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Abstract. On the grounds of a Feynman–Kac-type formula for Hamiltonian
lattice systems, we derive analytical expressions for the matrix elements of the
evolution operator. These expressions are valid at long times when a central limit
theorem applies. As a remarkable result, we find that the ground-state energy
as well as all the correlation functions in the ground state are determined semi-
analytically by solving a simple scalar equation. Furthermore, explicit solutions
of this equation are obtained in the noninteracting case.
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1. Introduction

The Feynman–Kac formula [1] provides a powerful connection between the imaginary time
evolution of quantum systems in the continuum and probabilistic expectations over Wiener
classical trajectories. Its extension to the case of multicomponent wavefunctions requires
the introduction of a further expectation over stochastic Poisson processes [2]. The role
of Poisson processes is central in the probabilistic representation of Berezin integrals over
anticommuting variables and, in general, of the time evolution of discrete systems [3]. In
the simplified formulation [4], it is shown that the real or the imaginary time dynamics of
systems described by a finite Hamiltonian matrix, representing bosonic or fermionic degrees
of freedom, is expressed in terms of the evolution of a proper collection of independent
Poisson processes. For a lattice system, the Poisson processes are associated with the links
of the lattice and their jump rates can be arbitrary. In [4], it is demonstrated that when the
rates of the Poisson processes are chosen equal to the hopping coefficients of the system,
the probabilistic representation leads to an optimal algorithm which coincides with the Green
function quantum Monte Carlo (QMC) method [5]–[7] in the limit when the latter becomes
exact [8].

In the present paper, we exploit the probabilistic representation [4] to derive analytical
expressions for the matrix elements of the evolution operator in the long time limit. Our approach
is based on a series expansion of the probabilistic expectation in terms of conditional expectations
with a fixed number N of jumps of the Poisson processes. This resembles the expansion of the
grand canonical partition function in statistical mechanics in terms of canonical averages with
a fixed number of particles. By integrating out the N stochastic jump times, we show that the
conditional expectations become averages of functions, which depend only on the multiplicities
NV and NA of the values assumed by the potential and hopping energies, respectively, of the
configurations visited by the system. According to a central limit theorem, at large values of N,
i.e. long times, the rescaled multiplicities NV/

√
N and NA/

√
N become Gaussian-distributed

and the corresponding averages can be evaluated analytically. The parameters of the Gaussian
probability density do not depend on the Hamiltonian parameters and are easily determined
statistically. Finally, the series of the conditional expectations can be re-summed with a saddle-
point method. As a remarkable result, we find that the ground-state energy is semi-analytically
determined by solving a simple scalar equation. Once this equation is solved the quantum
expectation in the ground state for other operators can be determined analytically by using
the Hellman–Feynman theorem. The result is valid for boson or fermion systems. As regards
fermions, the well-known sign problem [8]–[13] is avoided by introducing an approximation
related to the exact counting of the positive and negative contributions in the noninter-
acting case.

The paper is organized as follows. In section 2, we review the probabilistic representation
of quantum dynamics for a generalized Hubbard Hamiltonian. In section 3, we decompose the
expectation in canonical averages of weights, which are calculated analytically. The canonical
averages are evaluated at long times via a central limit theorem in section 4. The equation for
the ground-state energy is discussed in section 4.1 for hard-core bosons and in section 4.2 for
fermions. In section 5, we show how to calculate ground-state correlation functions within our
approach. Finally, in section 6, we show some example cases and compare with the results
of exact numerical calculations. General features of our approach are summarized and discussed
in section 7.
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2. Exact probabilistic representation of lattice dynamics

We illustrate our approach for imaginary time dynamics for a system of hard-core bosons or
fermions described by a generalized Hubbard Hamiltonian

H = −
∑

i�=j∈�

∑
σ=↑↓

ηijc
†
iσcjσ +

∑
i∈�

γic
†
i↑ci↑c

†
i↓ci↓ +

∑
i∈�

∑
σ=↑↓

δiσc
†
iσciσ, (1)

where � ⊂ Zd is a finite d-dimensional lattice with |�| sites and ciσ the commuting or
anticommuting destruction operators at site i and spin index σ with the property c2

iσ = 0. We are
interested in evaluating the matrix elements 〈n|e−Ht|n0〉, where n = (n1↑, n1↓, . . . , n|�|↑, n|�|↓)
are the lattice occupation numbers taking the values 0 or 1. The total number of particles is Nσ =∑

i∈� niσ for σ = ↑↓. In the following, we shall use the mod 2 addition n ⊕ n′ = (n + n′) mod 2.
Let � be the set of system links, i.e. the unordered pairs (i, j) with i, j ∈ � such that ηij �= 0.

For simplicity, we will start by assuming ηij = ε if i and j are first neighbours and ηij = 0
otherwise. We will also assume γi = γ and δi = 0. We shall call such a model the first neighbour
uniform (FNU) model. For a d-dimensional lattice the number of links per spin component is
|�| = d|�|. Let us introduce

λijσ(n) = 〈n ⊕ 1iσ ⊕ 1jσ|c†
iσcjσ + c

†
jσciσ|n〉, (2)

V(n) = 〈n|H |n〉, (3)

where 1iσ = (0, . . . , 0, 1iσ, 0, . . . , 0), and let {Nt
ijσ}, (i, j) ∈ �, be a family of 2|�| independent

Poisson processes with jump rate ρ. At each jump of the process Nt
ijσ , if λijσ �= 0 a particle

moves from site i to site j or vice versa, whereas the lattice configuration n remains unchanged
if λijσ = 0. The total number of jumps at time t is Nt = ∑

(i,j)∈�,σ=↑↓ Nt
ijσ . By ordering the jumps

according to the times sk, k = 1, . . . , Nt, which take place in the interval [0, t), we define a
trajectory as the Markov chain n1, n2, . . . ,nNt

generated from the initial configuration n0. Let us
call λ1, λ2, . . . , λNt

and V1, V2, . . . ,VNt
the values of the matrix elements (2) and (3) occurring

along the trajectory. As proved in [4], the following representation holds:

〈n|e−Ht|n0〉 = E(δn,nNt
Mt), (4)

where the stochastic functional Mt is defined by

Mt = e2|�|ρt

(
Nt∏

k=1

ε

ρ
λke−Vk−1(sk−sk−1)

)
e−VNt (t−sNt ) (5)

if Nt > 0 and Mt = e2|�|ρte−V0t if Nt = 0. Here V0 = V(n0) and s0 = 0.
Several quantities can be obtained from the matrix elements (4). The ground-state energy

is given by

E0 = lim
t→∞

−∑n ∂t〈n|e−Ht|n0〉∑
n〈n|e−Ht|n0〉 = lim

t→∞
−∂tE(Mt)

E(Mt)
. (6)
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3. Canonical decomposition of expectation

To evaluate (6), we decompose the expectation E(Mt) as a series of conditional expectations
with a fixed number of jumps (canonical averages)

E(Mt) =
∞∑

N=0

E(Mt|Nt = N)

=
∞∑

N=0

∑
r∈�N

S(r)
N W (r)

N (t), (7)

where �N = �N(n0) is the set of trajectories with N jumps branching from the initial
configuration n0 and

S(r)
N = λ

(r)
1 λ

(r)
2 . . . λ

(r)
N , (8)

W (r)
N (t) = εN

∫ t

0
ds1

∫ t

s1

ds2 . . .

∫ t

sN−1

dsN e−V0s1−V
(r)
1 (s2−s1)−···−V

(r)
N (t−sN). (9)

The weights (9) are obtained on multiplying (5) by the infinitesimal probability
e−2|�|ρtρNds1ds2 . . . dsN to have N jumps and integrating over the jump times.

A link ij with spin σ is called active if λijσ �= 0. From (8), it is clear that only trajectories
formed by a sequence of active links contribute to (7). Hereafter, we restrict �N to be the
set of these effective trajectories with N jumps. The sum over the set �N in (7) can be
rewritten as an average 〈·〉 over the trajectories with N jumps generated by extracting with
uniform probability one of the active links available at the configurations n0, n1, . . . ,nN−1. If
Ak = ∑

(i,j)∈�,σ=↑↓ |λijσ(nk)| is the number of active links in the configuration nk, the probability

associated with the trajectory r is p
(r)
N = ∏N−1

k=0 1/A
(r)

k and we have∑
r∈�N

S(r)
N W (r)

N (t) =
∑
r∈�N

p
(r)
N S(r)

N W (r)
N (t)

N−1∏
k=0

A
(r)

k

=
〈
SNWN(t)

N−1∏
k=0

Ak

〉
. (10)

Note that
∏N−1

k=0 Ak = ∏
A ANA depends only on the multiplicities NA of the values A assumed

by the number of active links; these multiplicities are normalized to N, i.e.
∑

A NA = N. For the
FNU model, the possible values of A depend on the number of particles and we have the bound
A � min(2d(N↑ + N↓), 2|�|).

For a generic trajectory, weights (9) satisfy the recursive differential equation

dWN(t)

dt
= WN−1(t) − VNWN(t), (11)

where W−1(t) = 0. In terms of the Laplace transform W̃N(z) = ∫∞
0 dt e−ztWN(t) we get

W̃N(z) = εN

N∏
k=0

1

z + Vk

= εN
∏
V

1

(z + V )NV
. (12)
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In (12) we see that the weights depend only on the multiplicities NV of the values V assumed by
the potential; these multiplicities are normalized to N + 1, i.e.

∑
V NV = N + 1. For model (1),

the possible values assumed by V are V = 0, γ, 2γ, . . . , Npγ , where Np = min(N↑, N↓).
For an assigned set of multiplicities of the potential, the antitransform of (12) can be

evaluated with the residue method. In this way one obtains an exact recursive expression of
WN(t) which, however, for large N must be evaluated numerically with multi-precision algebra.
On the other hand, for N large, a complex saddle-point method can be used, which provides the
following asymptotically exact explicit expression:

WN(t) = ex0t−
∑

V NV log[(x0+V)/ε]√
2π
∑

V (ε2NV/(x0 + V )2)
, (13)

where x0 is the solution of the equation∑
V

NV

x0 + V
= t. (14)

Note that in the case γ = 0, equation (13) reduces to Stirling’s approximation of the exact
value WN(t) = εNtN/N!.

4. Canonical averages via a central limit theorem

As evident from the explicit expression given in the case γ = 0, the weights WN(t) have a
maximum at some N, which increases by increasing t. This remains true also in the general case,
as shown in the following. Therefore, in the long time limit, the most important contributions
to the expansion (7) of the expectation E(Mt) come from larger and larger values of N. In
this section, we will evaluate the canonical averages (10) analytically for N large by using the
asymptotic behaviour of the stochastic variables NV and NA. In the following, we will indicate
by mV and mA the number of different values assumed by the variables V and A, respectively.
In this limit, we will not distinguish the different normalizations, N + 1 and N, of NV and NA,
respectively. For clarity, we consider separately the hard-core boson and fermion cases.

4.1. Hard-core bosons

In this case, we have SN = 1 and the canonical averages (10) are averages of a function, which
depends only on the multiplicities, NV and NA (besides a parametric dependence on time). In
terms of the corresponding frequencies, νV = NV/N and νA = NA/N, which for N large become
continuously distributed in the range [0, 1] with the constraints∑

V

νV =
∑

A

νA = 1, (15)

equation (10) can be rewritten as〈
WN(t)

N−1∏
k=0

Ak

〉
=
∫

dν PN(ν)gN(t; ν), (16)
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gN(t; ν) = ex0t+N(ν,u)√
2πN

∑
V (ε2νV/(x0 + V )2)

, (17)

where ν and u are vectors with m = mV + mA components defined as νT = (. . . νV . . . ; . . . νA . . .)

and uT = (. . . −log[(x0 + V )/ε] . . . ; . . . log A . . .), respectively. Note that u depends on ν

through x0 = x0(ν).
The probability density PN(ν) is given by the fraction of trajectories branching from the

initial configuration n0 and having after N jumps multiplicities NV = νVN and NA = νAN.
For N large, it can be approximated in the following way. We rewrite the multiplicities
as NV = ∑N

k=0 χV (nk) and NA = ∑N

k=1 χA(nk−1), where χV (n) = 1 if V(n) = V and χV (n) = 0
otherwise, and similarly for χA. Since the configurations nk form a Markov chain with finite-
state space, a central limit theorem applies to each rescaled sum NV/

√
N or NA/

√
N [14].

However, due to the constraints (15), the joint probability for these m rescaled sums is not
Gaussian. Given an arbitrary set of mV − 1 V -like components and mA − 1 A-like components,
the joint probability density is the product of a Gaussian density for this set of variables and two
delta functions, which take into account the constraints (15). For the frequencies ν, therefore,
we have

PN(ν) = FN(ν̂)δ

(∑
V

νV − 1

)
δ

(∑
A

νA − 1

)
, (18)

where FN(ν̂) is the normal density defined in terms of the vector ν̂ having the m − 2 chosen
components of ν

FN(ν̂) =
√

Nm−2| det �̂
−1|

(2π)m−2
e−(N/2)(�̂

−1
(ν̂−ν̂),(ν̂−ν̂)). (19)

Here ν̂ and �̂N−1 are the (m − 2)-component subvector and submatrix, respectively, of the mean
value, ν, and the covariance matrix, �N−1, of ν. As discussed in section 6, the quantities ν and
� are easily measured by sampling over trajectories with a large number of jumps.

By using (18), the m-dimensional integral, which appears in (16), can be performed by the
saddle-point method. Note that this integration method is asymptotically exact for N large. Due
to the constraints (15), ν satisfies the property

∑
V νV = ∑

A νA = 1, whereas rows and columns
of the VV , VA, AV and AA blocks of � are normalized to zero. By using these properties, in
terms of ν and �, we get〈

WN(t)

N−1∏
k=0

Ak

〉
= ex0t+N[(ν,u)+ 1

2 (�u,u)]√
2πN

∑
V (ε2νV/(x0 + V)2)

∣∣∣∣∣
ν=νsp

, (20)

where νsp is the saddle-point frequency defined by the equation

νsp = ν + �u(νsp). (21)

To evaluate the expectation value E(Mt), we need to sum the series (7). This can be done
with a further saddle-point integration. According to equation (20), the terms of this series are
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exponentially peaked at N = Nsp, where Nsp satisfies[
{t − N[(ν, v) + (�u, v)]}∂x0

∂N
+ (ν, u) +

1

2
(�u, u)

]
ν=νsp,N=Nsp

= 0, (22)

with vT = (. . . (x0 + V )−1 . . . ; . . . 0 . . .). We observe that, according to equations (14) and (21),
the term {t − N[(νν, v) + (�u, v)]} vanishes for ν = νsp so that the above condition reduces to[

(ν, u) +
1

2
(�u, u)

]
ν=νsp,N=Nsp

= 0. (23)

Equation (23) is a time-independent equation, which determines x0|ν=νsp,N=Nsp as a function of
ν and �. According to equation (14), this means that for ν = νsp, the quantity Nsp increases
linearly with time so that x0|ν=νsp,N=Nsp becomes independent of time. In conclusion, a saddle-
point integration with respect to N of the series (7) provides

E(Mt) = ex0t∑
V ενV/(x0 + V )

∣∣∣∣
ν=νsp,N=Nsp

. (24)

By taking the time derivative of this expectation and using (6), we obtain that the ground-state
energy of the hard-core boson system is

E0B = −x0|ν=νsp,N=Nsp . (25)

Equation (23) is, therefore, the equation for the ground-state energy. It defines E0B in terms of ν

and � and explicitly reads

0 = −
∑

V

νV log

(−E0B + V

ε

)
+
∑

A

νA log(A)

+
1

2

∑
V,V ′

�V,V ′ log

(−E0B + V

ε

)
log

(−E0B + V ′

ε

)

−
∑
V,A

�V,A log

(−E0B + V

ε

)
log(A)

+
1

2

∑
A,A′

�A,A′ log(A) log(A′). (26)

In the case γ = 0, the ground-state energy E
(0)
0B can be solved explicitly and one has

E
(0)
0B = −ε exp

[∑
A

νA log(A) +
1

2

∑
A,A′

�A,A′ log(A) log(A′)

]
. (27)

Note that equation (27) is a nontrivial formula for the ground state of a system of bosons
interacting via a hard-core potential. With the above expression equation (26) can be written
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more compactly as

log

(
−E

(0)
0B

ε

)
=
∑

V

νV log

(−E0B + V

ε

)
− 1

2

∑
V,V ′

�V,V ′ log

(−E0B + V

ε

)
log

(−E0B + V ′

ε

)
+
∑
V,A

�V,A log

(−E0B + V

ε

)
log(A). (28)

By using the bounds E
(0)
0B < E0B < 0, the scalar equation (28) can be easily solved with the

bisection method.
The generalization of the above results to Hubbard Hamiltonians (1) with arbitrary

parameters η, γ, δ is straightforward. Equations (20)–(25) remain formally unchanged, however,
the vectors ν, u, v and the covariance matrix � are modified to take into account all the
possible values of the generalized potential V corresponding to the operator

∑
i∈� γic

†
i↑ci↑c

†
i↓ci↓ +∑

i∈�

∑
σ=↑↓ δiσc

†
iσciσ and all the possible values of the generalized kinetic quantities T = Aη/ε,

where now ε is a unity of energy and η/ε is the dimensionless hopping value corresponding to the
current jumping link. In fact, the generalization of equation (10) consists in replacing

∏N−1
k=0 Ak

with
∏N−1

k=0 (Akηk/ε). Explicitly, now the vectors ν and u are

νT = (. . . νV . . . ; . . . νT . . .),

uT = (. . . −log[(x0 + V )/ε] . . . ; . . . log T . . .), (29)

and the generalized ground-state energy E
(0)
0B corresponding to γ = δ = 0 reads

E
(0)
0B = −ε exp

[∑
T

νT log(T ) +
1

2

∑
T,T ′

�T,T ′ log(T ) log(T ′)

]
. (30)

Similar considerations hold for Hamiltonians with arbitrary potential operators.

4.2. Fermions

In this case, we have SN = ±1 and the canonical averages (10) are averages of a function, which
depends not only on the multiplicities, NV and NA but also on N−, the sign multiplicity related
to SN by SN = (−1)N− . The approach developed for hard-core bosons can be extended also to
fermions by including this further multiplicity N−. We will report on this procedure elsewhere.
In the present paper, we introduce an approximation which allows to reduce the calculation of
the fermion ground-state energy to that of an effectively modified hard-core boson system. This
approximation is motivated by the observation that the correlations between N− and NV are
smaller than those between N− and NA.

Let us consider again the FNU model. To evaluate (10) for a fermion system, we introduce
the average weighted sign sN after N jumps

sN = 〈SNWN(t)
∏N−1

k=0 Ak〉〈
WN(t)

∏N−1
k=0 Ak

〉 . (31)
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The quantity sN is a function of the interaction strength. For γ = 0 it can be evaluated in the
following way. Expanding

∑
n〈n| e−Ht|n0〉 in powers of t and comparing with the expansion (7),

for γ = 0 and N large, we obtain for hard-core bosons and fermions, respectively,〈
N−1∏
k=0

Ak

〉
= c0B(n0)(−E

(0)
0B/ε)N, (32)

〈
SN

N−1∏
k=0

Ak

〉
= c0F(n0)(−E

(0)
0F/ε)N, (33)

where c0B(n0) and c0F(n0) are coefficients related to the initial configuration n0 and E
(0)
0B and

E
(0)
0F are the γ = 0 ground-state energies. The average weighted sign after N jumps for γ = 0 is

then given by

sN = c0F(n0)

c0B(n0)
eN log(E

(0)
0F /E

(0)
0B). (34)

For fermions the noninteracting energy, E
(0)
0F , is known exactly, whereas for hard-core bosons

E
(0)
0B can be computed with Monte Carlo simulations or analytically as shown above. In general,

E
(0)
0F/E

(0)
0B < 1 so that sN vanishes exponentially for N large.

Approximating sN with its value (34) at γ = 0 removes effectively the negative signs in
the expectation E(Mt). Therefore, this can be evaluated as for hard-core bosons with the same
Gaussian probability density. In particular, the saddle-point condition for N = Nsp now becomes[

(ν, u) +
1

2
(�u, u) + log

E
(0)
0F

E
(0)
0B

]
ν=νsp,N=Nsp

= 0, (35)

which is a time-independent equation determining x0|ν=νsp,N=Nsp in the fermion case. Finally, as
in the hard-core boson case, one finds that

E0F = −x0|ν=νsp,N=Nsp, (36)

and equation (35) becomes equal to equation (28) with E0B and E
(0)
0B substituted by E0F and

E
(0)
0F , respectively. However, in this case we do not have the analogue of equation (27) and E

(0)
0F

must be provided by an independent calculation, i.e. by exact diagonalization of the separable
many-particle Hilbert space.

5. Ground-state correlation functions

The equation obtained in the previous section for the determination of the ground-state energy
depends on the parameters of the Hamiltonian only explicitly through the values of the generalized
potentials V and of the kinetic quantities T . In fact, the statistical moments ν and � are determined
by the structure of the Hamiltonian not by the values of the Hamiltonian parameters. Therefore,
we are able to evaluate the derivatives of the ground-state energy with respect to any parameter
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ξ of the Hamiltonian H(ξ). This allows the determination of arbitrary ground-state correlation
functions via the Hellman–Feynman theorem

〈E0(ξ)|∂ξH(ξ)|E0(ξ)〉
〈E0(ξ)|E0(ξ)〉 = ∂ξE0(ξ), (37)

where E0(ξ) is the ground-state energy of H(ξ). Hereafter, we assume a normalized ground state,
〈E0(ξ)|E0(ξ)〉 = 1.

Suppose that we want to evaluate the quantum expectation of an operator O in the ground
state of the Hamiltonian H . We have two possibilities.

(i) The operator O is a term of the Hamiltonian itself, e.g. O = c
†
iσcjσ , with i �= j,

O = c
†
i↑ci↑c

†
i↓ci↓ or O = c

†
iσciσ if H is the generalized Hamiltonian (1). In this case, by using

equation (37) for hard-core bosons, we have

〈E0B(η, γ, δ)|c†
iσcjσ|E0B(η, γ, δ)〉 = −∂ηij

E0B(η, γ, δ)

=
∑

T (ν
sp
T /T )∂ηij

T∑
V ν

sp
V /(−E0B(η, γ, δ) + V )

, i �= j, (38)

〈E0B(η, γ, δ)|c†
i↑ci↑c

†
i↓ci↓|E0B(η, γ, δ)〉 = ∂γi

E0B(η, γ, δ)

=
∑

V (ν
sp
V /(−E0B(η, γ, δ) + V ))∂γi

V∑
V ν

sp
V /(−E0B(η, γ, δ) + V )

, (39)

〈E0B(η, γ, δ)|c†
iσciσ|E0B(η, γ, δ)〉 = ∂δiσ

E0B(η, γ, δ)

=
∑

V (ν
sp
V /(−E0B(η, γ, δ) + V ))∂δiσ

V∑
V ν

sp
V /(−E0B(η, γ, δ) + V )

. (40)

The expressions in the second lines of (38)–(40) have been obtained by using the derivatives
of equation (23), which for a generic parameter ξ read

−
∑

V

ν
sp
V ∂ξ log

(−E0B + V

ε

)
+
∑

T

ν
sp
T ∂ξ log(T ) = 0, (41)

where νsp is given by (21) and is determined once E0B(η, γ, δ) has been solved. Similar
expressions hold for fermions by using the derivatives of equation (35):

−
∑

V

ν
sp
V ∂ξ log

(−E0F + V

ε

)
+
∑

T

ν
sp
T ∂ξ log(T ) + ∂ξ log

(
E

(0)
0F

E
(0)
0B

)
= 0. (42)

(ii) If the operator O is not a term of the Hamiltonian H , we consider a new Hamiltonian
H(ξ) = H + ξO and calculate the corresponding ground-state energy E0(ξ). Note that, since
the used probabilistic representation holds for any system described by a finite Hamiltonian
matrix [4], the nature of the operator O is arbitrary. As an example, we study the spin–spin
structure factor

S(qx, qy) = 1

|�|
∑
i,j∈�

eiqx(xi−xj)+iqy(yi−yj)〈E0|SiSj|E0〉, (43)
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where Si = c
†
i↑ci↑ − c

†
i↓ci↓ and xi and yi are the coordinates of the ith lattice point. The

quantum expectation of the operators SiSj in the ground state of the hard-core boson FNU
model, 〈E0B(ε, γ)|SiSj|E0B(ε, γ)〉, can be obtained by considering the Hamiltonians

H(ξij) = H + ξijSiSj, (44)

where H represents the FNU model. For these Hamiltonians, the possible values of the potential
are V = mγ + kξij, with m = 0, 1, . . . , Np and k = −1, 0, 1, and we have

〈E0B(ε, γ)|SiSj|E0B(ε, γ)〉 = ∂ξij
E0B(ε, γ, ξij)|ξij=0

=
∑

V (ν
sp
V /(−E0B(ε, γ, ξij) + V ))∂ξij

V∑
V ν

sp
V /(−E0B(ε, γ, ξij) + V )

∣∣∣∣
ξij=0

, (45)

where E0B(ε, γ, ξij) is the ground-state energy of the Hamiltonian (44) and is calculated as
explained in section 4.1.

6. Numerical results

We now apply the approach developed in the previous sections to some example cases. In
particular, we compare the ground-state energy obtained by equations (28) and (35) with that
from exact numerical calculations.

In our approach, the starting point is the evaluation of the statistical moments ν and �.
These are obtained by generating trajectories in the lattice configuration space and counting the
multiplicities NV and NA. The length of the trajectories is chosen to be sufficiently large for
the asymptotic behaviour to be established. The determination of ν and � with good statistical
precision requires a number of trajectories, which increases no more than linearly with the
number of lattice sites |�|. Therefore, the evaluation of these moments is feasible even for large
systems. In the following applications, the statistical errors associated with the measurement of
ν and � are negligible on the scales considered.

In figure 1, we show the behaviour of E0B for the hard-core boson FNU model as a function
of the interaction strength γ for several lattice systems. The solution of equation (28) compares
rather well with the results of exact diagonalizations or QMC simulations. There is a small
systematic error which grows with increasing γ and/or the system size and which is maximum
at half density. This error is related to the Gaussian shape (19) assumed for the asymptotic
probability density. In fact, the mentioned central limit theorem for Markov chains applies to the
variables νV

√
N and νA

√
N, whereas the function gN given by equation (17) depends on νVN

and νAN. This implies that the tails of the probability density give a finite contribution to the
integral (20). Furthermore, from the structure of gN , it is evident that this error becomes large
when the components of the vector u assume large values, i.e. for large values of γ and/or large
system sizes.

In figure 2, we show the behaviour of E0F evaluated according to equation (35) as a function
of the interaction strength γ for the same cases considered in figure 1. Compared with the hard-
core boson case, we observe a further systematic error due to the approximation sN(γ) � sN(0).
Depending on the particle density of the system, this error adds to or subtracts from the systematic
error due to the Gaussian tails of the probability density discussed for hard-core bosons.
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Figure 1. Ground-state energy per particle for the hard-core boson FNU model
versus the interaction strength γ . The results from equation (28) (——) are
compared with those from exact diagonalizations (+) and QMC simulations (×)
for two-dimensional systems with periodic boundary conditions and different
Lx × Ly sites and N↑ = N↓ = Np particles. The statistical errors in the QMC
data are negligible in this scale.

Figure 2. As in figure 1 for the fermion FNU model. In this case no QMC
simulations are available. Exact diagonalization data for the 4 × 4 systems are
taken from [15] (Np = 8) and [16, 17] (Np = 5).

We stress that, once ν and � are known, our approach provides any other ground-state
quantity analytically as a function of the Hamiltonian parameters. On the other hand, QMC
methods require, due to the unavoidable branching or reconfiguration techniques [7], different
simulations for different values of the parameters.
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Figure 3. Spin–spin structure factor S(qx, qy) for the hard-core boson FNU model
atγ = 0 in a lattice with 4 × 4 sites,N↑ = N↓ = 8 particles and periodic boundary
conditions. For the same system, on the right plot, we show the values of the
ground-state expectation of the operators SiSj for dij = 0, 1, 2 as a function of
the interaction strength γ (solid lines) compared with Monte Carlo results (dots
with error bars).

As an example of calculation of correlation functions in the ground state, in figure 3, we
report the spin–spin structure factor S(qx, qy) evaluated by using equations (43)–(45) for the
hard-core boson FNU model. The value S(π, π) represents a maximum for S(qx, qy) and for
large values of |�| is related to the staggered magnetization ms through ms = √

S(π, π)/|�|.
Note that in the 4 × 4 system with periodic boundary conditions considered in figure 3, we
have only five different values for 〈E0|SiSj|E0〉 corresponding to the five possible distances
dij = |xi − xj| + |yi − yj| = 0, 1, 2, 3, 4. In figure 3, we also show the behaviour of 〈E0|SiSj|E0〉
as a function of γ for dij = 0, 1, 2. These terms provide the most important contributions to
S(π, π). For small values of γ , the results compare rather well with Monte Carlo data.

7. Conclusions

By using saddle-point techniques and a central limit theorem, we have exploited an
exact probabilistic representation of the quantum dynamics in a lattice to derive analytical
approximations for the matrix elements of the evolution operator in the limit of long times. For
both hard-core boson and fermion systems, this development yields to a simple scalar equation
for the ground-state energy. This equation depends on the values of the generalized potentials
V and of the kinetic quantities T , and on the statistical moments ν and � of their asymptotic
multiplicities NV and NT . In turn, these moments depend only on the structure of the system
Hamiltonian, not on the values of the Hamiltonian parameters. This implies that the statistical
moments must be measured una tantum for a given Hamiltonian structure and, once ν and
� are known, our approach provides the ground-state energy analytically as a function of the
Hamiltonian parameters.

In the long-time limit, the saddle-point integrations used in our approach are asymptotically
exact and the central limit theorem evoked applies rigorously to the rescaled multiplicities
NV/

√
N and NT /

√
N. However, since functions depending on NV and NT are involved, we

have a small systematic error related to the finite contributions from the tails of the probability
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density. This systematic error could be reduced by a large deviation analysis. In fact, equations
(27) and (28) suggest that the Gaussian approximation for the probability density corresponds
to a second-order truncation of a cumulant expansion. Anyway, the present Gaussian approach
has the following relevant features: (i) the equations derived for the ground-state energy and
the ground-state correlation functions are particularly simple; and (ii) the corresponding results
compare rather well with the exact ones in regions of physical interest.

In the present paper, we have considered two-dimensional lattice models at imaginary times.
Our approach, however, is valid in any dimension. Similar analytical expressions can be obtained
also for the real time evolution.
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