SUPERSYMMETRY AND ACTIVATION RATES

F. MARCHESONI, C. PRESILLA and P. SODANO
Dipartimento di Fisica and CISM-CNR, Università di Perugia, I-06100 Perugia, Italy

Received 2 September 1988; accepted for publication 30 November 1988
Communicated by A.P. Fordy

Abstract

The supersymmetric connection between Fokker-Planck and Schrödinger equations is utilized to reduce the computation of the activation rate in one-dimensional bistable potentials to a variational calculation for the ground state level of a monostable quantum system. The results thus obtained are compared with the predictions of conventional approximate techniques for a class of weakly binding (soft) potentials.

Recently [1-3] it has been pointed out that the well-known [4] connection between the FokkerPlanck equation (FPE) and the imaginary-time Schrödinger equation (SE) can ease the numerical determination of the smallest non-vanishing eigenvalue λ_{1} for the diffusion in bistable potentials. The crucial ingredient of the proposed procedure is provided by the supersymmetric quantum mechanics [5], which establishes the isospectrality of the eigenvalue problems associated with the two potentials

$$
\begin{equation*}
V_{ \pm}=\frac{1}{4 D}\left(\frac{\partial W}{\partial x}\right)^{2} \pm \frac{1}{2} \frac{\partial^{2} W}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where the supersymmetric partners $V_{-}(x)$ (bosonic) and $V_{+}(x)$ (fermionic) are related to each other through the Fokker-Planck potential $W(x)$. The FPE for constant diffusion D,
$\frac{\partial}{\partial t} \rho(x, t)=\frac{\partial}{\partial x}\left(\frac{\partial W}{\partial x}+D \frac{\partial}{\partial x}\right) \rho(x, t)$
is thus equivalent to the imaginary-time SE

$$
\begin{align*}
& \frac{\partial}{\partial t} \Psi(x, t)=-H_{ \pm} \Psi(x, t) \\
& \quad=\left(D \frac{\partial^{2}}{\partial x^{2}}-V_{ \pm}\right) \Psi(x, t) \tag{3}
\end{align*}
$$

after the transformation
$\rho(x, t)=\exp [-W(x) / 2 D] \Psi(x, t)$.

Solving eq. (2) for a bistable potential $W(x)$ exhibits the very same technical difficulties as integrating the SE for $V_{-}(x)$ in eq. (1): an exponentially small (and, therefore, hard to resolve) distance between the first two eigenvalues of the spectrum may occur due to the multistable nature of both $W(x)$ (thermal activation) and $V_{-}(x)$ (quantum mechanical tunneling). The problem simplifies when one passes to the SE for $V_{+}(x)$. The fermionic partner $V_{+}(x)$ is isospectral with $V_{-}(x)$ apart from the cancellation of the zero eigenvalue $\lambda_{0}[1-3] . \lambda_{1}$ denotes then the fundamental state of $V_{+}(x)$ which is in general well separated from the higher eigenvalues. For our purpose $V_{+}(x)$ behaves as a monostable potential [1] and λ_{1} can be well approximated by means of variational techniques [1,2]. In a few cases [3] $V_{+}(x)$ can be handled analytically to obtain an extremely accurate determination of λ_{1}, otherwise lying beyond the reach of our analytical tools.

In the present Letter we discuss the advantages (and limitations) of the procedure proposed by Bernstein and Brown [1] by comparing the variational estimates of λ_{1} for the quantum mechanical problem (3) with some approximate predictions for the relevant activation rates in the stochastic problem (2) [4,6].

Let $W(x)$ be a symmetric bistable potential with extremal points, $W^{\prime}(x)=0$, in $x= \pm x_{\mathrm{m}}$ (stable) and $x=0$ (unstable, or potential barrier) and flex points, $W^{\prime \prime}(x)=0$, in $x= \pm x_{\mathrm{f}}\left(\right.$ with $\left.x_{\mathrm{f}}<x_{\mathrm{m}}\right)$. In order to ob-
tain a good variational estimate for the ground state level, λ_{1}, of the hamiltonian H_{+}, (3), we notice that $H_{+} \exp [W(x) / 2 D]=0$. As the operator H_{+}is positive definite [5], a natural choice for the trial function is
$\Psi(x)=\exp [\phi(x) / 2 D]$,
with

$$
\begin{array}{rlrl}
\phi(x) & =\phi(-x) & & \\
& =W(x), & & 0 \leqslant x \leqslant c, \\
& =W(c)+W^{\prime}(c)(x-c), & x \geqslant c, \tag{6}
\end{array}
$$

where c is the only variational parameter in our scheme. The condition that $\Psi(x)$ is normalizable requires that $0<c<x_{\mathrm{m}}$ so that $W^{\prime}(c)$ is negative definite. The variational method yields an upper bound for λ_{1}, i.e.

$$
\begin{align*}
\lambda_{1} & \leqslant \lambda_{1}^{\mathrm{v}}=\min _{\{c\}} \frac{\langle\Psi(x)| H_{+}|\Psi(x)\rangle}{\langle\Psi(x) \mid \Psi(x)\rangle} \\
& =\int_{0}^{\infty} \mathrm{d} x \exp \left(\frac{W^{\prime}\left(c_{\mathrm{m}}\right)}{D}\right) \\
& \times\left(\frac{W^{\prime}\left(c_{\mathrm{m}}+x\right)^{2}-W^{\prime}\left(c_{\mathrm{m}}\right)^{2}}{4 D}+\frac{W^{\prime \prime}\left(c_{\mathrm{m}}+x\right)}{2}\right) \\
& \times\left[\int_{0}^{c_{\mathrm{m}}} \mathrm{~d} x \exp \left(\frac{W(x)-W\left(c_{\mathrm{m}}\right)}{D}\right)-\frac{D}{W^{\prime}\left(c_{\mathrm{m}}\right)}\right]^{-1} \tag{7}
\end{align*}
$$

The minimization of λ_{1}^{V} with respect to the variational parameter c, amounts to determining (numerically) a function $c_{\mathrm{m}}(D)$ which clearly admits of two analytical limits,
$\lim _{D \rightarrow 0} c_{\mathrm{m}}(D)=x_{\mathrm{m}}, \quad \lim _{D \rightarrow \infty} c_{\mathrm{m}}(D)=x_{\mathrm{f}}$.
We shall discuss these limits and their implications at the end.

In the following we specialize our result (7) for a family of potentials $W(x ; R)$ whose stability depends on the tunable parameter $R(R>0)$:
$W(x ; R)=2 \ln \left(\frac{\cosh x}{\cosh ^{2} x+\sinh ^{2} R}\right)$.
As shown in fig. 1 the shape of $W(x ; R)$ changes from a single-well structure for $R=0$ to a symmetric dou-

Fig. 1. The potential $W(x ; R)$ for some values of the tunable parameter R.
ble-well structure for $R>R^{*} \approx 0.88\left(\sinh R^{*}=1\right)$. Note that $W(x ; 0)=-W(x ; \infty)$. This potential is related to the stability of the static soliton of the double sine-Gordon theory [3,7].

The reason for our choice is that $W(x ; R)$, due to its very peculiar shape, proved to resist a straightforward application of the conventional FokkerPlanck techniques for determining λ_{1}. The mean firstpassage time, usually assumed to coincide with the reciprocal of λ_{1} [4], results here to be ill-defined because of the linear behaviour of $W(x ; R)$ at infinity, $W(x ; R) \sim 2|x|$. (In ref. [3] $W(x ; R)$ is termed soft potential.) The computation of λ_{1} through Kramers' formula [6,8] is to hold good only for $D \ll 1$ [3]. The assumptions implicit in Kramers' approach are often summarized by the sole requirement that

$$
\begin{aligned}
D & \ll \Delta W \equiv W(0 ; R)-W\left(x_{\mathrm{m}} ; R\right) \\
& =2 \ln \left(\frac{\cosh ^{2} R}{2 \sinh R}\right) \text { for } R>R^{*} .
\end{aligned}
$$

Such a condition is meant to guarantee by one token that the potential barrier ΔW is much larger than the average energy fluctuation D and that the bistable potential can be approximated to suitable parabolic curves in the vicinity of the extremal points $x= \pm x_{\mathrm{m}}$ and $x=0$. This is not the case of our soft potentials where the second condition corresponds to the further inequality [9] $D \ll W^{\prime \prime}(0 ; R)^{2} / W^{(\text {iv })}(0 ; R)$ $\sim \mathrm{O}(1)$. For this reason Kramers' formula
$\lambda_{1}^{\mathrm{K}}=\frac{\sqrt{\left|W^{\prime \prime}(0 ; R)\right| W^{\prime \prime}\left(x_{\mathrm{m}} ; R\right)}}{\pi} \exp \left(-\frac{\Delta W}{D}\right)$
is certainly inadequate for $D \sim 1$ even in the limit $R \rightarrow \infty$, where $\Delta W \approx 2 R$ becomes infinitely large.

A different analytical estimate of λ_{1} can be obtained at large R, where $W(x ; R)$ is closely approximated by a double-wedge potential

$$
\begin{align*}
& W(x ; R) \approx W_{\mathrm{w}}(x ; R) \\
& \quad \equiv \Delta W|1-|x| / R| \quad(R \rightarrow \infty) . \tag{11}
\end{align*}
$$

In fact, under the condition $\Delta W \gg D \gg 1$ the detailed shape of the potential about the extremal points becomes irrelevant to the activation process and no great inaccuracy is expected on replacing $W(x ; R)$ with $W_{\mathrm{w}}(x, R)$ in eqs. (2) and (3). The relevant eigenvalue spectrum can be given analytically; in particular [10]
$\lambda_{1}^{\omega}=\frac{1}{4 D} \frac{\Delta W^{2}}{R^{2}}-D \frac{a^{2}}{R^{2}}$,
where a is the solution to the transcendent equation
$\tanh a=\frac{a}{\Delta W / D-a}$.
For $D \geqslant \Delta W$ the discrete eigenvalue λ_{1}^{W} is absorbed into the continuum at $\lambda \geqslant 1 / D$.
In fig. 2 we compare our results for $\lambda_{1}^{\mathrm{V}}, \lambda_{1}^{\mathrm{K}}$ and λ_{1}^{w} at several values of D and R. In order to appreciate the accuracy of the diverse approximations we display the ratios of the above quantities to the precise determination of λ_{1} obtained by numerical integration of the SE for $V_{-}(x)$ [10]. One sees immediately that
(i) λ_{1}^{V} is well-defined only for $R>R^{*}$ as understood in our variational approach where the bistable structure of $W(x ; R)$ is always assumed. For $R>2$, λ_{1}^{V} approximates λ_{1} within up to 40% for the whole range of D values considered; an excellent agreement (within 1%) is obtainable for both $D \ll \Delta W$ and $D \gg \Delta W$;
(ii) in the limit $D \ll \Delta W$ and $D \ll 1, \lambda_{1}^{\text {V }}$ and λ_{1}^{K} come close to each other as expected;
(iii) in the limit $\Delta W \gg D>1, \lambda_{1}^{\mathrm{W}}$ appears to provide the best approximation to λ_{1} and would replace

Fig. 2. Ratios $\lambda_{1}^{\mathbf{V}} / \lambda_{1}$ (lozenges), $\lambda_{1}^{\mathrm{K}} / \lambda_{1}$ (solid line) and $\lambda_{1}^{\mathbf{W}} / \lambda_{1}$ (dashed line) as a function of D at different values of R.

Kramers' formula for $D \gg 1$ (see fig. 2).
More suggestive is the discussion of the variational formula (7). $c_{\mathrm{m}}(D)$ in fig. 3 has been computed numerically. For $D \rightarrow 0, \hat{\lambda}_{1}^{\mathrm{V}}(D)$ reproduces the analytical form of $\lambda_{1}^{K}(D)$ provided that $c_{\mathrm{m}}^{\mathrm{K}}(D)=x_{\mathrm{m}}-\alpha \sqrt{D}+\mathrm{O}(D)$ with $\alpha \approx 1.3 . c_{\mathrm{m}}^{\mathrm{K}}(D)$ is also plotted in fig. 3. At large D, instead, $c_{\mathrm{m}}(D)$ approaches x_{f}. The abrupt change in the behaviour of $c_{\mathrm{m}}(D)$ is related to the relative weight of the two terms in the integral at the numerator of eq. (7), whence the rather good estimate for the critical value $D_{\mathrm{c}}, D_{\mathrm{c}}=W^{\prime}\left(x_{\mathrm{f}}\right)^{2} / 4$ at which the transition between the two regimes $c_{\mathrm{m}}(D) \approx c_{\mathrm{m}}^{\mathrm{K}}(D) \quad\left(D<D_{\mathrm{c}}\right)$ and $c_{\mathrm{m}}(D) \approx x_{\mathrm{f}}\left(D>D_{\mathrm{c}}\right)$ takes place. For $\Delta W \gg D>D_{\mathrm{c}}$ the activation rate is no longer reproduced by Kramers' formula; a good approximation is given by eq. (7) where c_{m} is set equal to x_{f}. For $D \rightarrow \infty$ (i.e. $D \gg \Delta W$)
$\lambda_{1}^{\mathrm{v}} \approx \frac{1}{2} \frac{W^{\prime}(\infty ; R)-W^{\prime}\left(x_{\mathrm{f}} ; R\right)}{x_{\mathrm{f}}-D / W^{\prime}\left(x_{\mathrm{f}} ; R\right)}$.

Fig. 3. Minimizing variational parameter $c_{\mathrm{m}}(D)$ (lozenges) compared with the asymptotic expressions $c_{\mathrm{m}}^{\mathrm{K}}(D)$ and x_{f} (solid line).

At large values of $R, W^{\prime}(\infty ; R) \approx-W\left(x_{\mathrm{f}} ; R\right) \approx 2$ and $\lambda_{1}^{\mathrm{V}}(D \rightarrow \infty) \approx 4 / D$. In the same limit the continuum branch of the corresponding eigenvalue spectrum starts at $\lambda \approx 1 / D$ so that the variational upper-bound $\lambda_{1}^{\mathrm{V}} \geqslant \lambda_{1}$ is not of great use any more.

In conclusion, we have shown how supersymmetric quantum mechanics provides a useful complement to the variational techniques in resolving fine eigenvalue structures (namely, activation rates) of one-dimensional bistable potentials. The extension of the procedure presented herein to multi-dimensional bistable systems is matter of ongoing research work.

We wish to thank Professor H. Risken for useful discussions and for an accurate comparison of his numerical data with ours.

References

[1] M. Bernstein and L.S. Brown, Phys. Rev. Lett. 52 (1984) 1933.
[2] P. Kumar, M. Ruitz-Altaba and B.S. Thomas, Phys. Rev. Lett. 57 (1986) 2749.
[3] F. Marchesoni, P. Sodano and M. Zannetti, Phys. Rev. Lett. 61 (1988), to be published.
[4] H. Risken, The Fokker-Planck equation (Springer, Berlin 1984) ch. 4.
[5] C.M. Bender, F. Cooper and B. Freedman, Nucl. Phys. B 129 (1983) 61.
[6] T. Fonseca, J.A.N.F. Gomes, P. Grigolini and F. Marchesoni, Adv. Chem. Phys. 62 (1985) 389;
P. Hanggi, J. Stat. Phys. 42 (1986) 105.
[7] D.K. Campbell, M. Peyrard and P. Sodano, Physica D 19 (1986) 165;
P. Sodano, C.R. Willis and M. El-Batanouny, Phys. Rev. B 34 (1986) 4936.
[8] H.A. Kramers, Physica 7 (1940) 284.
[9] W. Renz and F. Marchesoni, Phys. Lett. A 112 (1985) 124.
[10] H. Risken, private communication.

