
VOLUME 89, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 2002

040
Quantum Breaking Time near Classical Equilibrium Points

Fabrizio Cametti1 and Carlo Presilla1,2,3

1Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale A. Moro 2, Roma 00185, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Roma 00185, Italy

3Istituto Nazionale per la Fisica della Materia, Unità di Roma 1 and Center for Statistical Mechanics and Complexity,
Roma 00185, Italy

(Received 11 January 2002; published 2 July 2002)

In the evolution of distributions localized around classical equilibrium points, the quantum-classical
correspondence breaks down at a time, the so-called quantum breaking, or Ehrenfest time, which is
related to the minimal separation of the quantum levels in proximity of the classical equilibrium energy.
By studying one-dimensional systems with single- and double-well polynomial potentials, we find that
the Ehrenfest time diverges logarithmically with the inverse of the Planck constant whenever the equi-
librium point is exponentially unstable. In all the other cases, we have a power law divergence with the
exponent determined by the degree of the potential near the equilibrium point.

DOI: 10.1103/PhysRevLett.89.040403 PACS numbers: 03.65.Sq, 05.45.Mt, 47.52.+j
The question of estimating how long classical and quan-
tum evolutions stay close is one of the main problems of
semiclassical analysis. The evolution of a quantum ob-
servable can follow that of the corresponding classical one
up to a finite time, the so-called quantum breaking, or
Ehrenfest time. As initially conjectured in [1–3] and rig-
orously proven in [4–6], whenever the classical flow is
chaotic, the Ehrenfest time diverges logarithmically in h̄.
This result is easily understood. Starting from an initial
value D�h̄� � h̄�I, where I is a characteristic action of the
system, the difference between a classical flow, with Lya-
punov exponent l . 0, and the corresponding quasiperi-
odic quantum flow increases as D�h̄� exp�lt�. The two
flows depart at t � l21 log�I�h̄�. The situation is differ-
ent for a regular classical flow. In this case, starting from
the work [7], it was suggested in [8] that the Ehrenfest
time grows algebraically as h̄2d. The determination of the
value of d and its possible universal nature is still an open
problem. See [9] and references therein for recent results.

The study of the quantum-classical correspondence is
particularly important in proximity of classical equilib-
rium points where classical trajectories spend most of
the time. An example is given by the ubiquitous double-
well system defined by the Hamiltonian H�p, q� �
p2�2 2 q2�2 1 q4�4. Associated to the unstable
equilibrium point �p0, q0� � �0, 0� there is an isolated
exponentially unstable periodic orbit with positive Lya-
punov exponent l � 1. For this system, different rigorous
results are available which allow us to conclude that in
proximity of this point the Ehrenfest time diverges loga-
rithmically with the inverse of the Planck constant. In [4]
it is shown that a coherent state, initially located around
�p0, q0�, spreads exponentially as exp�2lt� for times not
larger than l21 log�1�h̄�. From a complementary point of
view, in [10–13] a semiclassical analysis of the stationary
Schrödinger problem has pointed out the presence of an
h̄-logarithmically anomalous density of the levels around
the energy of the equilibrium point.
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The usual definition of the Ehrenfest time is based on the
comparison of the evolution of classical observables with
the quantum expectation value of the corresponding opera-
tors, either in the coherent state representation [4] or in
the framework of Weyl quantization [5]. A coherent state
represents a natural choice for the initial condition; how-
ever, the results obtained in this way can be generalized to
arbitrary initial conditions [14]. For the purpose of study-
ing the Ehrenfest time which characterizes the evolution of
distributions localized around classical equilibrium points,
we propose a simpler approach based on the analysis of
the quantum spectrum. We know that on going towards
a classical equilibrium point �p0, q0� the period of motion
diverges, so that the classical evolution of a phase-space
distribution function localized around this point must show
a continuous frequency distribution around n � 0. In the
quantum case, due to the discrete nature of the spectrum,
the frequency distribution is characterized by a gap be-
tween zero and a minimal frequency. We call this mini-
mal frequency the Ehrenfest frequency, nE . In fact, its
inverse, n

21
E , is an upper bound to the time at which the

quantum-classical correspondence of the evolution of any
observable breaks down, independently of the choice of
the initial state. We define the Ehrenfest time as n

21
E .

By using numerical and semiclassical methods, we study
the behavior of nE around classical equilibrium points,
both stable and unstable, for several autonomous one-
dimensional systems. We find that n

21
E diverges loga-

rithmically for h̄ ! 0 whenever the equilibrium point is
exponentially unstable. In all the other cases, the Ehren-
fest time follows a power law with an exponent related to
the degree of the potential near the equilibrium point.

In the following, we consider systems described by the
Hamiltonians,

H�p, q� �
p2

2m
1 A

q2a

2a
1 B

q2b

2b
, (1)

with A # 0, B . 0, and b . a $ 1. By properly rescal-
ing position, momentum, and time, we can always reduce
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to the case B � 1, m � 1 and either A � 0 or A � 21.
For A � 0, we have single-well systems with a stable clas-
sical equilibrium point �p0, q0� � �0, 0� at energy ´ � 0.
For A � 21, the systems are double-well oscillators and
the classical equilibrium point �p0, q0� � �0, 0� at energy
´ � 0 is unstable. In the particular case a � 1, the equi-
librium point is also exponentially unstable. In both cases,
A � 0 or A � 21, the periodic orbits near the equilibrium
point at ´ � 0 have a period which diverges for ´ ! 0.

On the quantum mechanical side, we are interested in
the evolution of a phase-space distribution W �p, q; t� ini-
tially centered around the point �p0, q0� and with the prop-
erty that lim h̄!0W �p, q; 0� � d�p 2 p0�d�q 2 q0�. As
an example, we can consider the Wigner function,

W�p, q; 0� �
1

p h̄
exp

∑
2

�p 2 p0�2 1 �q 2 q0�2

h̄

∏
,

(2)

associated to the initial wave function,

�qjc�0�� �
1

�p h̄�1�4 exp

∑
2

�q 2 q0�2

2h̄
1 i

p0q
h̄

∏
. (3)

In the above expressions, h̄ is the dimensionless rescaled
Planck constant which vanishes when, for instance, the
mass m of the system is taken larger and larger.

Instead of studying the evolution of a specific observ-
able, consider the simpler survival probability,

P �t� � j�c�0�jc�t��j2, (4)

which contains the same gross dynamical information. On
the basis of the eigenstates of the Hamiltonian,

Hjfn� � ´njfn�, n � 0, 1, 2, . . . , (5)

the survival probability P �t� can be written as

P �t� �
X̀
n�0

X̀
m�0

jcnj
2jcmj

2 exp�innmt� , (6)

where cn � �c�0�jfn� and nnm � �´n 2 ´m��2p h̄. Note
that, if c�0� is chosen as in (3) with �p0,q0� � �0, 0�,
cn � 0 for n odd, due to the symmetry of the system
and of the initial wave function. By using semiclassical
and numerical techniques, we now show that the Fourier
transform of the survival probability,

P̃ �n� �
X̀
n�0

X̀
m�0

jcnj
2jcmj

2d�n 2 nnm� , (7)

for sufficiently small values of h̄ is characterized by a gap,
large with respect to the typical level spacing, between
n � 0 and the Ehrenfest frequency,

nE � min
n.m

jcn j2 jcm j2fi0

nnm . (8)

The inverse of this frequency gives the largest period in the
evolution of a quantum observable. Since the evolution of
the corresponding classical observable in the proximity of
an equilibrium point displays arbitrary large periods, n

21
E

represents an upper bound to the time at which the
quantum-classical correspondence breaks down. The es-
timate of the Ehrenfest time as n

21
E is independent of the
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choice of the initial wave function and of the monitored
observable.

In the simple case A � 0, by using standard WKB ap-
proximations, we have

´n �

∑µ
n 1

1
2

∂
h̄d�b�

∏2b��b11�
, (9)

with

d�b� �

p
p�2 G� 3

2 1
1

2b �

G�1 1
1

2b � �2b�1�2b
. (10)

For the coherent state (3) with �p0, q0� � �0, 0�, we get

jcnj
2 �

2
p

p�2b�21�2b h̄1�2´
21�2b
n e22´n� h̄

G� 1

2
1 1

2b
�

G� 1

2
�G�11 1

2b
� 1

sin�s�´n, h̄;b��
s�´n,h̄;b�

, (11)

with s�´, h̄; b� � 2
p

2�2b�1�2b h̄21´�b11��2b. The be-
havior of P̃ �n� obtained by using these expressions for
´n and jcnj

2 is shown in Fig. 1 in the case b � 2. We see
that for h̄ ! 0 the frequency distribution P̃ �n� approaches
a continuous limit given by

P̃0�n� � lim
h̄!0

Z
d´ dhp �´�p�h� d

µ
n 2

´ 2 h

2p h̄

∂
,

(12)

where p�´� � jcn�´�j
2dn�´��d´ and n�´� is obtained by

inverting ´ � ´n. By using (9) and (11), we find

P̃0�n� � 4K0�4pjnj� , (13)

where K0 is the Bessel function of zeroth order. Figure 1
also shows the presence of the gap at n � 0 and its shrink-
ing as h̄ ! 0. Since the level spacing ´n11 2 ´n increases
by increasing n, the Ehrenfest frequency (8) turns out to
be nE � �´2 2 ´0��2p h̄. According to (9), its inverse di-
verges as

n21
E � h̄�12b���11b�. (14)
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FIG. 1. Histogram of the Fourier transform of the survival
probability P̃ �n� for different values of h̄ in the single-well
case b � 2. The dashed line is the h̄ ! 0 limit distribution
given by Eq. (13). Histogram bins are chosen according to the
law logni � 25 1 i7�240, i � 1, . . . , 240.
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We now consider double-well systems obtained in the
case A � 21. For these systems, the standard first-order
WKB approximation fails near the unstable equilibrium
point at energy ´ � 0, and one has to resort to a more
accurate semiclassical analysis [10–13,15]. Only in the
case of a quadratic barrier embedded in a quartic well,
i.e., for a � 1, b � 2, the quantization condition for the
energy levels has been written explicitly and, up to terms
of order h̄, reads [16]

1p
1 1 exp�2p´�h̄�

� cos�f�´, h̄�� , (15)

where

f�´, h̄� �
4

3h̄
2

´

h̄
log

h̄
16

2 argG

µ
1
2

1 i
´

h̄

∂
2 p .

(16)

We determine the eigenvalues and the eigenfunctions of
a generic double-well system by solving numerically the
stationary Schrödinger equation. Our results are exact, in
the sense that for all the evaluated quantities the estimated
relative errors are not greater than 1024 independently of
the h̄ value used.

The evaluation of the spectrum of a double-well system
at energy close to the barrier top represents, for h̄ small, an
unsurmountable task with standard numerical techniques.
In fact, the relevant eigenstates have a quantum number n
which diverges quickly for h̄ ! 0. We bypass the prob-
lem by using the algorithm [17] which allows one to eval-
uate selected eigenstates having a very large number of
nodes. As an example, in Fig. 2 we show the couple of
even eigenfunctions with energy closest to ´ � 0 evalu-
ated for h̄ � 1022 in the double-well case a � 1, b � 2.
Note that, already for this still relatively large value of h̄,
the corresponding quantum number is n � 40. In our nu-
merical calculations we go beyond n � 104.

In Fig. 3 we show the superposition coefficients relative
to different double-well systems evaluated for the coherent
state (3) and h̄ � 1023. We see that jcnj

2 decreases expo-
nentially departing from ´ � 0. For smaller values of h̄,
the superposition coefficients jcnj

2 follow approximately
the same exponential behavior as a function of j´nj�h̄ and
become denser and denser.

In Fig. 4 we show the Fourier transform of the sur-
vival probability (7) obtained in the case a � 1, b � 2
by using the eigenvalues and the superposition coefficients
determined numerically as described above. As in the
single-well case, at n � 0 we have a gap whose width
shrinks for h̄ ! 0. The width of this gap, namely, the
Ehrenfest frequency, is yielded by a couple of eigenval-
ues, close to the energy ´ � 0 of the classical equilibrium
point. This can be understood roughly in the following
way. Consider the number of states, N´, in the energy
range �´ 2 h̄, ´ 1 h̄�. The frequencies associated to the
eigenvalues in this energy range are n � N 21

´ , so that,
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FIG. 2. Eigenfunctions f40 and f42 corresponding to the mini-
mal frequency nE in the double-well case a � 1, b � 2 for
h̄ � 1022. The dashed curve is the initial wave function (3)
with �p0, q0� � �0, 0�.

in the limit h̄ ! 0, n vanishes if N´ diverges. Accord-
ing to the Weyl formula, N´ is proportional to the clas-
sical phase-space volume bounded by the energy shells
H�p, q� � ´ 6 h̄. This volume can be evaluated exactly
in terms of simple functions in the single-well case and
in terms of special functions for double-well systems. In
all cases, we have that N´ diverges when h̄ ! 0 only for
´ � 0. If the initial state is even as in the case of the co-
herent state (3) with �p0, q0� � �0, 0�, the couple of clos-
est eigenvalues determining nE is even. For a double well
with a � 1, b � 2, these eigenvalues have energies of
opposite sign, as shown in Fig. 2, while for a . 1 they
are both positive if h̄ is sufficiently small.

The scaling of n
21
E with h̄ is shown in Fig. 5 for dif-

ferent double-well systems. The plotted points are calcu-
lated using the numerically determined spectrum while the
solid line represents the inverse of the Ehrenfest frequency
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FIG. 3. Superposition coefficients jcnj
2 as a function of ´n�h̄

for h̄ � 1023 in the double-well cases a � 1, b � 2 �3�, a �
2, b � 4 ���, and a � 3, b � 6 ���.
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FIG. 4. As in Fig. 1 in the double-well case a � 1, b � 2.

evaluated by using the semiclassical quantization (15) and
(16). The Ehrenfest time increases logarithmically with
h̄21 only in the case a � 1, b � 2, i.e., when the equilib-
rium point is exponentially unstable. In all the other cases
a . 1, a numerical fit suggests that

n21
E � h̄�12a���11a�. (17)

This is the same scaling law which we would obtain, as de-
scribed by Eq. (14), in the case of a single-well potential
V�q� � q2a�2a. This can be understood with the follow-
ing rough semiclassical arguments which we have checked
numerically. For h̄ ! 0, the spacings of the eigenvalues
of the double well above ´ � 0 correspond to the spac-
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FIG. 5. Inverse of the Ehrenfest frequency, n
21
E , as a function

of h̄ in the double-well cases a � 1, b � 2 �3�, a � 2, b �
4 ���, and a � 3, b � 6 ���. The solid line is the regularized
WKB prediction based on (15) and (16), while the dashed line
and the dot-dashed line are numerical fits.
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ings between the maxima of the transmission coefficient of
the barrier 2q2a�2a. These resonances of the continuous
spectrum are linked, in turn, to the energies of the bound
states of the corresponding inverted potential q2a�2a.

In conclusion, the quantum breaking time near a clas-
sical equilibrium point scales logarithmically or with a
power law in h̄21 according to the exponential instability
of the associated orbit. This feature may be relevant
in all mesoscopic systems which are modeled by one-
dimensional multiwell Hamiltonians [18,19]. In these
systems, the Ehrenfest time behavior is related to experi-
mentally detectable properties as the classical to quantum
crossover of the shot noise [20].
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