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States without a linear counterpart in Bose-Einstein condensates
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We show the existence of stationary solutions of a one-dimensional Gross-Pitaevskii equation in the pres-
ence of a multiwell external potential that do not reduce to any of the eigenfunctions of the associated
Schralinger problem. These solutions, which in the limit of strong nonlinearity have the form of chains of dark
or bright solitons located near the extrema of the potential, represent macroscopically excited states of a
Bose-Einstein condensate and are in principle experimentally observable.
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[. INTRODUCTION In this paper, we show the existence of stationary solu-
tions without a linear counterpart of a 1D GPE in the pres-

Bose-Einstein condensatidBEC) of weakly interacting ence of a multiwell external potential. In the limit of strong
atomic gase$l] strongly motivates the study of the Gross- nonlinearity, these solutions assume the form of chains of
Pitaevskii equatioGPE), dark or bright solitons located near the extrema of the poten-
tial and in general break the symmetry of the external poten-
tial.

Our analysis is of direct interest for BEC experiments
where atomic gases can be confined in almost arbitrarily tai-
a mean-field Schdinger equation with local cubic non- lored magnetic and optic trapdl,12. As a case study, we
linearity. Of particular interest are the nonground-state stainvestigate a GPE representing a quasi-1D Bose-Einstein
tionary solutions of the GPIE2,3] which represent macro- condensate confined in a double-well trap described by the
scopically excited states of the condensate. Vortices haveotential
been recently observed in twd4] or one-componenf5]

'ha ﬁzvzuqf 2HV(x) [P =0, (1

4

condensates and are also invoked as a superfluidity breaking > aa s, @

mechanisn[6]. Phase engineering optical techniques have V(x)=m7yX"—maox +4_74' @
allowed us to generate dark solitons in atomic gases with

positive scattering lengtfv,8]. In Sec. Ill, we describe all the zero-, one-, and two-soliton

Vortices and solitons observed in recent experiments argo|utions of this model in an analytical way valid in the limit
examples of excited states with a linear Countel’pal’t, i.e., St%f Strong non"nearity_ In Sec. |V' by means of numerical
tionary solutions of the GPE which can be obtained as ajmuylations we find the exact shape of these states and study
deformation of eigenstates of the corresponding linear Schraneir evolution in the linear limit reached when the number
dinger equatior{9,10]. However, the GPE may also admit of particles in the condensalé vanishes. We consider both
stationary solutions without a linear counterpart. In a disthe cases of condensates with positive or negative scattering
cretized version of the GPE, also known as a discrete Sem‘ength_ Shape and energy Of the Corresponding Stationary SO-

trapping equation, the existence and stability of solutiongytions are shown in Figs. 1 and 3 and 2 and 4, respectively.
without a linear counterpart has been studied at various disfheir stability properties are discussed in Sec. V.

cretization order$13]. In particular, the appearance of self-

trapping stationary states in the dimer case, e, a tW(_)-IeveI Il STATIONARY SOLUTIONS

system approximating a double well, has been widely inves-

tigated in connection with the evolution of wave packets Let us first review some general properties of the station-
[14-16. Recently, a set of stationary solutions without aary solutions of the GPE that reduce, in the limit of vanish-
linear counterpart has been discovered also in the continuouisg nonlinearity, to the eigenfunctions of the associated
case, namely, the exactly solvable one-dimensiqidd))  Schralinger equation

GPE with periodic boundary conditions and zero external )

potential[10]. These states break the rotational invariance of B ﬁ_ 2 _ _ _

the associated linear problem. 2mV V() =&n|hn(x)=0, n=01,.... (3

In [9] we have shown that for any finite value of the chemi-

*Electronic address: dagosta@fis.uniroma3.it cal potentialu there exists a set of stationary solutions of the
"Electronic address: carlo.presilla@romadl.infn.it GPE, WV, n(x,t)=exp(—i/iut)if,(X), which have limit
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FIG. 1. Zero-, one-, and two-soliton stationary solutions of the repulsive GPE with the symmetric double-well pgfuaradiifferent
values of the normalizatioh. For comparison, the functions are shown scaledyby The vertical solid and dashed lines indicate the
double-well maximum and minima, respectively. The degenerate states obtained by chapginrg/(—x) are not reported. The results
have been obtained with the following parametens=3.818<10 %6 kg, w=12.75 s, y=10° kg ¥m 125712 U,=1.1087
X 10~%t Jm, which correspond to sodium atoms confined in two quasiharmonic wells of angular frequncgt distancey2w/my*
~92 pm.

¥ un(X) ||,/,#n||*1_> én(X) when u—¢&,. The parametep while for n=1 nodes we obtain asymptotic solutions with
ranges in the intervdls, , + ) for Uy>0 and in the interval ~dark solitons
(—,&,] for Ug<0. In both cages, the number of particles n J
in the stateys,,, N,(u)=|,ql°, vanishes foru—&,. In mu
other words, ‘tLhe linear limit ;iLs reached for a vanishing num- w“”(X)HIﬁMO(X)gl tank( h (x Xk))' ®
ber of particles in the condensate.

In the 1D case, asymptotically exact expressions for then the attractive castlq<0, for u— —o the solutions with
GPE stationary solutions with linear counterpart are knowmn=0 nodes give rise ta+ 1 bright solitons
also in the opposite limit of strong nonlinearity. Foar— N
+o, depending on the sign &f, these solutions assume the 21 K N—2mu
form of chains of dark or bright soliton®]. More specifi- Yun(X)— Ug g‘o (—1)"sec R XX |
cally, in the repulsive cas&)y>0 the solution withn=0 (6)
nodes assumes the zero-soliton shape

In the functions(5) and (6) with two or more solitons, the
solitons do not overlap, i.e., the distance between their cen-

b Ve=V(x)1/Ug, u>V(X), (4  tersxis much larger than the dark-soliton widtttymu or
#O 0, u<V(x), the bright-soliton widthz//—2mu [9]. Note that any sta-
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FIG. 2. As in Fig. 1 for the one- and two-soliton solutions in the attractive thge—1.108710" %! Jm.
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tionary solution is invariant under a global phase change andufficiently large, the width of the solitons is very small and

we do not consider this trivial degeneracy. the dependence of the integf&) on x; or X, is due only to
The stationary solutions of the GPE, farfixed, are the  the termV|y|2. The dark soliton densityy,|? is constant
critical points of the grand-potential functional with a hole inx; so thatQ(x;)~const—V(x;). The bright
52 U soliton density| ¢,0|? is different from zero only in proxim-
Q[w]:J —|Vz,b(x)|2+—0|¢(x)|4+[V(x)—,u] ity of Xq and{)(xg) ~const+V(Xq). In both cases we have
2m 2 three one-soliton solutions corresponding to the three ex-

trema of the external potential. The soliton may be found in
dx. (7)  the maximum(column 3 of Fig. 1 and column 1 of Fig) &r
in one of the two minimdcolumn 4 of Fig. 1 and column 2
of Fig. 2 and symmetric partnerg —x) | of the double well.

X |g(x)|?

Since for|u| large the GPE solutions with a linear counter- - ; : i
part assume the form@h—(6) with some specified centers The two solutions with the soliton centers inx,,, where
{x}, we look for more general multisoliton solutions in Xm=y@“/2my”, break the symmetry o¥/(x) and do not
which the soliton centers may assume different values. ThBave a linear counterpart. _ _ _
allowed {x,} can be determined by substituting the expres- In the repulsive case, two-soliton solutions are described

sions (4)—(6) in Eq. (7) and extremizing the resulting func- bY EQ. (5) with n=2 and the grand potential becomes the
tion Q({x}). two-variable function(2(x;,x,). When the distance between

the soliton centers is much larger than their width, we have
Q(X1,X2) =0 (X1) +Q(X5). In the regionx;<x,,  has a
maximum in (—Xq,X,,) and two saddle points in (€,) and
(—Xm,0). We assume that,,>%/\/mu. The stationary solu-
Zero-soliton solutions exist only in the repulsive casetion co'rresponding to the maximumﬁfis shown in column.
U,>0 and are given by Eq4). For ;2 sufficiently large, we 5 of Fig. 1. Tr_\ose correspondlr_lg to the two saddle points
hacl)ve a nodeless state whié:h. exte’lrﬁds over the entir’e doucholumn 6 of Fig. 1 and symmetric partng( ~x)] break the
s?/mmetry ofV and must disappear in the linear limit.

well (column 1 of Fig. ). If p is smaller than the barrier Other extrema of) can be found when the centers of the

. Aip A g . . . .
heightw™/4y*, this state vanishes in the barrier region where, "4 <olitons are into the same well. In fact, when both
V(X)> w. In this case, sincg=0 is a trivial solution of the

GPE, we could expect also two other stationary solutions Off(vlcgzgt)izvt(in?—tgz(;i %rcr_egge,stziti\l/jlu—ex Tgﬁ(/x\?mL;)
==V 1Uq i : X1 2 17 X2 M.
th(ex ;‘o_rrg ﬂ;(e):whe[rle%co\llu(r);)ry; gf'r::io ni‘g;giwr\:]omvgrlili ag:jt_ When the distancéx;—x,| becomes comparable with the
Yx)= Q. y P soliton width, the two density holes | ,,|? begin to merge
ner w(—x)]._These Iat_ter SOIL{t'OnS prgak the symmetryof and the norm of},, increases. This implies th& decreases
and must disappear in the'I|near limit. They correspond t%r IXg—Xo|—0 sliane at least fop. sufficiently large, 0~
theosneelf__st:ﬁi?gﬁ dsiﬁﬁfn:ti?;edggs&ilb%d by H§) with n — ull¥,4lI>. As a consequencd) has two maxima in X,
—8,Xpt 6) and (— X, — 8, — X+ 8) with 26=#A/\mu. The

=1 in the repulsive case and E&) with n=0 in the attrac- i lutiongol 7 of Fia. 1 and i
tive one. The corresponding grand potential becomes a fun&2rresponding solutionscolumn 70t F1g. 1 and Symmetric

tion of the soliton center; or x,, respectively. Foru|

Ill. ZERO-, ONE-, AND TWO-SOLITON SOLUTIONS
IN A DOUBLE WELL
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FIG. 4. As in Fig. 3 for the states shown in Fig. 2. Curves 8 and
FIG. 3. Single-particle energiés N for the states shown in Fig. 9 correspond to the stationary solutions, not shown in Fig. 2, having
1 as a function oN. The numbers correspond to the columns of Fig. as a linear counterpart the Sctioger eigenfunctions with 2 and 3
1. The curve 8 corresponds to the antisymmetric partner of 5. nodes, respectively.
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partner s(—x)], break the symmetry o¥/(x) and do not bright soliton at the center of the barrier.
have a linear counterpart. In Figs. 3 and 4 we show the single-particle energies for
In the attractive case the situation is more complicatedthe same states of Figs. 1 and 2 as a functioNofrom
The bright solitons in the stationary solutions with linearthese figures it is evident the generation of solutions without
counterpart given by Eq6) are multiplied by a phase factor a linear counterpart abl is increased. In the case of the
which is alternatively+-1 and— 1. In general, we can expect attractive GPE, the stationary solution which férlarge is
bright solitons with arbitrary relative phases since each secfully localized into one of the two wellgésecond column of
function is, for u— —o, a solution of the GPE and this Fig. 2) is, when it exists, the state of minimal energy. There-
equation is invariant under a global phase change. Restrictore, the nature of the mean-field ground-state changes as a
ing to real solutions, in the two-soliton case we have to confunction of N and this suggests the existence of a quantum
sider the following possibilities: phase transition in the corresponding exact many-body

system.
N 2u V—2mu The generation of stationary states without a linear coun-
V()= N, |sech——(x=%0) terpart can be understood in terms of bifurcations of super-

positions of Schrdinger eigenstates. In the following we dis-
cuss an analytical example valid when the zero point energy
(8) of each isolated welk% 2w, is much smaller than the barrier
height,w*/4y*, i.e., for 0®/%y*>1. Let us consider station-
The functions) = (x,X;) obtained by inserting these expres- ary solutions of the GPE of the form
sions in Eq(7) present, in analogy with the repulsive case, a
minimum in (—xm,xm) and two saddle pointg in (4,) and N P(X)= \/ﬁ[aoXo(X—Xm)JfboXo(X+Xm)], (9)
(—%m:0). The stationary states corresponding to the mini-
mum of Q= (Xq,X;) are shown in columns 3 and 5 of Fig. 2.
Those corresponding to the two saddle pojotdumns 4 and
6 of Fig. 2 and symmetric partneys™(— x) ] break the sym-
metry of V and do not have a linear counterpart.

On the other hand, due to the gradient term in &g. we
have a different behavior ofd* and Q~ when both the
soliton centers, andx; move toward the minimum of the
same well. In factQ)™ does not present extrema while~ \
has two minima in X;,— 8,Xy+ 6) and (—Xpy,— 6, — X+ 9) i 4 2
with 28=#/y/— 2mpu. The corresponding solutiofisolumn E(Do)~byo 1_bOjLSgr(l‘JO)N_O(1+2b°_2b°)’ (10
7 of Fig. 2 and symmetric partner (—x)], break the sym-
metry of V(x) and do not have a linear counterpart.

wherey,(x) are the eigenfunctions of the Schimger prob-
lem with harmonic potentiam(2w)?x? and a3+bj=1.
Since the stat€9) is normalized td\, for it to be a stationary
solution of the GPE we have to extremize the energy func-
tional E[ ¢]=Q[ ]+ wN. Up to exponentially small terms
we get

where

IV. NUMERICAL SOLUTIONS WITH AN ARBITRARY 3 % 3

NUMBER OF PARTICLES No~ “’_4ex _ “’_4) JABoimU2, (11)
Now we compare the zero-, one-, and two-soliton solu- hy hy
tions discussed above with the results of nhumerical simula-
tions. We use a numerical algorithm based on a standarior N<No, E(bo) has a minimum forbp=2""? and a
relaxation method for partial differential equatiddg]. The ~ mMaximum forby=—2"*2 These extrema correspond to the
success of this method is crucially based on the quality of théOwest-energy symmetric and antisymmetric linear states
trial functions used to start the relaxation. Fat very large, ~ (columns 1 and 3 of Fig. 1 and columns 3 and 5 of Fig2
good trial functions are represented by the multisoliton funcUo>0, for N=N, the maximum ab,= — 2~ bifurcates in
tions with the soliton centers determined as above. The red minimum and a maximum which, increasiNg moves to
laxed solutions can be then used as trial functions for a simuPo=0. This describes the birth of the state in the second
lation with a smaller value of|u|. By changing column of Fig. 1 and its subsequent localization in the right
sufficiently slowly, one can follow the evolution of the sta- Well (a,=1). If Uy<<O a similar result is obtained with
tionary states until they reach the linear limit, if it exists, or maxima and minima exchangedee column 2 of Fig. )2

the point where they disappear. Figures 1 and 2 show in theeneration of other states can be obtained by considering
repulsive and attractive cases, respectively, the states oBLIPerpositions more complicated than E2).

tained in this way for different values of their norilh For
any node indexn, the linear limit is reached whem
=N,(u)—0. All the solutions that break the symmetry of
the external potential disappear fdrsmaller than a critical In this section we discuss the stability of the stationary
value. However, there also exist solutions without a linearstates described above. We start with a linear stability analy-
counterpart that preserve this symmetry. An example isis. Consider the linearization of E(L) for a small change
shown in the first column of Fig. 2 which corresponds to as¥ of its solution

V. STABILITY OF STATIONARY SOLUTIONS
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couple of complex conjugated linearization eigenvalues for
the symmetry-breaking two-soliton solution shown in the
fourth column of Fig. 2.

Lyapunov stability of all the state® in the neighborhood
of a stationary solution¥",,,, is a mathematically stronger

We are interested to evaluate the evolution of the variatiorroncept of stability and certainly more relevant from an ex-

oV of a stationary solutionW ,,. By writing
=e M Ya(X) + Sp(x,D)], (13

according to Eq(12) the variationd¢ and its complex con-
jugateds¢* are determined by

L a(0¢\ [ Dun  Uoti (545)
'ﬁﬁ(éd)*)_(—uowznz o lagr ) 19
where
ﬁ2
Dﬂn=—ﬁV2+V(x)+2UO|¢/m|2—,u. (15
The solution of Eq(14) can be written as
dp(x.t) | _ i)\t/h(fk(x))
(ﬁgb(x,t)* DA PV

where\, and (f,,g,) are the eigenvalues and the eigenvec-

tors of the linearization operator

( Dyn Uo%”in)(fk)_)\ (fk)
~Uos? —Dun) o "o
and the coefficientx, are fixed by the initial condition

8¢ (x,0). Multiplying Eq.(17) by (f¥ ,—gi) and integrating
over space, we get

7

| U2 Dyt G D Uol g1

SV RCAREAREN a8

If ||f]l#/lgull for anyk, Eq. (18) implies that all the linear-
ization eigenvalues are real so that Ety) admits only qua-
siperiodic solutions. If|fif|=|gd| for somek, the corre-
sponding linearization eigenvalug, may be complex. In
this case, the corresponding stationary statg can show
exponential instability whenever the initial variatiéi(x,0)

has a superposition coefficieat# 0 [18]. To check the ex-

istence of complex linearization eigenvalues, we have solve
numerically the eigenvalue problefh?7) by representing the
linearization operator with a finite difference scheme. Wi
find that the stationary statef,, shown in Fig. 1 have only

real . This suggests linear stability of all stationary solu-
tions withUy>0. On the other hand, exponential instability

perimental point of view. This kind of stability was previ-
ously studied in the case of a lattice model which reduces to
the GPE in the continuum limif19]. In that paper it was
shown numerically that the maximum Lyapunov exponent
associated to a discretized version of E®) vanishes when

the initial stateW(x,0) is sufficiently close to one of the
stationary states. A similar analysis can be pursued in the
case of the GPE by simulating a huge finite-dimensional sys-
tem, namely, that obtained by applying a finite difference
scheme to the partial differential equatil). Of course, the
large but finite number of degrees of freedom used in the
simulation sets a limit to the maximum time at which the
properties of the infinite-dimensional system corresponding
to the GPE are correctly represented. We will report on this
elsewhere. Here we note that the gained scenario is consis-
tent with Kuksin theony20] which asserts that Eq12) ad-

mits N-dimensional invariant tori, deformation of E{.6), in

a finite neighborhood of any stationary state whose lineariza-
tion spectrum satisfy nondegeneracy and nonresonance
conditions.

The spectrum of the linearization operator is useful also
for discussing the stability of the stationary states under the
effect of a dissipative perturbation. The grand-poten(ral
evaluated for a state of the for(i3), up to the second order
in the variation6¢ gives

QY+ oV ]=Q[ ,n]+ 5%Q), (19

where
2 1 * 2 *
) Q=§ 6¢*[D,ndp+ Uo%n&i’ Jdx

1 * * 2
+3 f SP[Dundd* + Uyt 25p1dx.  (20)

By using Eqs(14) and(16) and the sum rule

we get
2 1 2 2 2
820=5 2 leddlfd?~lgd). (22

Therefore, a stationary solutiap,,, is a local minimum of
the grand-potential functional if and only if for arkywe

have[21]
e

M(lIfd?=llgkl®)=0. (23

To verify the disequalitieg23), we resort again to the

is possible in the case df,<0. For instance, we find a numerical solution of the eigenvalue problgi7). In the

043609-5
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. O

repulsive caséJ,>0, the condition(23) is fulfilled only by

the state in the first column of Fig. 1. In the attractive case L P e AN AN e AN
U<0, no one of the states shown in Fig. 2 satisfies(E§). A3
This can be explained observing that the grand potential ~~ 07
evaluated at a stationary state is 8 |
-1 -
1 4 ‘ ‘ - ‘ ‘ ;
Qp,n]=— 3 Uof | o *dix. (29 0 2 4 6 8 10

Thus, ifUp<<0, ) assumes the minimal value for the trivial §
solution y=0. These results have a certain interest on the g ;
stability of a physical condensate in which a dissipative dy- £ 0=
s
o
8

namic is introduced by the coupling with the environment
degrees of freedom. Eventually the system will converge to a
local minimum of(}. For attractive interaction, this implies

. . 0
the disappearance of the condensate. An estimate of the char- t (s)
acteristic lifetimes has been given in the case of a vortex
state[22]. FIG. 5. Time evolution of the soliton centers for initially per-

We conclude our stability analysis by considering theturbed stationary state® (x,0)= i,,(x—Ax) with Ax=0.3 um.
short-time behavior of the stationary states under the actiom the upper paney,, is one of the states in column 4 of Fig. 1
of an initial finite deformation. A similar analysis has beenwhile in the lower panel one of those in column 4 of Fig. 2.
considered in[23] to check the stability of the solutions
found in[10]. The authors of23] studied the evolution of than Ax=0.3 um which is the case shown in Fig. 5. By
stationary states initially perturbed with a stochastic noise. Inlecreasing\x, the initial falling of the soliton at the center
our case, the stationary solutions corresponding to solitonsf the barrier into the right wellleft well for Ax<0) is
located near the extrema of the double-well potential shoul&lowed down.
have great sensitivity, especially in the case of unstable ex- The results shown in Fig. 5 can be generalized to different
trema, to symmetry-breaking perturbations. Here, we conkinds of perturbations, e.g., stochastic noise, modification of
sider the evolution of shifted stationary states, i.e., we solvghe parameters of the external potential. Details will be re-
Eq. (1) with the initial condition¥ (x,0)= ¢ ,,(x—AX). The  ported elsewhere.
numerical simulations have been performed with the im-
proved Crank-Nicholson scheme introduced[i®] which
provides an accurate conservation of the constants of motion
of Eqg. (1), namely, norm and energy. As an example, we We have shown that in presence of an external potential a
describe the evolution of the states of column 4 of Figs. 11D GPE can admit stationary solutions without a linear
and 2. Note that these are states without linear counterpartcounterpart. Their existence is strictly connected to the mul-

The state with one dark soliton has a rather simple evolutiwell nature of the potential. In the double-well example
tion. The qualitative shape of the state does not change buliscussed here, these solutions disappear in the imit0
the soliton oscillates around the minimu X, of the right ~ when the potential assumes the shape of a single quartic
well. The position of the soliton centex;, as a function of well. For a piece-wise constant double well, the stationary
time is shown in the upper panel of Fig. 5 fakx  states here discussed analytically only in the limit of strong
=0.3 um. The amplitude of the oscillations is very small in nonlinearity can be obtained in terms of Jacobi elliptic func-
the case considered and increases by increasigFor a  tions for any number of particles in the condensate.
shift Ax sufficiently large the soliton can jump between the We have also discussed the stability of the stationary
two wells. states under different points of view. The results indicate that

The dynamics of the state with two bright solitons is morethe solitonlike states, with and without a linear counterpart,
complicated, see lower panel of Fig. 5. Initially the soliton atare sufficiently stable for times shorter than few tenths of
the center of the barrier moves toward that located inside theeconds. This is the time scale explored in the BEC experi-
right well, the latter being essentially at rest. When the disiments[11,12. By voluntarily introducing perturbations of
tance between the two solitons becomes comparable to thgiroper intensity, a soliton dynamics could also be observed.
width the oscillations of the solitons inside the same well
turn out to be correlatgd. The solitons do not cross each ACKNOWLEDGMENTS
other. When the potential energy of the barref¥|?, is
sufficiently reduced by the negative interaction energy, We thank R. Onofrio for very useful comments on the
3Uo| P[4, the soliton which was originally at the center of experimental aspects of BEC and a critical reading of the
the barrier can jump into the left well. This interwell dy- manuscript. This work was supported in part by Cofinanzia-
namic is obtained also for values of the initial shift smallermento MURST protocollo MM02263577_001.

VI. CONCLUSIONS
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