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We propose a double-well configuration for optical trapping of ultracold two-species Fermi-Bose atomic
mixtures. Two signatures of macroscopic quantum coherence attributable to a superfluid phase transition for
the Fermi gas are analyzed. The first signature is based upon tunneling of Fermi pairs when the power of the
deconfining laser beam is significantly reduced. The second relies on the observation of interference fringes in
a regime where the fermions are trapped in two sharply separated minima of the potential. Both signatures rely
on small decoherence times for the Fermi samples, which should be possible by reaching low temperatures
using a Bose gas as a refrigerator, and a bichromatic optical dipole trap for confinement, with optimal heat-
capacity matching between the two species.
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I. INTRODUCTION

Degenerate Fermi gases are rather ubiquitous in nature at
both the microscopic and macroscopic level, from nuclear
matter to neutron stars. Studies of both their noninteracting
and interacting features allow for the understanding of a
wealth of physical phenomena occurring in the mesoscopic
realm, in particular superconductivity. More recently, the
possibility to cool dilute samples of Fermi gases below the
mK range has opened up a different route to identify some of
the fundamental features underlying interacting many-body
Fermi systems[1]. While Pauli blocking[2] and Fermi pres-
sure[3,4] have been already evidenced, focus on interacting
properties has recently led to interesting effects in Fermi-
Bose mixtures[5], and in two-component Fermi gases[6]. In
particular, in the latter case evidence has been reported for
anisotropic free expansions of a Fermi cloud when this is
brought to a deep degenerate regime. The data have been
interpreted in terms of a superfluid state of the Fermi gas, as
predicted in Ref.[7]. However, alternative interpretations in
terms of hydrodynamic behavior of a high density Fermi gas
are also plausible[8]. More recently, various groups have
used resonant superfluidity[9–12] to explore the BEC-BCS
crossover[13–15], with various claims for the formation of
bound states of many body character, as expected for in-
stance by BCS-like couplings, based on the dynamics of for-
mation of Fermi pairs and on collective properties[16]. This
reminds of the previous situation of degenerate Bose gases,
when various indirect evidences were collected for the exis-
tence of a macroscopic quantum state by studying collective
properties. The final evidence was only achieved by explic-
itely showing quantum coherence[17] and, thereafter, mac-
roscopic quantum transport phenomena like superfluidity
[18] and quantized vortices[19,20]. Analogously, we do ex-
pect the coherence of the macroscopic wave function associ-
ated to a Cooper-paired state of Fermi atoms to play an im-
portant role to assess its superfluid nature. In this paper, we
discuss a configuration for an optical dipole trap that could

allow for quantitative studies of quantum coherence in an
ultracold Fermi gas. In Sec. II we describe a geometry for an
optical dipole trap which creates a bistable potential for both
the Fermi species and the Bose species necessary to sympa-
thetically cool the Fermi gas. In Sec. III we discuss possible
signatures for macroscopic quantum coherence through tun-
neling phenomena in a regime where the laser intensity of
the blue-detuned beam is kept low. In Sec. IV we describe
interference experiments which should be able to disentangle
between a BCS or a BEC regime for the degenerate Fermi
gas by observing the dynamics of the fringe visibility during
the free expansion of the clouds. Macroscopic coherence in
itself does not rely on the Fermi gas being in an effective
BEC or a BCS state, as correlated Fermi pairs, either in a
molecular state(BEC limit) or amany-bodystate(BCS limit)
always behave as quantum coherent systems[21]. However,
for the interference fringe experiment and BCS-paired fermi-
ons, a sudden loss of fringe visibility is expected for large
times of flight, while such a loss is not expected in the case
of fermions coupled in a molecular state. Potential decoher-
ence sources and some technical difficulties to be overcome
are then discussed in the conclusive Sec. V.

II. DOUBLE-WELL BICHROMATIC OPTICAL
DIPOLE TRAPS

The configuration we analyze relies on using an optical
dipole trap made of focused red-detuned beams for trapping
the atoms, and further blue-detuned beams for their selective
deconfinement. Such a bichromatic optical dipole trap could
allow us to achieve a deep degenerate regime for a Fermi gas
when the latter is sympathetically cooled through a Bose gas
undergoing evaporative cooling[22].

Let us consider an optical dipole trap consisting of a
single red-detuned beam(optical source 1) propagating along
thex axis, and a single blue-detuned beam(optical source 2),
also focused on the same spot, propagating along the or-
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thogonal axisy. The resulting effective potential experienced
by the atoms of speciesa (a=f for fermions anda=b for
bosons) can be written as
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whereTi
a=1/sVa−Vid+1/sVa+Vid is a parameter related to

the detuning between the atomic transition angular frequen-
cies Va=2pc/la and the laser beam angular frequencies
Vi =2pc/li (la andli being the atomic transition and laser
beam wavelengths, respectively), Pi and wi are power and
waist of the laser beams,Ri =pwi
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The expression forUasxd explicitly shows that there is a soft
attractive potential on the Rayleigh range scaleR1 and a
sharp repulsion around the origin on the beam waist length-
scalew2. The net effect of the beams is to establish a double-
well potential along thex axis with minima at ±xm
=s±xm,0 ,0d having at the same time a strong quasiharmonic
confinement in they-z plane. The transverse angular frequen-
cies vaysxd=f]y

2Uasxd /mag1/2 and vazsxd=f]z
2Uasxd /mag1/2

are one order of magnitude larger than the intrawell longitu-
dinal angular frequencyvaxsxmd=f]x

2Uasxmd /mag1/2. For
atomic gases with chemical potentialma satisfying "vax
!ma!"vay,"vaz the present configuration thus realizes a
quasi-one-dimensional(1D) trapped gas analogously to that
obtained in highly elongated magnetic traps[23].

In Fig. 1 we show the potential energy for the Fermi and
Bose components in the case of the6Li- 23Na mixture, al-
ready brought to degenerate regime[24], by assuming a
Nd:YAG laser emitting at l1=1064 nm as red-detuned
source, and its second harmonic as blue-detuned source. De-
tails of the potential energy profiles are shown for the two
species in Fig. 2. It is evident that the bosonic species expe-
riences a double-well potential with larger distance and
higher potential barrier between the minima with respect to
the Fermionic one.

Some comments are in order. The Fermi gas is always
more deeply and strongly confined than the Bose gas, which
is favorable for different reasons. First, this allows for a con-
tinuous evaporative cooling of the Bose gas marginally af-
fecting the Fermi gas. Second, the ratio between the average

trapping frequency for fermions and bosons maintains a
value greater than unity, with a negligible decrease with re-
spect to the case of coaxial beams. This allows for efficient
sympathetic cooling of a degenerate Fermi gas and a less
degenerate Bose gas, through matching of the specific heats.
Indeed the Bose gas, less degenerate, maintains its large clas-
sical specific heat at lower temperatures with respect to the
more degenerate Fermi gas[25]. Third, this reduces the peak
density of the Bose gas at the center of the trap making less
relevant both the boson-boson interaction, and most impor-
tantly the fermion-boson interaction.

Finally, the fact that bosons experience a higher potential
barrier and a larger separation between the minima, strongly
differentiates the dynamics of the two species. As explained
in the following, the latter feature allows for two unambigu-
ous signatures of the macroscopic coherence associated to a
possible superfluid phase of the Fermi gas, based on tunnel-
ing oscillations and interference, respectively.

III. TUNNELING PHENOMENA

Macroscopic tunneling phenomena have been success-
fully explored in a Fermi liquid, namely3He [26], and it is
therefore natural to explore their counterpart in dilute Fermi
gases. In our configuration, by using sufficiently low barriers
the tunneling probability for fermions may become large
enough to make the detection of the corresponding interwell
oscillation feasible. Here there is a rich scenario due to the
possibility of single-particle tunneling for both fermions in a
degenerate but normal state and bosons in a thermal state
(either quantum or thermally activated), and macroscopic

FIG. 1. Bistable potential for optically trapped Fermi-Bose mix-
tures. The plots represent the equipotential surfaces above the
minima of the potentialUa

min by an amountDUa=0.5, 2.5, 5, 10,
20 nK (from inner to outer shells, respectively) for Fermionic6Li
(top) and Bosonic23Na (bottom). We assume a laser power ofP1

=10 mW at l1=1064 nm,P2/P1=2.5310−3 at l2=532 nm, and
waists w1=w2=10 mm. The atomic transition wavelengths arelf

=671 nm andlb=589 nm.

R. ONOFRIO AND C. PRESILLA PHYSICAL REVIEW A70, 043608(2004)

043608-2



quantum tunneling of fermions in a BCS state and of bosons
in a BEC state. An oscillating tunneling current between the
two wells of the trap is obtained by breaking the symmetry
along thex axis by means of a tilting potential,Vsxd=bx,
suddenly added to the trapping potentialUasx,y,zd, e.g. us-
ing Zeeman shifts generated by a quadrupole magnetic field
with symmetry axis along thex direction.

The evaluation of the macroscopic tunneling current is
particularly simple within the quasi-one-dimensional ap-
proximation(2) of the potential. Suppose that the total num-
ber Na of trapped (bosons or bosonized fermions) atoms
avaliable for macroscopic tunneling is in the ground state of
the potential(3) and letcasxd be the unit-normalized associ-
ated wave function. If a tilting potentialVsxd=bx with small
bias parameterb is added at timet=0, the evolution of the
system wave function can be obtained as

casx,td = c1
aeiE1

at/"f1
asxd + c2

aeiE2
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asxd, s4d

wheref1
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In the absence of decoherence phenomena the evolution of
the macroscopic wave function(4) gives rise to condensate
fractions in the left and right wells,Na

Lstd andNa
Rstd oscillat-

ing in time with Na
Lstd+Na

Rstd=Na. The corresponding cur-
rent is easily evaluated as
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current, depending upon the energy splittingDEa=E2
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is the overlap integral.
To evaluate the macroscopic tunneling current for the re-

alistic trap potential(2), the eigenvaluesE1
a andE2

a and the
corresponding eigenfunctionsf1

a andf2
a must be found nu-

merically. Due to the strongly differentiated tunneling dy-
namics for bosons and bosonized fermions, we have the hard
numerical problem of finding exceedingly small energy split-
tings. The selective relaxation algorithm proposed in Ref.
[27] allows us to solve the problem at least in the parameter
region of physical interest.

In Fig. 3 we report the amplitude and the angular fre-

FIG. 2. Equipotential profiles in thex-y plane ofUasx,y,0d (left), for DUa=0.5, 2.5, 5, 10, 20, 30, 40, 50, 60, 70 nK(from inner to outer
shells, respectively), and potential energy along thex axis for the two species(right). The minima of the bistable potentials have been shifted
to zero for the sake of comparison, their values beingUf

min=−3.87mK and Ub
min=−3.31mK. All trap parameters as in Fig. 1.

FIG. 3. Macroscopic coherence of the Fermi gas through tun-
neling experiments. Dependence of tunneling current amplitude per
unit of available atomsAa /Na (solid line) and tunneling angular
frequencyDEa /" (dashed line) for 23Na and6Li- 6Li Cooper pairs
versus bias strengthb. For the sake of comparison, amplitude and
frequency of bosons have been multiplied by 105. The trap param-
eters are as in Fig. 1.
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quency of the currents for macroscopic tunneling of6Li- 6Li
Cooper pairs and of the Bose condensed component of23Na
versus the tilting parameterb. For both species there is an
optimum value of the bias maximizing the observability of
tunneling oscillations, with a maximum valueAa.4 s−1 ob-
tained for a bias value of the tilting potentialb
.14 pK/mm. Tunneling current and frequency for the Bose
gas are smaller by five orders of magnitude with respect to
the analogous quantities of the Cooper pair gas. This results
from the exponential sensitivity of quantum tunneling to the
different potentials experienced by the two species and to
their different masses.

Provided that the number of Cooper pairs is large enough,
the modulation of the number of atoms in the two wells can
be evidenced by using nondestructive phase-contrast imag-
ing. The low intensity of the blue-detuned beam required to
create a tunneling regime in the presence of a magnetic trap
with limited confinement strength prevented observation of
tunneling phenomena in the experiment described in Ref.
[17] (see also Ref.[28] for a recently achieved bistable con-
figuration). In the situation proposed here this issue is cir-
cumvented due to the possibility to change both the intensi-
ties of the beams while maintaining their ratio constant, at
least to the extent that heating from residual Rayleigh scat-
tering does not play a significant role. Current techniques
allow for relative stabilization at the 1% level or below(for a
general discussion of laser stabilization techniques see Ref.
[29]), especially for frequency-doubled beams as in the pro-
posed configuration.

An important requirement for this proposed test is to
maintain the decoherence rate low enough to minimize
damping of the coherent oscillations which, according to Fig.
3, are expected to occur with periods of order 100 ms or
longer. In the cooling strategy outlined in Ref.[25] there is
not a strict need to use enhancement of the elastic scattering
length through Feshbach resonances[9,10] to reach a deep
Fermi degenerate regime. This could circumvent the issue of
decoherence sources due to enhancement of density, like
those discussed in Ref.[30] for three-body collisions. Thus
decoherence is mainly expected from the presence of Ray-
leigh heating or more technical sources like intensity and
beam pointing fluctuations of the laser beams. Their effect is
a temperature increase with a consequent increase of the
thermal component[31] and the single-particle tunneling
current of bosons and fermions. It should be noted, however,
that in an optical dipole trap, due to the smaller trapping
volume and lower trap depth, we expect a suppressed ther-
mal fraction. This is a further advantage in using an optical
trap with respect to a magnetic trap for coherence experi-
ments. Continuous evaporative cooling of the Bose species
should also mitigate its effect. One can then envisage a cool-
ing strategy where coherent oscillations persist for a much
longer time at time-dependent amplitude and frequency,
therefore originating a chirped signal.

IV. INTERFERENCE PHENOMENA

In a landmark experiment, the Ketterle group evidenced
the macroscopic coherence of a pair of Bose condensates by

looking at the interference fringes resulting after their release
from a bistable potential[17]. The latter was obtained by the
combination of a harmonic potential created by a magnetic
trap, and a blue-detuned beam focused on the magnetic po-
tential minimum with propagation orthogonal to the weaker
confining axis. The average distance between the two con-
densates was controlled by changing the power of the blue-
detuned beam.

A similar experiment can be repeated with an ultracold
Fermi-Bose mixture in a bistable optical dipole trap. Above
the temperature for the onset of a BCS-like phase transition
of the Fermi gas one expects only interference fringes arising
from the condensed fraction of the Bose gas. BelowTBCS we
do expect also the emergence of an interference pattern com-
ing from the bosonized fermions, a small fraction of the total
number of Fermi atoms. The distance between the peaks of
maximum signal in the interference pattern is given, for a
free expansion, by,a=2p"t /mada. Here t is the time of
flight, da the initial distance between the centers of mass of
the two clouds before the release from the trap, andma either
the mass of the Bose atoms or twice the mass of each fer-
mion in the case of the BCS-bosonized component. Since the
Fermi species in our example has both a significantly smaller
mass and separationda than the Bose species we do expect
an easy discrimination of the interference pattern attributable
to the former species. This is confirmed by looking at the
distance between the interference peaks for6Li and 23Na vs
the P2/P1 power ratio, as depicted in Fig. 4. One can take
advantage of this dependence of the interference patterns to
discriminate any effect of the Bose component. The spacing
of the interference fringes expected from the macroscopic
wave function associated to the Bosonized Fermi component
maintains a value,2 times larger than the corresponding
one for the Bose species. Selective optical pumping tomog-
raphy on the Fermi species cycling transition as in Ref.[17]
can allow us to enhance the corresponding interference sig-
nal. Considering the very dilute nature of the bosonized
Fermi gas, as a consequence of the less stiff confinement of
the Bose species, we do not expect a significant decrease of
the fringe visibility due to the mean field effects as instead

FIG. 4. Macroscopic coherence of the Fermi gas through inter-
ference experiments. Dependence of fringe spacing,a for 23Na
bosons and6Li- 6Li Cooper pairs vsP2/P1. We assume a time of
flight t=10 ms.
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already observed for bosons[32]. Due to the lower trapping
frequencies when using a bichromatic optical trap as dis-
cussed in Ref.[22], the mean-field effects due to the interac-
tion between the Fermi and the Bose gas are also negligible.

The interference experiment discussed above could also
allow to distinguish if the Fermi gas is in a BCS or BEC
regime. For BCS macroscopic states we do expect a loss of
fringe contrast at expansion times much smaller than those
reachable in the case of molecular BEC states. This behavior
is quantitatively shown by assuming an adiabatic expansion
of the gas after the release from the trap, and a rough esti-
mate of the critical temperatures,TBCS andTBEC as follows.
Suppose that at timet=0, when the trap potential is turned
off, the gas made ofNF fermions of massmF has densityn0.
Let R0 be the radius of the equivalent sphere containing the
gas att=0 defined by4

3pR0
3n0=NF. At later times the cloud

expands and, assuming an ideal behavior, the radius of the
equivalent sphere is given by the lawRstd=R0+vFt. As a
consequence, the density of the gasnstd decreases from its
initial value n0 and, in turn, the Fermi velocityvF
="s3p2nd1/3/mF also decreases. The density of the gas is
therefore determined by the following self-consistent equa-
tion:

nstd =
NF
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3
pFR0 +
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f3p2nstdg1/3G3 , s8d

which, for a generic value oft, must be solved numerically.
For t@ t0=mFR0/"s3p2n0d1/3, the initial radiusR0 can be ne-
glected in the denominator of Eq.(8) and we obtain the
asymptotic time-varying density
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Once the densitynstd is known, we have an explicit estimate
of the critical temperature for BCS transition[1] as a func-
tion of time,

TBCSstd =
5

3e

"2f3p2nstdg2/3

2mFkB
expS−
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2uauf3pnstdg1/3D ,
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wherea is the elastic scattering length of the Fermionic spe-
cies. The critical temperatureTBEC for fermions condensed
via molecular states can be estimated from the critical tem-
perature of an ideal gas of bosons[33] with mass 2mF and
densitynstd /2,

TBECstd =
p"2

mFkB
S nstd

2zs3/2dD
2/3

, s11d

wherez is the Riemann zeta function.
In Fig. 5 we show the behavior of the critical tempera-

tures TBCS and TBEC, and of the temperature of the cloud
assuming an adiabatic expansion[7], versus time in the case
of 6Li. While TBEC has only anstd2/3 dependence, and there-
fore decreases for large times ast−1, TBCS has a further ex-
ponential suppression factor and for larget decreases as

t−1 exps−Îtd. By assuming an initial temperatureT=5
310−3TF, the disappearance of the fringes at timest
,10 ms whenT/TBCS.1 would imply a BCS regime for
the degenerate Fermi gas. On the other hand, the observation
of interference effects should be possible up to longer times
in the case of fermions coupled through molecular BEC,
since the scaling of the temperature of the cloud andTBEC are
similar.

V. CONCLUSIONS

We have discussed a quasi-one-dimensional bistable con-
figuration for optically trapped atoms. Two signatures have
been discussed for evidencing macroscopic quantum coher-
ence of a paired component of a Fermi gas, regardless of the
BEC or BCS-like regime for the Fermi gas. Our proposal
allows us to identify a superfluid component both in a
strongly coupled regime based upon enhancement of scatter-
ing length(molecular BEC regime) or in a BCS-like regime
obtained by just cooling the sample at very low temperatures
as suggested in Ref.[25], with efficient heat capacity match-
ing between the Fermi and the Bose species, without neces-
sarily exploiting Feshbach resonances to obtain large critical
temperatures for BCS pairing, although their use is certainly
possible in our framework. The use of a Fermi-Bose mixture
seems preferable since analogous quantum coherence experi-
ments involving mixtures of two Zeeman levels of fermions
are less easy to perform. Indeed, two distinguishable Fermi
states with same mass will give rise to two independent in-
terference patterns or tunneling currents just differing by the
initial random phase, unless a locking mechanism is used.
Also, dual evaporative cooling substantially decreases the
number of atoms potentially available for Cooper pairing,
then sensibly diminishing the expected signal. Moreover, the
presence of the Bose gas until the last stage of the cooling is
useful to quantitatively assess the temperature of the Fermi

FIG. 5. Temperature of the cloud(dashed line), and critical tem-
peraturesTBCS, TBEC (continuous lines) as a function of timet in the
case of a freely expanding6Li cloud with NF=33106 atoms. The
initial density isn0=3.531013 cm−3 and we use an elastic scatter-
ing length for fermionsa=−230 nm[1]. The dashed lines close to
the critical temperature continuous lines are the asymptotic values
for TBCS, TBEC obtained by substitutingnstd with n`std into Eqs.
(10) and (11).
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gas, and allows to study a variety of situations for which
changes to the BCS-coupled Fermi pairs are expected when
bosons mediates their interactions[34].

There have been many refined and ingenious proposals
for the observation of the superfluid phase of an ultracold
Fermi gas, ranging from the study of collective modes[35],
moment of inertia[36], density profile of the Cooper-paired
component[11], light scattering[37–42], free expansion[7],
Bloch oscillations[43], internal Josephson effect[44], and
Raman photoassociation in Bose-Fermi mixtures[45]. All
these proposals, including ours, will have to face the small
number of fermions available in the superfluid state, and the

subsequent small signal-to-noise ratio for any conceivable
signature of the phase transition. In view of these experimen-
tal difficulties it is crucial to seek for redundancy of signa-
tures with diverse techniques, hopefully all converging in
individuating a common superfluid phase diagram.
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