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A major difficulty in comparing quantum and classical behavior resides in the struc­
tural differences between the corresponding mathematical languages. The Heisenberg 
equations of motion are operator equations only formally identical to the classical equa­
tions of motion. By taking the expectation of these equations, the well-known Ehrenfest 
theorem provides identities which, however, are not a closed system of equations which 
allows to evaluate the time evolution of the system. The formalism of the effective action 
seems to offer a possibility of comparing quantum and classical evolutions in a system­
atic and logically consistent way by naturally providing approximation schemes for the 
expectations of the coordinates which at the zeroth order coincide with the classical 
evolution [1]. 

The effective action formalism leads to equations of motion which differ from the 
classical equations by the addition of terms nonlocal in the time variable. This means 
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that for these equations an initial value problem is not meaningful and they have to 
be interpreted in an appropriate way. Here we analyze situations in which the nonlocal 
terms can be reasonably approximated by local ones, so that the quantum corrections do 
not modify the locality of classical equations. In the simplest approximation, the effective 
Lagrangian differs from the corresponding classical one by a renormalization of both the 
potential- and the kinetic-energy terms. We shall not discuss the causal formalism used, 
for example, in refs. [2-4], as in the approximation considered this would lead to the same 
local equations. 

The present contribution describes the beginning of a systematic study of semiclassical 
evolutions using the effective action formalism. In the first part, after introducing the 
formalism of the effective action and its expansion in powers of li (loop expansion) in 
the context of quantum mechanics, we concentrate on the structure of the first-order 
corrections in li. These corrections are evaluated to the second order in the derivative 
expansion [5], by two different methods. The first is based on a Euclidean approach [6], 
the second one on an adiabatic approximation in evaluating functional determinants. 

In the second part of the article we put the formalism at work, choosing as our case 
study a two-dimensional (2D) anharmonic oscillator of the kind considered in molecular 
physics. The results of the simulations show that by increasing lithe effective dynamics 
tends to regularize the classical motion and becomes qualitatively very similar to the 
quantum evolution provided the energy is sufficiently small. 

The evaluation of the effective dynamics in more general cases will be presented in a 
forthcoming paper. 

PART I 

1. - Effective action in quantum mechanics 

In this section we define the effective action [7]. For simplicity, consider a one degree 
of freedom Hamiltonian, 

(1.1) ii(fl, q) = iio(fJ, q) + U(q), 

where 

(1.2) 

and the confining potential U(q) is an even polynomial of q. We choose the constant of 
U ( q) so that the lowest eigenvalue of fi is 0. The generating functional of the Green 
functions is 

(1.3) Z[J] = (OIT(el JdtJ(t)4<t>)IO}' 

where IO} is the ground state of fi, q(t) = e-kilt qe--JJlt, J(t) is a source vanishing for 
ltl --+ oo and Tis the time-ordering operator. In eq. (1.3), as well as in the following, 
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the integrations with boundaries not explicitly indicated are to be understood between 
-oo and +oo. The generating functional of the connected Green functions is defined as 
W[J] = -i/ilnZ[J] and the Legendre transform of W[J] gives the effective action. By 
indicating with q the variable conjugated to J, i.e., 

(1.4) 

we define 

(1.5) 

Jl1'[J] 
q(t) = JJ(t) ' 

r[q] = lV(J] - J dtq(t)J(t), 

where J has to be thought, inverting relation (1.4), as a functional of q. The functional 
r[q] represents the analog of the classical action, S[q] = f dt (~mq2 (t)- V(q(t))), where 
V(q) = !mw2q2 + U(q), and can be written in the form 

(1.6) r[q] = S[q] + th[q], 

with f 0 [q] = 0. The Legendre transform can be calculated using the methods of ref. [8]. 
From the functional derivative of the classical action with respect to the position q(t), 

one obtains the Euler-Lagrange equation of motion 

(1.7) JS[q] = -J(t). 
dq(t) 

In the same way the functional derivative of the effective action r[q] with respect to the 
q(t) given by (1.4) yields 

(1.8) Jr[q] = -J(t). 
dq(t) 

This equation can be rewritten in the form 

(1.9) mij(t) + a.v(q(t))- "~(~~] = J(t). 

As we shall see in the next section, t,.[q] admits an expansion in powers of n, whose 
coefficients have a simple diagrammatic interpretation (loop expansion). In this way we 
can view the quantum integra-differential equation (1.9) as a perturbation of the classical 
equation of motion. 

In order to interpret the solutions of eq. (1.8), we rewrite Z[J], defined in (1.3), in 
the equivalent form 

(1.10) Z[J] = (OIU.§(+oo,-oo)IO) = (OIT(e-*fdt[H-tiJU>l)IO), 
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where Ui (tb, ta) is the evolution operator from ta to tb in the Schrodinger representation 
and in the presence of the external source J(t). Note that in quantum mechanics J(t) is 
an external force. The variable conjugated to J then is 

(1.11) 

where 

(1.12) 

(1.13) 

q(t) = (a:p1 IU.~(t,o)tqUi(t,O)I.Bp1 ), 
(a:pl I.BpJ) 

I.Bp]) = Ui (0, -oo)IO). 

Since generally I.BpJ) differs from lap]), q(t) is a nondiagonal matrix element of q between 
two states which evolve in the presence of J(t). The solution of eq. (1.8) therefore can be 
complex valued. In the harmonic case U(q) constant, lap]} and I.B[JJ) are coherent states 
and coincide, up to a phase, if J(w) = 0, where J is the Fourier transform of the external 
force. In the anharmonic case, more complicated conditions have to be imposed on J 
so that the two states coincide. If these conditions are satisfied, q(t) is the expectation 
value of the position operator. 

2. - Loop expansion of the effective action 

The effective action cannot be evaluated exactly for anharmonic systems, i.e., U(q) ~ 
constant. A widely used approximation scheme is the loop expansion (see, for example, 
[9, 10]), or semiclassical approximation, consisting in an expansion of r[q] in powers of li. 
At the lowest order the effective action coincides with the classical action, whereas the 
one-loop term is expressed by means of a functional determinant. 

In order to obtain the loop expansion, we express Z[ J] as a path integral. Equation 
(1.10) can be rewritten, using the Gell-Mann and Low theorem (11], as 

(2.1) 
(OoiT(e- t f dt[U(qo(t))-qo(t)J(t))) IOo) 

Z[J] = (OoiT(e--k Jdtil(tio(t)))IOo) , 

where ij0 (t) = etJiot ije--kiiot and IOo) is the ground state of flo. Equation (2.1) is 
equivalent to 

(2.2) 

e --k f dtu( .si<tl) Zo[J']i 
Z[J] = J'=J 

e- i; f dtU ( ,},,,) Zo[ J'] L.=• , 
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where Z0 [J] in terms of Feynman path integrals [12] reads 

Here <po(x) = (xiOo) and d[q]~ is the functional measure on paths with endpoints q( -T) = 
x, q(T) = y. The purely oscillating integrand in eq. (2.3) can be regularized by changing 
w into we = w(1- ic), with c--? o+ [13]. Comparing eqs. (2.2) and (2.3) we obtain 

(2.4) Z[J] = 

Now we apply the stationary phase approximation to (2.4), expanding the exponent 
at the numerator around the solution q0 ( t) of 

(2.5) mijo(t) = -mw;qo(t) - aqU(qo(t)) + J(t), 

which vanishes for ltl --? oo. We find 

(2.6) Z[J] ~ et (S[qo]+ f dtJ(t)qo(t)) X 

. . I d[q]8 e..},. J::T dt[ti2 (t)-w;q2 (t)-~a;u(qo(t))q2 (t)] 
x hm hm . T ., 

e-+O+ T-+oo I d[q]8 e-k J_T dt[q~(t)-w;q2 (t)] 

Note that the integrations over x and y disappear since <p0 (.) is proportional to 6(.) in 
the limit 1i--? 0. The Gaussian integrals in (2.6) can be performed yielding 

(2.7) Z[J] ~ et(S[qo]+fdtJ(t}qo(t)) X 

1 

. . (det (-a; - w; - ,ka~U(qo(t))))- 2 

x hm hm ( ? 2 , 
e-+O+ T-+oo det -a;: -We) 

where the differential operators act on functions y(t) with Dirichlet boundary conditions 
y( -T) = y(T) = 0. From eq. (2.7) we obtain 

(2.8) W[J] = Wo[J] + 1i Wi[J] + 0 (1i2 ) 

= S[qo] + j dtJ(t)qo(t) 

+ lim lim iii In (det (-a;- w; - ,ka~U(qo(t)))) + 0 (n?). 
e-+O+ T-+oo 2 det (-a[ - w;) 
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Setting q = qo + liq' and remembering that :;(rJI = -J(t), the effective action to 
qo 

one-loop order is 

(2.9) r(q] = ro(q] + li r 1 (q] + 0 (li2
) 

= Wo[J] + liW1 [J] - I dtq(t)J(t) + 0 (li2
) 

= S[q- liq'] + liWl [J] - li I dtq' (t)J(t) + 0 (li2
) 

= S[q] + iii lim lim In (det ( -a'f - w; - ;ka;u(q(t)))) I + 0 (li2 ). 

2 e-~o+ T~oo det ( -8'f- w;) 
Dirichlet(± T) 

3. - Derivative expansion of the effective action 

The classical action S[q] is the time integral of a density (the Lagrangian) which is 
an ordinary function of q(t) and q(t). As a consequence, the classical equation of motion 
(I. 7) is a differential equation. On the other hand, the effective action r[q] is nonlocal 
in time and, therefore, the variational equation (1.8) is also nonlocal. IT q(t) varies 
slowly, however, it is possible to expand r(q] around a constant value of q (derivative 
expansion [6, 14]). In this expansion one finds that also r(q] can be written as the time 
integral of a density, which is a series of terms involving time derivatives of q(t) of 
increasing order: 

(3.1) r[q] =I dt ( -V.(q(t)) + Z(~(t)) tj2 (t) + A(q(t))tj4 (t) + B(q(t))ij2 (t) + ... ) 

As we shall see, the derivative expansion (3.1) does not generally converge and has only 
an asymptotic validity for q(t) ~ constant. The absence in (3.1) of odd powers of q(t) is 
a consequence of the time reversal symmetry of the Hamiltonian. 

Except for Fe and Z, all the terms in the derivative expansion (3.1) are at least of 
order /i: 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

lle(q) = ~mq2w2 + U(q) + lilfet (q) + 0 (li2
), 

Z(q) = m + li Zt (q) + 0 (li2
), 

A(q) = li A 1 (q) + 0 (li2
), 

B(q) = liBt (q) + 0 (li2
). 

The effective potential lle(q), well known in quantum field theory in the study of sponta­
neous symmetry breaking [5], is everywhere convex [15]. It may happen that the effective 
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potential evaluated at a finite li order loses somewhere its convexity if the classical po­
tential is not everywhere convex (16]. In this paper we restrict ourselves to a phase-space 
region where the evaluated effective potential is convex. 

If the derivative expansion {3.1) is truncated at a finite order 2N, the corresponding 
variational equation is a differential equation of order 2N. We thus have a Cauchy 
problem with 2N initial conditions. It is clear that these conditions do not determine 
completely the initial wave function of the system. They are constraints which must be 
imposed in the choice of the initial wave function for a comparison between true and 
effective quantum evolutions. We confine ourselves to the second order in the derivative 
expansion (DE2), that is 

{3.6) r(q] "'I dt (-v.(q(t)) + Z(~(t)) q2(t)) 

This is the simplest approximation to the effective action which preserves the structure 
of the classical equations of motion. 

In the following we work out and compare two methods to obtain the derivative 
expansion of the effective action. The first is an adaptation to quantum mechanics of a 
method [6] used in quantum field theory and based on the Euclidean functional formalism. 
In the second method, we relate the derivative expansion to the adiabatic approximation 
of a differential equation with slowly varying coefficients. In this way we are able to give 
an estimate of the validity of the derivative expansion. 

3'1. Derivative expansion: Euclidean approach. - The derivative expansion of the 
effective action can be obtained starting from the Euclidean generating functional 

(3.7) 
J d[q]~ e- kCSE[q]-f dtJ(t)q(t)>cpo(x)cpo(y) dx dy 

ZE(J) = 1 [ l , J d(q]~ e-;;SE q cpa(x)cpo(Y) dx dy 

where the Euclidean action SE[q] is defined by 

{3.8) SE[q] = I dt Gmti2 (t) + ~mw'q'(t) + U(q(t))) 

Setting WE[J] = /iln ZE[J] and q(t) = 15~(lf1 , we introduce the Euclidean effective action 

(3.9) rE[q] = wE(J]- J dtJ(t)q(t). 

In analogy with the results of sect. 2, to one-loop order we have 

(3.10) 
det [ 62 StdqJ J 

r [ ] = -S [ ] - ~In Jq(t)Jq(s) + O(!i2 ) 
E q E q 2 [ 62 SE(0) ] ' 

det oq(t)oq(s) 
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where the differential operator o!;t~~J(l> can be rewritten as 

(3.11) 82 SE[q] [ 2 2 2 ] 

8q(t)8q(s) = -m8t + mw + 8qU(q(t)) 8(t- s). 

The second order in the derivative expansion of the Euclidean effective action is 

(3.12) rE[q] =-I dt [v.(q(t)) + ~Z(q(t))ti"{t}] , 

where Ve(q) and Z(q) are the same functions that appear in (3.1). 
The effective potential can be found by combining (3.10) and (3.12) for q(t) constant 

I 1 _ ! [ 8
2
SE[q] ] _! [ 8

2
SE[O] l 

(3.13) dtl el (q) - 2 ln det 8q(t)8q(s) 2 ln det 8q(t)8q(s) · 

Employing the functional analogue of the identity In det A = tr In A, valid for any Her­
mitian matrix A, we get 

(3.14) 

We use the Dirac notation to write 

{3.15) ( -a'f + w2 + ~ a;u(q)) <~(t- s) = (tl (P2 + w2 + ~ a;u(q)) [s), 

where the P operator is defined in the {It)} basis by (tiPis) = -i gt 8(t- s). Equation 
(3.13) becomes 

(3.16) 1 dtVe1 (q) = ~ 1 dt { (t[ln (P2 + w2 + ~ a:u(q)) [t) _ (t[ln ( P2 + w2
) [t)} . 

With the help of the identity J dplp)(pl = 1, where Pip) =pip), we can write 

The integral in the above expression can be evaluated exactly and from (3.16) we finally 
get 

(3.18) 
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The determination of Z1 (q) is more involved. From eq. {3.12) we see that Z(q) is the 
coefficient of the term containing cj(t) 2 in the effective action. We can thus write 

I ·2 [ 8
2
SE(q] l ( [ 82

SE[qc] ]) 
{3.19) dtZ1(q(t))q (t) = lndet l5q(t)l5q(s) - lndet l5q(t)l5q(s) Qc-+q(t) ' 

with the assumption that we consider in the r.h.s. only those terms with at most two 
time derivatives of q(t). The first term in the r.h.s. of (3.19) is essentially the one-loop 
Euclidean effective action, while the second one comes from the effective potential. The 
second functional determinant in (3.19) has to be evaluated with a constant Qc which, at 
the end, must be replaced with q(t). The terms due to the normalization of ZE[J], being 
common to both the effective action and the effective potential, cancel each other. Again 
we change the logarithm of the determinant into the trace of the logarithm and write the 
differential operators in Dirac notation. It is useful to introduce two operators, P and T, 
satisfying the commutation relation [T, P] = i, and with elements (t!Fis) = -i%, 8(t- s), 

(piTiq) = i tv8(p- q), where lt),ls) and lp), lq) are eigenstates ofT and P, respectively. 
In addition, we write the difference of two logarithms of positive-definite operators in the 
parametric form 

(3.20) InA -in.B = /.
00 

~s (e-h•- e-A•) 

We then arrive at the following expression: 

{3.21) I dtZt (q(t))cj2 (t) = 

=I dt(tl /.
00 

~s e [-(mf>'+mw'+a;u(q(t)))o _ e-(mf>'+mw2 +8;u(q('t))Jsjlt). 

Since we keep only terms at most quadratic in cj( t), we can expand 8~ U ( q(T)) as follows: 

(3.22) a;u(q(T)) = a;u(q(t)) + Qa(t) + ~Q2b(t), 

where Q = T- t, a(t) = 818~U(q(t)) and b(t) = 8l8~U(q(t)). All the terms propor­

tional to Qn, with n 2: 3, are neglected since they do not contribute to the determi­
nation of Z1 (q). The expressions for (tle-m.P28 It) and for (tle-[m.P2+Qa(t)+~Q2 b{t)]slt) 
are known [17] and can be inserted in (3.21). Finally we can expand the integrand 
in eq. (3.21) maintaining only the terms linear in b(t) and at most quadratic in a(t). 
Performing the integration over the variables, we obtain 

{3.23) zl (q) = _1_ (a;u(q))2 5 • 

32m
2 

(w2 + ;ko~U(q)) 2 
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3 ·2. Derivative expansion as a WKB-like approximation. -The functional determinant 
in the one-loop term of the effective action {2.9) can be expressed by means of the 
Gelfand-Yaglom formula (18-20] as 

{3.24) 

where Fe:(t) is the solution of 

(3.25) ! 
.. (2 12 ) Fe:(t) + we:+ ;n8qU(q(t)) Fe:(t) = 0, 

Fe:(-T) = 0, 

Fe:( -T) = 1. 

Note that the time variable appearing in the above equations is the real time. At first 
sight it might seem that, on account of the factor i in {3.24), the one-loop contribution to 
r(q] is imaginary if q(t) is real. Actually, the effect of the regularization w -+ We: is such 
that fi(q] has generally both a real and an imaginary part. As we shall see, the latter 
disappears if q(t) varies slowly with time. Without the regularization the expression for 
f 1 (qJ would be ill-defined, both numerator and denominator oscillating with T. 

We obtain the derivative expansion of the effective action at order n starting from 
eq. (3.24). For the moment we neglect the frequency regularization which we will rein­
troduce later. In order to deal with convergent integrals, we suppose that q(t) = 0 for 
It I > s. At the end of the calculation, i.e., after the limits T -+ oo and c -+ o+ have been 
taken, we will let s -+ oo. 

If we set q(t) = Q(pt), q(t) varies slowly if pis small. The expansion ofr[q] around q(t) 
constant is therefore related to the asymptotic expansion of F(t) for p-+ 0. Introducing 
the variable T = pt and setting ~{r) = F(r/ p) and k2 {r) = w2 + {1/m) 8~U(Q(r)), 
eq. {3.25) becomes 

(3.26) 
{ 

d
2 

1 ? ) ( ~~(r) + ~k-(r ~ r) = 0, 

<I>( -pT) = 0, 

ddr ~(-pT) = ~. 

An approximate solution of (3.26) for p -+ 0 can be found by means of the WKB 
method [21] with the parameter p playing the role of n. The N-th order solution is 

{3.27) 

where W2N ( T) is obtained, neglecting all the terms of order higher than p2N, from the 
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recursive relation 

1 

(3.28) W2N(T) = [k2
(T) + p

2 
Jw2(N-l)(T) d~2 ( ,;w2(~-l)(T)) r ' 

with · 

{3.29) lVo(r) = k(r). 

Imposing the initial conditions and going back to the variable t, we find that at the lowest 
order the solution of {3.25) is 

{3.30) 
ei f~T dt' Jw2+;!;8~U(q(t')) _ e-i f~T dt' Jw2 +;!;8~U(q(t' )) 

Fo(t) = -------,~~~~~=-----
2i wJw2 + -:na~U(q(t)) 

When the regularization w -t we is reintroduced and F0 (t) is evaluated at the time T, 
the second exponential, proportional to e-2iw,;(T-s), vanishes for large T and can be 
neglected, since the limit T -t oo has to be performed before the limit c -t o+. We 
obtain therefore 

{3.31) r[q] ~ S[q]- ~ { dt ( w2 + ~ 8W(q(t))- w) . 

Recalling {3.2), the first quantum correction to the classical potential is 

{3.32) V,1(q) = ~ ( Jw2 + ~ 8W(q) -w) 

The next order of the WKB approximation gives 

(3.33) f[q] ~ S[q]- ~ {, dt ( w2 + ~ 8W(q(t)) - w) + 

+~ /_s dt-1- (82U(q(t)))2 ·2{t) 
2 -s 32m2 (w2 + -!n8~U(q(t))) ~ q ' 

which implies 

1 (82U(q)) 2 

Zt(q) = -- s · 
32m2 (w2 + -!nBiU(q)) 2 

{3.34) 

Equations (3.32) and {3.34) agree with the results found in subsect. 3'1. 
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If the classical potential V ( q) is not everywhere convex, in the regions where w2 + 
,k8~U(q) is negative the effective potential Ve 1 (q) and Z1 (q) become imaginary. More­
over, Zt(q) has a divergence at the points where w2 + ,k8~U(q) = 0 and this corre­
sponds to the fact that the WKB approximation loses its validity near the turning points 
k2 (r) = 0. 

It is clear that the N-th order WKB approximation for 4?(;) corresponds to the 
derivative expansion of r 1 [q) at order 2N. One can also check that no terms with an odd 
number of derivatives appear. The connection to the WKB approximation also shows, 
as previously stated, that the derivative expansion has only an asymptotic validity for 
q-+ 0. 

From eq. (3.24) it is clear that if q(t) is real, r[q] up to one-loop order is not necessarily 
real. However, from eq. (3.28) we see that, if the classical potential is everywhere convex, 
all the terms of the derivative expansion of the effective action are real if q( t) is real. The 
contradiction is only apparent. It can be seen that the imaginary part of r[q) is due to 
singularities in the Green functions which do not contribute to the derivative expansion. 

In conclusion, in the case of vanishing external source J ( t) = 0 the DE2 approximation 
at order !i of eq. (1.8) reads 

(3.35) (m + !iZ1 (q(t))) ij(t) + ~8qZ1 (q(t))q2 (t) = -8q (V(q(t)) + !iVe1 (q(t))) . 

We discuss the validity of this equation in the case V(q) = !mw2q2 + fiq4 • Equation 
(3.35) is approximate both because the DE2 approximation is adopted and because the 
terms of order higher than !i are neglected. For a solution q(t) of amplitude A these two 
approximations are valid if 

(3.36) 

and 

(3.37) 

1LA4 
4' 1 

t . 2A2 << 
2mw 

!ig 
~<<1, mw 

respectively. Under these conditions the solutions of eqs. (3.35) and (1.8) remain close 
for a time t satisfying 

(3.38) 

PART II 

!ig 1LA4 
wt ~ 1 4! 2A'> << 1. 

m w 2mw -

4. - 2D anharmonic oscillator: classical 

Classical systems with more than one degree of freedom present a richer variety of 
phenomena and in particular they may exhibit chaotic behavior for J = 0. The formalism 



COMPARISON BETWEEN QUANTUM AND CLASSICAL DYNAMICS ETC. 443 

described in Part I can be generalized without difficulties to many degrees of freedom. 
Here we study the system whose Lagrangian is [22] 

(4.1) 

Apparently, the system has four free parameters: m, w, g and the energy E. However, 
the rescaling t--+ tfw,q;--+ q;J7nw2 fg,iJi--+ q;Jmw4 fg, fori= 1,2, yields 

(4.2) 

where, now, q;, q; and t are dimensionless. The energy of the system ( 4.1) is then 
E = (m2w4 fg)c, where cis the dimensionless energy of the rescaled Lagrangian L = 
~ ( iJr + q~) - ~ ( qr + q~) - qr q~. We conclude that c is the unique free parameter of the 
system under consideration. 

The rescaled equations of motion 

(4.3) 

(4.4) 

ih = -ql (1 + 2q~)' 

ih = -q2(1 + 2qr), 

have been numerically integrated using a standard fourth-order Runge-K utta method 
[23]. A qualitative description of the corresponding solutions has been achieved by con­
structing the surfaces of section (Poincare sections) [24] and evaluating the largest Lya­
punov exponent [25]. The degree of chaoticity of the system can be summarized by the 
fraction of regular orbits on the energy shell as a function of the dimensionless energy 
c. This fraction is close to unity for c ;S 0.75 and vanishes exponentially for c 2: 0.75. 
The border value c = 0.75 agrees with that obtained from the Toda criterion [26). In 
our system, the sign of the curvature of the energy surface where the motion takes place 
is given by sign(detHe(V)), where He(V) is the Hessian of V = (qr + q~)/2 + qrq~, 
i.e., He(V)ii = 8~;~i. This sign changes from positive to negative at c = 3/4. It is 
worth noting that the Toda criterion does not detect the first occurrence of chaos in 
the Poincare sections [27, 28). Nevertheless, when c > 3/4 we find that chaotic orbits 
are spread all over the sections. For c < 3/4, the irregular orbits are located in a small 
region of the Poincare sections, namely near a perturbed separatrix where chaos initially 
appears as a consequence of the mechanism of the heteroclinic intersection [29]. 

5.- 2D anharmonic oscillator: quantum 

In the semiclassical and local approximations, the quantum system corresponding 
to the 2D anharmonic oscillator introduced in the previous section is described by an 
effective Lagrangian (effective action density) 

(5.1) 
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where q = ( q1 , q2) and q = (til, ci2). In the rescaled variables used in the classical case, 
we have 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

where 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

and 

(5.10) 

With respect to the classical system, we have an additional parameter 'Y = lig/m2w3 

which arises from rescaling li. It can be seen that, when q varies, the effective potential 
and the symmetric kinetic matrix Zii can be singular or complex-valued, unless q is 
constrained inside a certain region. If we limit ourselves to the region where the effective 
potential, in the considered approximation, is convex, then Le is well defined. 

The rescaled equations of motion corresponding to the Lagrangian (5.1) 

.. .. 1 8Z22 . . 8Z22 . . ( 1 8Zu 8Z12) . . 8Ve (5.12) Z12q1 + Z22q2 = ----q2q2- --q1q2 + ---- -- q1q1--, 
2 8q2 8ql 2 8q2 8ql 8q2 
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Fig. 1. - Threshold energy C:th at which chaotic behavior shows up in the Poincare sections 
of the effective system vs. 1 = 1ig/m2w3

• The solid line is the theoretical estimate C:thb) = 
C:th(O)(l + 1)2

• The dashed line represents the maximal energy C:m below which the effective 
potential is everywhere convex. 

have been numerically solved as in the classical case. These equations are nonlinear and 
may lead to a chaotic evolution. However, due to the fact that no chaotic behavior is 
allowed at quantum level, we expect a reduction of chaoticity in the effective system with 
respect to the classical one. This reduction should depend on the value of the parameter 
1, the value 1 = 0 corresponding to the classical system. In fig. 1 we illustrate, for 
different values of{, the smallest energy (threshold energy) €th at which chaos shows 
up in the Poincare sections of the effective system [30]. \Ve see that €th increases with 
increasing 'Y· This behavior can be explained as follows. Let us consider the Taylor 
expansion of the effective Lagrangian around q = 0 and q = 0. Up to quadratic terms, 
we obtain Le ( q, q) = ~ ( 4r + q~) - ~ (I + 1) ( qr + q~) + . . . . In terms of unrescaled variables 
this corresponds to a shift of the classical frequency w--? w~. The rescaled energy 
c = Ef(m2w4 fg) picks up a factor (1 + 1)2

• This means that if €th(O) denotes the 
threshold energy at 1 = 0, we should have approximately €th('Y) = €th(0)(1 + 1)2 • This 
prediction is well confirmed in fig. 1. It is easy to see that the increase of the threshold 
for chaos holds under the general condition that Vet is convex, which, in turn, amounts to 

(5.13) He (tr (He(V))!) > 0, 

where V is the classical potential. These results parallel those obtained in [31] for the 
N -component 4>4 oscillators where the mean field plays the role of classical system. 

The range of 1 values explored in fig. 1 includes situations encountered in molecular 
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Fig. 2. - Time evolu t ion of the expectation value of the position opera tor (<] 1 (t)) (solid line) 
compared with the classical (shaded area) and the effective (dots) solutions q, (t) . T he three 
panels correspond, from top to bottom, to 1 = 0.01, 0.1 , and 1, respectively. In all cases we 
have a classical rescaled energy £ = 0.1. 

physics. In fact, the vibrational Hamiltonian of diatomic molecules is often assumed as a 
quartic oscillator and using the numerical values of ref. [32] obtained from spectroscopic 
data, we find that 10- 4 ;S 1 ;S 10- 1 . 

In the following we compare the solutions of the local effective equations with the 
classical solutions and with the exact quantum evolutions of coherent states centered at 
the initial conditions of the local equations. V•/e have already remarked that the ini tial 
conditions for the classical and the effective dynamics do not determine completely the 
initial wave function but provide only a constraint. Therefore the choice of the init ial 
wave function is not unique. A natural choice is represented by a harmonic coherent state 
which is parametrized by the expectation value of posit ion and moment um. In fact , by 

performing simulations with initial wave fu nctions which satisfy the proper constra ints 
but are of arbitrary shape, we find that the agreement between the effective and quantum 
dynamics is very poor when the shape of the ini t ial wave function differs substant ially 
from that of a coherent state. 

In rescaled units, the exact quantum dynamics is defined by the Schrodinger equation 

(5.14) 
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with 

(5.15) 

where Pi = -i1 8~i and iii = qi, for j = 1, 2, are the rescaled momentum and position 
operators. In order to solve (5.14), we represent the rescaled Hamiltonian operator (5.15) 
in the basis of the eigenstates of the associated 2D harmonic oscillator flo = !(PI+ p~) + 
!(iii + ii~). The corresponding infinite matrix is truncated and then diagonalized with 
standard techniques [23). As initial state we choose the coherent state 

(5.16) 

where lOa) is the ground state of H0 • The parameters p~ q~p~q~ are taken equal to the 
initial conditions used in the integration of the classical and effective Lagrangians. 

In fig. 2 we show the evolution of (ii1 (t)) in comparison with the corresponding classical 
and effective solutions. The three panels correspond, from top to bottom, to increasing 
values of 1 at constant dimensionless classical energies c. Note that the initial coherent 
state depends on 1. 

Figure 2 shows that by increasing 1 there is a crossover in the behavior of the solution 
of the effective dynamics. At small 1 the effective solution stays close to the classical 
one, while for larger 1 it reproduces qualitatively the shape of the quantum evolution. 
We notice that in the large-1 region the quantum and the effective dynamics do not 
show, on the time scale considered, a transfer of energy among the degrees of freedom 
as the classical solution. This seems to indicate that the quantum corrections in the 
effective dynamics have an anti-mixing influence that regularizes the motion. Of course, 
over longer times a transfer of energy takes place also in the quantum and effective 
evolutions. The theoretical interpretation of these results will be discussed elsewhere. 
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