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Abstract

We study the stationary solutions of the Gross–Pitaevskii equation that reduce, in the limit of vanishing non-linearity, to
the eigenfunctions of the associated Schrodinger equation. By providing analytical and numerical support, we conjecture an¨

Ž .existence condition for these solutions in terms of the ratio between their proper frequency chemical potential and the
corresponding linear eigenvalue. We also give approximate expressions for the stationary solutions which become exact in
the opposite limit of strong non-linearity. For one-dimensional systems these solutions have the form of a chain of dark or
bright solitons depending on the sign of the non-linearity. We demonstrate that in the case of negative non-linearity
Ž .attractive interaction the norm of the solutions is always bounded for dimensions greater than one. q 2000 Elsevier Science
B.V. All rights reserved.

PACS: 03.65.Ge; 03.75.Fi; 47.20.Ky

1. Introduction

Ž .Recent achievement of Bose–Einstein condensation BEC in gases of alkali atoms has generated an
w ximpressive amount of experimental and theoretical works 1,2 . In these systems the condensate is usually

Ž .described by the so-called Gross–Pitaevskii equation GPE , a Schrodinger equation with a local cubic¨
non-linear term which represents the interaction among the bosons in a mean field approximation. GPE
effectively reproduces the ground state properties of a condensed boson gas confined by an external potential at

w xzero temperature 2 . In the framework of linear response theory, the mean field approximation also allows to
w xevaluate the spectrum of the excitations in presence of an external time-dependent perturbation 3,4 . On the

w xother hand, GPE also appears in the description of other physical systems, like nonlinear optics 5 , molecular
w xphysics 6 , etc.
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In this Letter we study general properties of the stationary solutions of GPE both in the case of repulsive and
attractive interaction. Besides its mathematical interest, this study is relevant in the search of the so-called
vortex states and, in general, in understanding the dynamical properties of condensates. We choose to work in
the grand-canonical ensemble, that is we fix the chemical potential m of the system, i.e. the proper frequency
for the time evolution, and derive the number of particles corresponding to each stationary solution. In
particular, we study the stationary solutions of GPE that have a linear counterpart, in the sense that they reduce
to the eigenstates of the linear Schrodinger equation which is the limit of GPE for vanishing interaction. For¨
these states we conjecture an existence condition which depend on the ratio between the chemical potential and
the corresponding eigenvalue of the associated Schrodinger equation. We give a proof of this conjecture for the¨
node-less state of a system in presence of a general external potential and verify it for the exactly solvable case
of a one-dimensional, infinitely deep, square well. We also provide numerical evidence of the validity of the
conjecture by studying systems with harmonic potentials in different dimensions.

As a consequence of the above conjecture, we find that in the case of attractive condensates there exists a
range of the chemical potential m in which the node-less stationary solution does not exist and the
lowest-energy state has one or more nodes. This may be relevant for the observation of stable vortex states.

We also study the limit of strong non-linearity of GPE obtained for large values of the modulus of the
chemical potential m. In this limit a Thomas-Fermi approximation holds for repulsive systems, while for
attractive systems the solutions become independent of the external potential. In the one-dimensional case the
corresponding approximate solutions have the form of a chain of dark or bright solitons depending on the sign
of the non-linearity. We use these asymptotically exact expressions to establish that the number of particles in
the ground state of an attractive condensate is always bounded for dimensions greater than one in agreement

w xwith previous numerical results 7 .

2. The linear limit

w xWe consider the Gross–Pitaevskii equation 8,9 describing, in the mean field approximation, a system of
Ž .interacting particles confined by an external potential V x

EC x ,t "
2Ž . 22 < <i" sy = C x ,t qU C x ,t C x ,t qV x C x ,t , 1Ž . Ž . Ž . Ž . Ž . Ž .0E t 2m

d Ž . Ž . Ž .with xgR . The constant U is positive negative in the case of repulsive attractive interaction. Eq. 1 has0
Ž .two conserved quantities, namely the number of particles squared norm

< < 2w xN C s C x ,t dx 2Ž . Ž .H
and the energy

2
" U02 4 2< < < < < <w xE C s =C x ,t q C x ,t qV x C x ,t dx . 3Ž . Ž . Ž . Ž . Ž .H
2m 2

We will consider N as a real positive number even if in physical systems only integer values are allowed. This
is not a severe constraint in the limit N41 where the mean field approximation becomes meaningful.

iŽ . Ž . Ž .The stationary states of Eq. 1 , C x,t sexp y m t c x , where m is the chemical potential areŽ ."

determined by the equation

"
2

22 < <y = c x qU c x c x qV x c x ymc x s0, 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .02m
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i.e. as critical points of the grand-potential functional

2
" U02 4 2< < < < < <w x w x w xV c s =c x q c x q V x ym c x dxsE c ymN c . 5Ž . Ž . Ž . Ž . Ž .Ž .H
2m 2

w x Ž .It is simple to show 10 that if c is a solution of 4 then

U0 4< <w xV c sy c x dx . 6Ž . Ž .H
2

Ž .We will look for the solutions of 4 corresponding to a given chemical potential m. In this Letter, we
concentrate on solutions which admit a linear counterpart in the sense that they reduce, in a proper limit, to the
eigenfunctions of the associated linear problem

"
2

2y = f x qV x f x yEE f x s0. 7Ž . Ž . Ž . Ž . Ž .n n n n2m

Ž .Here we suppose that EE FEE F . . . FEE and f x is a hortonormal base with f x positive and� 4Ž .0 1 n n 0
w xbounded. Solutions without linear counterpart will be discussed in another paper 11 .

Ž . Ž . Ž . < < < <(By substituting c x s N m x x in 4 with x s1, we haveŽ .
"

2
22 < <y = x x qU N m x x x x q V x ym x x s0. 8Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .02m

Ž .If the number of particles is sufficiently small, the nonlinear term in 8 can be neglected and x approximated
Ž .by f . By substituting x with f , Eq. 8 provides the following relation between the chemical potential m andn n

Ž .the corresponding norm N m

< < 2 < < 2m,EE qU N m f . 9Ž . Ž .n 0 n

Ž . Ž .Eq. 9 suggests the following conjecture for the existence of solutions of 4 with linear counterpart

( ) ( )(Conjecture 1. For U )0 U -0 , solutions with linear limit c, N m f exist only if m)EE m-EE .( )0 0 n n n
( )MoreoÕer N m ™0 for m™EE .n

In Appendix A we give a general proof of this conjecture in the case ns0.
The conjecture can be verified analytically in the case of a 1-dimensional system confined in a box of size L,

i.e. with

< <0 x -Lr2
V x s . 10Ž . Ž .½ < <` x )Lr2

Ž . w xFor this problem the solutions of 4 are known 12,13 . In the case U )0 they are given by the Jacobi elliptic0

functions

x 1
c x sA sn 2 nq1 K p q p , 11Ž . Ž . Ž . Ž .n ž /ž /L 2

where

1p 2
K p s du 12Ž . Ž .H

20 (1ypsin u
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w x Ž .is the complete elliptic integral of the first kind with modulus pg 0,1 , and ns0,1,2, . . . . By substituting 11
Ž .into 4 , one finds the conditions

"
2

22A s p 2 nq1 K p , 13Ž . Ž . Ž .Ž .2mU L0

"
2 pq1 2

ms 2 nq1 K p . 14Ž . Ž . Ž .Ž .2 2mL

The number of particles and the energy are given by

"
2 E pŽ .2

N m s 2 nq1 K p 1y , 15Ž . Ž . Ž . Ž .Ž . ž /mU L K pŽ .0

22nq1 2K p pq pq1 1yE p K pŽ . Ž . Ž . Ž . Ž .Ž .
E m sN EE , 16Ž . Ž .0 ž /3 p 1yE p K pŽ . Ž .

where

p 2 2(E p s 1ypsin u du 17Ž . Ž .H
0

Ž . Ž .is the complete elliptic integral of the second kind with p determined in terms of m by Eq. 14 . Since K p
Ž . Ž .increases monotonously from K 0 spr2, for a given n Eq. 14 has solution only if

2 2 2nq1 p "Ž .
mGEE ' 18Ž .n 22mL

which complies with the conjecture formulated above. The same conclusion can also be reached by using the
w xtheorems of Ref. 10 .

Ž .In the linear limit m™EE , the solutions 11 reduce to the eigenfunctions of the associated Schrodinger¨n

equation

m™EE1 2 xn 1
c x ™ sin q nq1 p . 19Ž . Ž . Ž .(n 2ž /L L(N mŽ .

Ž .In the opposite limit of strong nonlinearity, m4EE , we get from 11 the dark soliton solutionsn

nq1m4EE 'm mmn

c x ™ tanh xyx , 20Ž . Ž . Ž .Łn k( ž /U "ks00

L L
x sy q k . 21Ž .k 2 nq1

Ž .Similar results are obtained in the case U -0. The solutions of 4 are now given by0

x
1

c x sA cn 2 nq1 K p q qK p p 22Ž . Ž . Ž . Ž . Ž .2ž /ž /L

with the conditions

"
2

22A sy p 2 nq1 K p 23Ž . Ž . Ž .Ž .2mU L0

"
2 1y2 p 2

ms 2 nq1 K p . 24Ž . Ž . Ž .Ž .2 2mL
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Fig. 1. Number of particles N as a function of the chemical potential m for the one dimensional square well. The solid and dashed lines are
Ž . Ž .given by Eqs. 15 and 25 , respectively. The two curves correspond to the states ns0 and ns1.

Number of particles and the energy become

"
2 E pŽ .2

N m sy 2 nq1 K p py1q , 25Ž . Ž . Ž . Ž .Ž . ž /mU L K pŽ .0

22nq1 2K p p 1yp q 1y2 p py1qE p K pŽ . Ž . Ž . Ž . Ž . Ž .Ž .
E m sN EE , 26Ž . Ž .0 ž /3 p py1qE p K pŽ . Ž .

Ž . Ž . Ž . w xwhere p is determined by Eq. 24 . Since 1y2 p K p decreases monotonously for pg 0,1 , the n-node
solution exists only if mFEE as conjectured above.n

Ž . Ž .For m™EE the solutions 22 have the same limit 19 . For ym4EE , we get the bright soliton solutionsn n

nym4EE '2m y2mmn k
c x ™ y1 sech xyx , 27Ž . Ž . Ž . Ž .Ýn k( ž /U "0 ks0

L L
1x sy q kq . 28Ž .Ž .k 22 nq1

Ž . Ž . Ž .In Fig. 1 we show the behaviour of N m evaluated according to 15 and 25 for the states ns0 and
Ž . Ž . Ž .ns1. Note that N m ™0 for m™EE . The single-particle energy, E m rN m , for the same states is shownn

in Fig. 2
We have verified the above conjecture with numerical and analytical methods also in the case of a quadratic

1 2 d 2Ž .potential V x s mv Ý x , with ds1,2,3. For example, in the case ds1 consider the following Ansatzis1 i2

Ž .for the solutions of 4

x 2 x
c x sa exp y H , 29Ž . Ž .n n n2 ž /ž / b2b nn
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Fig. 2. Single-particle energy ErN as a function of the chemical potential m for the same states of Fig. 1. The solid and dashed lines are
Ž . Ž .given by Eqs. 16 and 26 , respectively.

Ž .where H x is the Hermite polynomial of degree n and a , b are real constants. Extremization of then n n

functional V with respect to a and b leads ton n

2nq1 2(2 n! 8y 4q15 2nq1 hŽ .m ž /
2a s , 30Ž .n U 15g0 n

22 2(" 2q 4q15 2nq1 hŽ .
2b s , 31Ž .n mm 5 2nq1 hŽ .

12 2 2 ` 4 2Ž .where hs" v rm and g sH H x dx. If U )0, the condition a )0 implies m) nq "v. IfŽ .n y` n 0 n 2
1 1Ž .U -0, the same condition leads to m- nq "v. Note that in the linear limit m™ nq "v, we haveŽ .0 2 2

NAa2
™0 and b2

™"rmv.n n

Fig. 3. Number of particles N as a function of the chemical potential m for a two dimensional quadratic potential. Solid and dashed lines are
Ž . Ž . Ž .obtained by the solving numerically Eq. 4 for U )0 and U -0, respectively. The three curves correspond to the states n,m s 0,0 ,0 0

Ž . Ž .0,1 and 1,0 .
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Fig. 4. Single-particle energy ErN as a function of the chemical potential m for the same states of Fig. 3.

Analogously, in the case ds2 consider the Ansatz

< <m2x r r
imu< <c x , x sa exp y F yn , m q1, e , 32Ž . Ž .n 1 2 n 2 ž / ž /ž /ž / b b2b n nn

2 2 2 Ž . w xwhere r sx qx , tanusx rx and F n,m,r is the confluent hypergeometric function 14 . The condition1 2 2 1
2 < <a )0 is now equivalent to m)EE if U )0, and m-EE if U -0, where EE s 2nq m q1 "v areŽ .n n,m 0 n,m 0 n,m

the eigenvalues of the associated Schrodinger equation.¨
Ž . w xEq. 4 has also been solved numerically with a standard relaxation algorithm 15 . In Fig. 3 we show the

Ž . Ž . Ž .number of particles obtained as a function of the chemical potential m for the states n,m s 0,0 , 0,1 and
Ž .1,0 in the case of a two-dimensional quadratic potential. The single-particle energy for the same states is
shown in Fig. 4. Similar results are obtained for ds1 and ds3. The stationary solutions found by us in the
case of a quadratic potential coincide with the nonlinear modes of a quantum macroscopic oscillator described

w xin Refs. 16,17 .
Figs. 1–4 allow us to emphasize a possibly important consequence of the above conjecture. In the case

U -0, the node-less solution exists only for m-EE . Therefore, in the range EE -m-EE the state with0 0 0 1

minimal energy is C . This implies that controlling the chemical potential it is possible to obtain a condensate1

with a node or a vortex in the ground state.

3. The strongly non linear limit

Ž .The conjecture discussed so far concerned the behavior of the solutions of Eq. 4 in the linear limit. An
Ž . < <approximate expression of the solutions of 4 is possible also in the opposite limit m™`. Let us consider

first the case U )0. The repulsive interaction tends to delocalize the solutions so that the Thomas-Fermi0
w x1 Ž .approximation holds 18 . In this case the gradient term in Eq. 4 can be neglected and c is determined by

< < 2U c x c x qV x c x ymc x s0. 33Ž . Ž . Ž . Ž . Ž . Ž .0

1 Ž . < < nFor a confining potential of the form V x sV xrL , the Thomas-Fermi approximation becomes exact in the limit m™`, see Ref.0
w x19 .
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Therefore the ground state solution can be approximated as

myV x rU m)V x( Ž . Ž .Ž . 0
c x s . 34Ž . Ž .0 ½ 0 m-V xŽ .

In the one-dimensional case, n-node solutions may be approximated by a chain of dark solitons

n 'mm
c x sc x tanh xyx 35Ž . Ž . Ž . Ž .Łn 0 kž /"ks1

with x to be determined, for instance by extremizing the functional V .k
Ž .In the case of a quadratic potential the number of particles and the energy for the state 34 are

Ž . Ž .dq2 2 dq2 22 m
N m s L d , 36Ž . Ž . Ž .

d 2 dd dq2Ž . m U v0

2
E m sNm 1y , 37Ž . Ž .ž /dq4

Ž . Ž .where L d is the volume of the unitary d-dimensional sphere. From Eq. 36 we see that N diverges for
m™`. Similar results are obtained for other potentials.

Ž .In the attractive case U -0, the solutions of 4 tend to localize and the Thomas-Fermi approximation fails0
w x Ž .18 . In this case, however, for m™y` the potential term Vc becomes negligible and Eq. 4 can be
approximated as

"
2

22 < <y = c x qU c x c x ymc x s0. 38Ž . Ž . Ž . Ž . Ž .02m

Recently, numerical evidence has been provided that the number of particles confined in a two dimensional
w xharmonic potential is limited in the case of attractive interaction 7 . This fact can be analytically understood

Ž .from 38 . With the change

"
xs j 39Ž .'ymm

m
c x s f j , 40Ž . Ž . Ž .(U0

Ž .Eq. 38 can be rewritten in the adimensional form

1 22 < <y = f j y f j f j qf j s0. 41Ž . Ž . Ž . Ž . Ž .j2

Note that in the one-dimensional case, n-node solutions may be approximated by a chain of bright solitons

n '2m y2mmk
c x s y1 sech xyx 42Ž . Ž . Ž . Ž .Ýn k( ž /U "0 ks0

with x to be determined, for instance by extremizing the functional V . The number of particles correspondingk
Ž .to a solution of 41 is given by

m "
d

"
d

2 2 Ž2yd .r2< < < < < <N m s c x dxs f j djs m G d , 43Ž . Ž . Ž . Ž . Ž .H H 2d 2 d 2U < <m UymmŽ .0 0
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Ž .Fig. 5. Number of particles N as a function of the chemical potential m in the ground state of a quadratic potential with ds1 dotted line ,
Ž . Ž . Ž . Ž .ds2 dashed line and ds3 solid line . The symbols q and = are the analytical results 36 and 43 , respectively.

Ž . < Ž . < kwhere G d sH f j dj is a numerical constant. Therefore we havek

` ds1°
2

"~lim N m s . 44G 2 ds2Ž . Ž .Ž .2< <m™y` m U0¢
0 dG3

Ž . Ž .In Fig. 5 we show the behavior of N m in the ground state obtained by solving numerically Eq. 4 with a
harmonic potential in the cases ds1,2,3. We have chosen the following realistic values for the parameters:

y26 2 y9 w xms3.818=10 Kg, vs10.0 Hz and, for ds3, U s4p " a rm with a s2.75=10 m 20 . For ds20 s s

and ds1 we set U s4p "
2a rmL and U s4p "

2a rmL2 with Ls10y5 m and L2 s9=10y10 m2. The0 s 0 s
Ž . Ž .numerical results compare very well with the analytical approximations 36 for U )0 and 43 for U -0,0 0

Ž . Ž . Ž .respectively. In the case of Eq. 43 , G d has been evaluated numerically. We have G 1 s2.82842,2 2
Ž . Ž .G 2 s5.85044 and G 3 s6.68118.2 2

Ž .Note that for ds3, N m has a maximum and vanishes for both m™y` and m™3r2"v. This implies
Ž . w xthat the function m N is not single-valued but has two branches in agreement with 21 .

Ž . ŽFig. 6. Single-particle energy ErN as a function of m in the ground state of a quadratic potential with ds1 dotted line , ds2 dashed
. Ž . Ž . Ž .line and ds3 solid line . The dots q and = are the analytical results 37 and 45 , respectively.
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In Fig. 6 we show the single-particle energy evaluated numerically in the same cases of Fig. 5. For m™`

Ž .the energy diverges for any value of d according to the limiting expression 37 . For m™y` the behavior of
Ž .E m is well described by

1 G dŽ .4
E m sNm 1y 45Ž . Ž .ž /2 G dŽ .2

Ž .which easily stems from Eq. 41 .
Ž .For ds2 we have G s2 G and hence E m vanishes for m™y`.4 2
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Appendix A. Existence of a node-less state

In the following we suppose that the external potential is bounded from below and, for simplicity, we take
Ž . Ž .V x G0. We will prove that, with U )0, a solution of 4 exists if and only if m)EE . The proof of the0 0

Ž .necessary condition is based on the property 6 . Let us define the functional
2

"
2 2< < < <w xQ c ' =c x q V x ym c x dx . A.1Ž . Ž . Ž . Ž .Ž .H0 2m

1 4w x w x < Ž . < w x Ž . Ž .We have V c sQ c q U H c x dx. If Q c )0, then c x cannot be a solution of 4 . The linear0 0 02
X w x Ž .problem Q f ; x sk f x , where0 n n n

w xd Q f "0 nX 2w xQ f ; x ' sy = f x q V x ym f x , A.2Ž . Ž . Ž . Ž .Ž .
)0 n n n2mdf xŽ .n

Ž . Ž .has the same eigenfunctions of 7 and the eigenvalues are k sEE ym. By decomposing a generic c x asn n
Ž . ` Ž .c x sÝ c f x , we obtainns0 n n

` ` `
2X < <w x w xQ c s Q c ; x ,c x s c k f x , c f x Gk c . A.3Ž . Ž . Ž . Ž .Ž . Ý Ý Ý0 0 n n n m m 0 nž /

ns0 ms0 ns0

w xTherefore, if m-EE we have k )0 and Q c )0.0 0 0

The sufficient condition can be proved with the help of general theorems on elliptic differential equations
w x Ž . Ž .22 . First we look for upper and lower solutions of 4 . An upper solution c x is defined byu

"
2

22 < <y = c x qU c x c x q V x ym c x G0. A.4Ž . Ž . Ž . Ž . Ž . Ž .Ž .u 0 u u u2m

Ž .For a lower solution c x the inequality is reversed. If a couple of ordered upper and lower solutions exist, i.e.l
Ž . w xc )c , then the existence of, at least, one solution c x with c FcFc is guaranteed 22 . It is simple tou l l u

Ž . Ž . Ž .check that an upper solution is c x s mrU . As a lower solution we choose c x sef x with(u 0 l 0

'myEE m0
e-min , A.5Ž .2( < <ž /< < U max f xŽ .(U max f xŽ . 0 x 00 x 0

which ensures that c -c .l u
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Ž .In the case U -0, it is possible to prove that a positive solution of 4 does not exist if m)EE . Multiplying0 0
Ž . Ž .4 by f x and integrating, we have0

2
"

22 < <0s f x y = qU c x q V x ym c x dxŽ . Ž . Ž . Ž .Ž .H 0 02m

2
"

22 < <s c x y = qU c x q V x ym f x dxŽ . Ž . Ž . Ž .Ž .H 0 02m

2< <s c x U c x q EE ym f x dx . A.6Ž . Ž . Ž . Ž . Ž .H 0 0 0

Therefore,

< < 2U f x c x c x dxs myEE f x c x dx . A.7Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H0 0 0 0

Ž . Ž .If c x is a positive function, both integrals in A.7 are positive and for m)EE the equality is impossible.0
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