density
pA1(s) = A1ρ exp[−A1ρs], where A1 is the number of active links before the first jump takes
place. The contribution to Mt at the time of the first jump is therefore, up to the factor
exp [−2|Γ|ρt],

ηρ−1λi1j1σ1(n⊕Ns1)e−V (n⊕Ns1 )s1e−(2|Γ|−A1)ρs1θ(t− s1) +

+e−V (n⊕Nt)te−(2|Γ|−A1)ρt θ(s1 − t),

where exp[−(2|Γ| − A1)ρs] is the probability that the 2|Γ| − A1 nonactive links do not jump
in the time interval s. The contribution of a given trajectory is obtained by multiplying the
factors corresponding to the different jumps until the last jump takes place later than t. For
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a given trajectory we thus have

Mt =
∏
k≥1

[
ηρ−1λikjkσk

(n⊕Nsk)e[Akρ−V (n⊕Nsk )](sk−sk−1) θ(t− sk) +

+e[Akρ−V (n⊕Nt)](t−sk−1) θ(sk − t)
]
. (13)

Here, Ak = A(n⊕Nsk) is the number of active links in the interval (sk−1, sk] and s0 = 0. Note
that the exponentially increasing factor exp [2|Γ|ρt] in (5) cancels out in the final expression
of Mt. The analogous expression of Mt for real times is simply obtained by replacing η → iη
and γ → iγ.

Let us specialize the algorithm for the calculation of the ground state energy E0. This can
be related to the matrix elements (4) in the following way:

E0 = − lim
t→∞

∑
n′

∂t〈n′|e−Ht|n〉
∑
n′
〈n′|e−Ht|n〉

. (14)

The denominator in this expression corresponds to evaluating the expectation in (4) without
the δ and is estimated by

∑
n′
〈n′|e−Ht|n〉 ' 1

K

K∑
p=1

Mt
p, (15)

where the index p denotes one of the K simulated trajectories and Mt
p is the value of Mt for

the p-th trajectory. The numerator of (14) is estimated similarly to (15) with Mt
p replaced by

Ht
pMt

p, where Ht
p is the value for the p-th trajectory of Ht given by (12).

The variance of the stochastic process Mt increases with t and its distribution is not well
estimated if the number K of trajectories remains fixed. As an alternative to increasing K, one
may resort to the reconfiguration method [9]. A simulation with K trajectories is performed
for a time t but is repeated R times choosing randomly the initial configurations among those
reached in the previous simulation [4, 11].

In principle, the algorithms parametrized by ρ are all equivalent as (4)-(5) holds for any
choice of the Poisson rates. However, since we estimate the expectation values with a finite
number of trajectories, this may introduce a systematic error. As an example, in fig. 1 we show
the dependence of the error E0−Eexact

0 as a function of ρ in the case of a small one-dimensional
system which can be exactly diagonalized. It is evident that the best performance of the
algorithm is in correspondence of the natural choice ρ ∼ η independently of the interaction
strength. This behavior can be understood on the basis of the following qualitative argument.
The average number of configuration changes in the time t is Aρt, where A is the average
number of active links. This is also the average number of terms in the product of (13). In
the absence of sign problem as in the case of fig. 1, we roughly estimate the r.h.s. of (15) as(
ηρ−1

)Aρt
e(Aρ−V )t, where V is the average potential. We see that the derivative with respect

to ρ of this expression vanishes for ρ = η. It is easily seen that this corresponds also to a
minimum of the variance of Mt and, therefore, to a minimum of the statistical error. For the
system considered in fig. 1 at the optimal value ρ = η, the computation time on a Pentium II
300 MHz CPU with 128 Mb RAM, amounts to about 5.6 × 10−5 ×KR seconds. When the
sytem size |Λ| and the number of trajectories K vary, the absolute error scales approximately
with the law E0 − Eexact

0 ∼ |Λ|4/3K−2/3.
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Fig. 1. – Absolute value of the relative error (E0 − Eexact
0 )/Eexact

0 on the ground state energy of an
interacting (γ = 4) and noninteracting (γ = 0) Hubbard system obtained with the present algorithm
as a function of the Poisson parameter ρ. The system is one-dimensional with periodic boundary

conditions, |Λ| = 8,
∑|Λ|

i=1
ni↑ =

∑|Λ|
i=1

ni↓ = 3, ηij = 1×δij−1, and γi = 4 or γi = 0. In the simulation

we used K = 103, R = 104 and t = 0.26. Error bars represent statistical errors.

The convergence features of the algorithm can be improved also using importance sam-
pling [10]. Consider the operator H̃ isospectral to H defined by the matrix elements 〈n′|H̃|n〉 =
〈n′|g〉〈n′|H|n〉〈n|g〉−1, where |g〉 is a given state. The stochastic representation (4)-(5) and
the corresponding algorithmic implementation hold unchanged for the new operator H̃ with
the substitution λijσ(n) → λijσ(n)〈n⊕1iσ⊕1jσ|g〉〈n|g〉−1. In this way, however, the value of
ρ is not tuned to obtain the best performance. For this purpose we have to choose ρ dependent
on the indices ijσ and on the configuration n so that ρijσ(n) = η

∣∣〈n⊕ 1iσ ⊕ 1jσ|g〉〈n|g〉−1
∣∣.

We consider now the connection of our approach with the GFMC method. In the GFMC,
the ground state of the system is filtered out from a given initial state |n〉 by iteratively
applying the operator G = 1−HΩ−1. In the occupation number representation we can write

〈n′|G|n〉 = Pn′n bn′n, (16)

where

Pn′n =
|〈n′|G|n〉|∑

n′′
|〈n′′|G|n〉|

(17)

is a stochastic matrix and

bn′n =
〈n′|G|n〉
|〈n′|G|n〉|

∑
n′′

|〈n′′|G|n〉| (18)

a, possibly negative, weight factor. A trajectory is defined as a series of steps, each one of
duration Ω−1, in which the configuration changes from n to n′ according to the stochastic
matrix Pn′n. The weight of a trajectory is

∏
{n} bn′n, where n runs over the intermediate

configurations visited by the trajectory [4]. Under our hypothesis ηij = η if (i, j) ∈ Γ, the
GFMC algorithm becomes very simple because all the active links have the same probability
to jump.

For large values of Ω the jump probability vanishes and the GFMC as described above
becomes inefficient. As remarked in [1], one can cope with this difficulty in the following way.



m. beccaria et al.: an exact representation of the fermion dynamics etc. 249

The probability that a configuration n changes at the step ns + 1, being unchanged in the
previous ns steps, is p(ns) = (Pnn)ns(1−Pnn). Therefore, we can directly assign the weight

(bnn)nsbn′n = λijσ(n)
{
1 + [ηA(n)− V (n)] Ω−1

}ns+1

to a configuration change n → n′ = n ⊕ 1iσ ⊕ 1jσ in which a fermion with spin σ is moved
from the site i to the site j or viceversa. As before, A(n) is the number of active links
in the configuration n and λijσ(n) and V (n) are given by (2) and (3), respectively. The
random integer ns is extracted with probability p(ns), e.g. ns = blog r/ logPnnc, where r
is a random number with uniform distribution in [0, 1]. Note that the distribution of ns

becomes Poissonian with parameter − logPnn ' ηA(n)Ω−1 for Ω large. At this level, there
is no explicit connection between this Poisson process and those entering in our formula (5).
However, as suggested in [6], one can take the continuum limit Ω−1 → 0 and reconstruct
in this way the semigroup exp[−Ht]. It is easy to verify that in this limit the GFMC
algorithm coincides with that obtained from our formula for the optimal choice ρ = η. In
fact, the time interval before a configuration change takes place is s = nsΩ−1. For Ω−1 → 0,
the random variable s becomes continuously distributed in [0,∞) with probability density
p(s) = Ωp(ns) = ηA(n) exp[−ηA(n)s] and the trajectory weight corresponding to the interval
s reduces to λijσ(n) exp [[ηA(n)− V (n)] s]. The coincidence holds also when importance
sampling is included. If we change in eqs. (16)-(18) Ω into −iΩ and interpret the absolute value
as the modulus, in the continuum limit Ω−1 → 0 the extended GFMC algorithm coincides
with our algorithm also for real times.
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