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The supersymmetric connection between Fokker- Pianck and Schrooinger equations is utilized to reduce the computation of 
the activation rate in one-dimensional bistable potentials to a variational calculation for the ground state level of a monostable 
quantum system. The results thus obtained are compared with the predictions of conventional approximate techniques for a class 
of weakly binding (soft) potentials. 

Recently [ 1-3] it has been pointed out that the 
well-known [ 4] connection between the Fokker­
Planck equation (FPE) and the imaginary-time 
Schrodinger equation ( SE) can ease the numerical 
determination of the smallest non-vanishing eigen­
value A 1 for the diffusion in bistable potentials. The 
crucial ingredient of the proposed procedure is pro­
vided by the supersymmetric quantum mechanics 
[ 5], which establishes the isospectrality of the ei­
genvalue problems associated with the two potentials 

_ _ 1 (aw)\!o 2
W 

V ± - 4D ox - 2 ox2 ' ( 
1 ) 

where the supersymmetric partners V _ (x) (bo­
sonic) and V + ( x) ( fermionic) are related to each 
other through the Fokker- Planck potential W(x). 
The FPE for constant diffusion D, 

(2) 

is thus equivalent to the imaginary-time SE 

a 
-;- 'P(x, t) = -H + 'P(x, t) ut -

= ( D ::2 - V ± ) 'P(x, t) (3) 

after the transformation 

p(x, t) = exp [- W(x) /2D] 'P(x, t) . (4) 

Solving eq. (2) for a bistable potential W(x) ex­
hibits the very same technical difficulties as inte­
grating the SE for V _ (x) in eq. (1 ): an exponen­
tially small (and, therefore, hard to resolve) distance 
between the first two eigenvalues of the spectrum may 
occur due to the multistable nature of both W(x) 
(thermal activation) and V _ (x) (quantum me­
chanical tunneling) . The problem simplifies when 
one passes to theSE for V+ (x). The fermionic part­
ner V + (x) is isospectral with V _ (x) apart from the 
cancellation of the zero eigenvalue Ao [ 1-3]. A 1 de­
notes then the fundamental state of V+ (x) which is 
in general well separated from the higher eigenval­
ues. For our purpose V + (x) behaves as a mono­
stable potential [ 1 ] and A 1 can be well approximated 
by means of variational techniques [ 1 ,2 ]. In a few 
cases [ 3] V + (x) can be handled analytically to ob­
tain an extremely accurate determination of A 1, oth­
erwise lying beyond the reach of our analytical tools. 

In the present Letter we discuss the advantages 
(and limitations) of the procedure proposed by 
Bernstein and Brown [ I ] by comparing the varia­
tional estimates of A 1 for the quantum mechanical 
problem ( 3) with some approximate predictions for 
the relevant activation rates in the stochastic prob-
1em(2) [4,6]. 

Let W(x) be a symmetric bistable potential with 
extremal points, W' (x) =0, in x= ± xm (stable) and 
x=O (unstable, or potential barrier) and flex points, 
W" (x) =0, in X= ±xr (with Xr<Xm). In orderto ob-
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tain a good variational estimate for the ground state 
level, il 1, of the hamiltonian H +, ( 3), we notice that 
H+ exp[ W(x)/2D] =0. As the operator H+ is pos­
itive definite [ 5], a natural choice for the trial func­
tion is 

IJI(x)= exp[¢(x)/2D], 

with 

¢(x)=¢(-x) 

= W(x), O~x~c, 

= W(c) + W' (c)(x-c), x~c, 

(5) 

(6) 

where c is the only variational parameter in our 
scheme. The condition that IJI(x) is normalizable re­
quires that O<e<xm so that W' (c) is negative def­
inite. The variational method yields an upper bound 
for il 1, i.e. 

x( W' (em +x) 2
- W' (em)

2 + W" (em +x)) 
4D 2 

[ 
cfm dx ( W(x)- W(em))- D ]-' 

X exp D W' (em) 
0 

(7) 

The minimization of il Y with respect to the varia­
tional parameter c, amounts to determining ( nu­
merically) a function Cm(D) which clearly admits of 
two analytical limits, 

lim em(D) =Xm, lim Cm (D) =Xr. (8) 
v~o D~oo 

We shall discuss these limits and their implications 
at the end. 

In the following we specialize our result ( 7) for a 
family of potentials W(x; R) whose stability de­
pends on the tunable parameter R (R>O): 

( 
cosh x ) 

W(x;R)=21n h 2 • h 2 R . cos x+sm 
(9) 

As shown in fig. 1 the shape of W(x; R) changes from 
a single-well structure for R = 0 to a symmetric dou-
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Fig. I. The potential W(x; R) for some values of the tunable pa­
rameter R. 

ble-well structure for R > R*::::::: 0.88 (sinh R* = 1 ) . 
Note that W(x; 0) =- W(x; oo ). This potential is 
related to the stability of the static soliton of the dou­
ble sine-Gordon theory [ 3, 7]. 

The reason for our choice is that W(x; R), due to 
its very peculiar shape, proved to resist a straight­
forward application of the conventional Fokker­
Planck techniques for determining il 1• The mean first­
passage time, usually assumed to coincide with the 
reciprocal of il 1 [ 4], results here to be ill-defined be­
cause of the linear behaviour of W(x; R) at infinity, 
W(x; R) ~ 21x1. (In ref. [3] W(x; R) is termed soft 
potential.) The computation of il 1 through Kramers' 
formula [ 6,8] is to hold good only forD« 1 [ 3]. 
The assumptions implicit in Kramers' approach are 
often summarized by the sole requirement that 

D«~W= W(O; R)- W(xm ; R) 

( 
cosh

2R) * = 2 In 2 sinh R for R > R . 

Such a condition is meant to guarantee by one token 
that the potential barrier~ W is much larger than the 
average energy fluctuation D and that the bistable 
potential can be approximated to suitable parabolic 
curves in the vicinity of the extremal points X= ±xm 
and x= 0. This is not the case of our soft potentials 
where the second condition corresponds to the fur­
ther inequality [9] D«W" (O; R) 2 /W(iv>(O; R) 
~O( 1 ). For this reason Kramers' formula 
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K J I W" ( 0; R) I W" (Xm; R) ( ~ w) 
...1. - exp ---
1- 7t D 

(10) 

is certainly inadequate for D-1 even in the limit 
R->oo, where ~W;:;:2R becomes infinitely large. 

A different analytical estimate of ...1. 1 can be ob­
tained at largeR, where W(x; R) is closely approx­
imated by a double-wedge potential 

W(x; R);:::: Ww(x; R) 

=~WI1-Ixi/RI (R->oo). ( 11 ) 

In fact , under the condition ~ W» D » 1 the de­
tailed shape of the potential about the extremal points 
becomes irrelevant to the activation process and no 
great inaccuracy is expected on replacing W(x; R) 
with Ww(x, R) in eqs. (2) and (3). The relevant 
eigenvalue spectrum can be given analytically; in 
particular [ 1 0] 

1 ~W2 a 2 

...1.f = 4D ~ -D R2 , (12) 

where a is the solution to the transcendent equation 

a 
tanh a= ~WID-a (13) 

ForD~ ~W the discrete eigenvalue ...1.f is absorbed 
into the continuum at ...1. ~ 1 I D . 

In fig. 2 we compare our results for ...1.i, ...1.f and 
...1.f at several values of D and R. In order to appre­
ciate the accuracy of the diverse approximations we 
display the ratios of the above quantities to the pre­
cise determination of ...1. 1 obtained by numerical in­
tegration of the SE for V_ (x) [ 10]. One sees im­
mediately that 

(i) ...1.i is well-defined only for R>R* as under­
stood in our variational approach where the bistable 
structure of W(x; R) is always assumed. For R > 2, 
...1.i approximates ...1. 1 within up to 40% for the whole 
range of D values considered; an excellent agreement 
(within 1%) is obtainable for both D « ~ W and 
D»~W; 

(ii) in the limit D «~Wand D« 1, ...1.i and ...1.f 
come close to each other as expected; 

(iii) in the limit ~ W» D> 1, ...1. f appears to pro­
vide the best approximation to ...1. 1 and would replace 
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Fig. 2. Ratios .l.( /). 1 (lozenges), .l.~/.l. 1 (solid line ) and .l.~v /.l. 1 

(dashed line) as a function of D at different values of R. 
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Kramers' formula for D » 1 (see fig. 2). 
More suggestive is the discussion of the varia­

tional formula ( 7) . em (D) in fig. 3 has been com­
puted numerically. For D-+0, i.i (D) reproduces the 
analytical form of .A.f (D) provided that 
c~ (D) =Xm-aJD+O(D) with a~ 1.3. c~ (D) is 
also plotted in fig. 3. At large D, instead, cm(D) ap­
proaches Xr. The abrupt change in the behaviour of 
Cm (D) is related to the relative weight of the two 
terms in the integral at the numerator of eq. ( 7), 
whence the rather good estimate for the critical value 
De, De= W' (xr) 2/ 4 at which the transition between 
the two regimes Cm(D) ~c~ (D) (D<Dc) and 
cm(D) -::::;xr(D> De) takes place. For .1.W» D> De the 
activation rate is no longer reproduced by Kramers' 
formula; a good approximation is given by eq. ( 7) 
where em is set equal to Xr. For D-+oo (i.e. D» .1.W) 

).v-! W'(oo;R)-W'(xr;R) 
1 -2 Xr-D/W'(xr;R) · 
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Fig. 3. Minimizing variational parameter cm(D) (lozenges) 
compared with the asymptotic expressions c~ (D) and Xr (solid 
line) . 
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At large values of R, W' (oo; R) ~-W(xr; R) ~2 and 
iii (D-+oo)~4/D. In the same limit the continuum 
branch of the corresponding eigenvalue spectrum 
starts at i! ~ 1 I D so that the variational upper-bound 
;.y ~). 1 is not of great use any more. 

In conclusion, we have shown how supersymmet­
ric quantum mechanics provides a useful comple­
ment to the variational techniques in resolving fine 
eigenvalue structures (namely, activation rates) of 
one-dimensional bistable potentials. The extension 
of the procedure presented herein to multi-dimen­
sional bistable systems is matter of ongoing research 
work. 

We wish to thank Professor H. Risken for useful 
discussions and for an accurate comparison of his 
numerical data with ours. 
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