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Abstract
On the basis of a Feynman–Kac-type formula involving Poisson stochastic
processes, a Monte Carlo algorithm has recently been introduced, which
describes exactly the real- or imaginary-time evolution of many-body lattice
quantum systems. We extend this algorithm to the exact simulation of
time-dependent correlation functions. The techniques generally employed in
Monte Carlo simulations to control fluctuations, namely reconfigurations and
importance sampling, are adapted to the present algorithm and their validity
is rigorously proved. We complete the analysis by several examples for the
hard-core boson Hubbard model and for the Heisenberg model.

PACS numbers: 02.50.−r, 02.70.Ss

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Probabilistic techniques, such as the quantum Monte Carlo (QMC) algorithms, provide an
essential tool to investigate the properties of many-body systems. Basically, with these
techniques one evaluates functions of matrices by a random walk in the space of the matrix
indices [1]. Given the Hamiltonian H of the system, the idea is to find an appropriate stochastic
representation of the imaginary time evolution operator U(t) = exp(−Ht) applied to some
initial trial state. By using these methods, one can obtain, at least in the absence of a sign
problem, the ground-state properties with a numerical effort that grows with some power of
the size L of the system. On the other hand, the exact diagonalization of the Hamiltonian
would imply an effort exponentially growing with L.

From a more physical point of view, a probabilistic representation provides a dual picture
of the quantum systems: on one hand, the traditional description in terms of bra, ket and

0305-4470/05/020405+22$30.00 © 2005 IOP Publishing Ltd Printed in the UK 405

http://dx.doi.org/10.1088/0305-4470/38/2/009
http://stacks.iop.org/ja/38/405


406 M Ostilli and C Presilla

operators, on the other hand, a description in terms of expectations of suitable stochastic
functionals, which are averages over virtual trajectories of the particles. It is this mapping
with a (in a sense) classical system that allows us to extract quantum information by statistical
simulations.

In recent years, it has been proved that the dynamics of a system of quantum particles on a
lattice admits an exact probabilistic representation [2–4]. A suitable stochastic functional
M[0,t)

n0
, which is defined in terms of a collection of independent Poisson processes and

diffuses from a Fock state n0 to a Fock state nt , has the property that the expectation value
E
(
M[0,t)

n0
δnt ,n

)
, taken with respect to the Poisson processes, gives the matrix element of U(t)

between the two Fock states n0 and n. In the theory of stochastic processes, this probabilistic
representation may be regarded as the lattice version of the Feynman–Kac formula. We
emphasize that in this method no approximation is introduced and no ‘infinity path integral
extrapolation’ is requested. It will be referred to as the exact probabilistic representation (EPR)
of the evolution operator U(t). The validity of EPR is not limited to Hamiltonian systems: it
can be used to express any imaginary- or real-time evolution operator U(t) having any finite
matrix H as generator.

In [5] we used EPR to obtain semi-analytical results in the limit t → ∞, in which a
central limit theorem applies. In this paper, we consider EPR at arbitrary times within a Monte
Carlo approach (EPRMC).

Two other well-known QMC algorithms, namely the path integral Monte Carlo method
(PIMC) and the Green function Monte Carlo method (GFMC), have affinities with EPRMC
and a comparison is mandatory.

In PIMC, one evaluates the matrix elements of U(t) by using the Trotter approximation
[6]. The operator U(t) is factorized in the kinetic, exp(−T t), and interaction, exp(−V t),
terms so that one gets exp(−Ht) = ∏N

k=1 exp(−T t/N) exp(−V t/N) + O([T , V ]t2/N2).
This approximation leads to a Feynman–Kac formula, in which, as in EPRMC, the trajectories
in the Fock space are generated only by the kinetic part, exp(−T t/N). However, in contrast
to EPRMC, there are no stochastic times related to Poisson processes. The PIMC simulations
are performed by evolving the trajectories for N steps. The drawback is that to obtain results
corresponding to t/N → 0, in which the Trotter approximation becomes exact, one must use
extrapolation procedures. For any finite value of N, the extrapolation becomes unreliable for
values of t sufficiently large. This is particularly evident in the case of real times (t → it),
when the matrix elements of U have an oscillating behaviour with respect to t. In contrast, no
small time-step approximation is introduced in EPRMC and no extrapolation is requested.

Now, let us consider GFMC. The method consists of repeated statistical applications of
the operator (1 − Ht/N) to an initial state. For N → ∞, one reproduces the operator U(t),
whereas an approximation affected by a relative error ε(N) is obtained for any finite N. It is
plausible that sampling directly the operator U(t) instead of (1 − Ht/N)N leads to a higher
efficiency. In the appendix, we show that the relative efficiency between EPRMC and GFMC
in filtering the ground state is E2

0

/[
2E

(0)
0 (E1 −E0)ε

]
, where E0 and E1 are the energies of the

ground- and first-excited states of the considered system and E
(0)
0 is the ground-state energy

of the associated non-interacting system. Since the gap (E1 − E0) decreases as the size L
of the system is increased, compared to GFMC, EPRMC offers a more powerful method to
investigate the ground-state properties of large lattice systems.

Actually, the GFMC scheme mentioned above is rather crude. Trivedi and Ceperley [7]
introduced Poisson processes as a tool to obtain a more efficient GFMC method when the
transition probabilities, proportional to the matrix elements of Ht/N , vanish for N → ∞.
We will refer to this improved GFMC as GFMCP. In [4] it has been proved that in the limit
N → ∞ GFMCP becomes equivalent to EPRMC. However, as explained in the appendix, for
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a finite value of N the relative efficiency of EPRMC with respect to GFMCP is
(
E0
/
E

(0)
0

)2/
2ε,

i.e. it is proportional to the accuracy ε−1 required in the approximated GFMCP.
Controlling the large fluctuations is one of the most important issues of any Monte Carlo

method. This is evident in GFMC where an iterated statistical application of the operator
(1 − Ht/N) is performed. Roughly speaking, after k iterations one has fluctuations that grow
like �k , � being the statistical error associated with a single step. To solve the problem of
large fluctuations, besides the development of the importance sampling method [6], remarkable
progress has been made with the reconfiguration technique introduced by Hetherington [8]
and subsequently improved by Sorella [9] who proposed a scheme without bias (see also [10]).

In this paper, after introducing some relevant physical models (section 2) and recalling
EPR (section 3), we extend EPR to the study of exact time-dependent correlation functions
(section 4). In the core section 5, we discuss the EPRMC algorithm first with a pure sampling
and then adding fluctuation control by reconfigurations and importance sampling. A detailed
proof of the validity of the reconfiguration method is given in section 6. Results of numerical
simulations for the hard-core boson Hubbard model and for the Heisenberg model are discussed
in section 7. Conclusions are drawn in section 8.

2. Models

The Hamiltonian models of interest have the following general structure (we shall always
take h̄ = 1),

H = T + V, (1)

where V is the potential energy operator and T the kinetic energy operator, which on a lattice
assumes the form

T = −
∑

i<j∈�

∑
σ=↑↓

ηij

(
c

†
iσ cjσ + c

†
jσ ciσ

)
. (2)

Here � ⊂ Zd is a finite d-dimensional lattice with |�| ordered sites and ciσ the commuting
or anticommuting destruction operators at site i and spin index σ with the property c2

iσ = 0
(fermion or hard-core boson systems). The system is described in terms of Fock states labelled
by the configuration n = (n1↑, n1↓, . . . , n|�|↑, n|�|↓), i.e. the set of lattice occupation numbers
taking the value 0 or 1. The total number of particles is Nσ = ∑

i∈� niσ for σ =↑↓. We shall
use the mod 2 addition n ⊕ n′ = (n + n′) mod 2.

The analysis we develop in the following is valid for an arbitrary functional form of
the potential V . However, numerical examples will be limited to the well-known Hubbard
potential [11]

V =
∑
i∈�

γic
†
i↑ci↑c

†
i↓ci↓. (3)

We emphasize that, independently of its form, V is diagonal in the Fock space, whereas T is
off diagonal.

In this paper we will consider only hard-core boson systems. We recall that, even if
fermion systems, such as the Hubbard model, are more attractive, hard-core bosons have
not a purely academic interest. Besides the description of boson particles with a hard-core
interaction, they can be mapped onto systems of half-integer spin [1, 7, 12]. As an example,
we consider the S = 1

2 Heisenberg quantum antiferromagnetic model

H = J
∑
〈i,j〉

Si ·Sj = J

2

∑
〈i,j〉

(
S+

i S−
j + S−

i S+
j

)
+ J

∑
〈i,j〉

Sz
i S

z
j , (4)
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where J > 0, 〈i, j 〉 indicates that the sites i and j are nearest neighbours, and Si and Sj are the
spin operators. It is convenient to view the left and right factors in Si · Sj as the spin operators
of two sublattices A and B, respectively. The mapping is then established as follows. The
operators S+

i and S−
j commute on different sites and are thus identified with boson operators via

b
†
i = S+

i and bj = S−
j . Furthermore as Sz

i = S+
i S−

i − 1
2 , one has Sz

i = ni − 1
2 , where ni = b

†
i bi

is the number operator. For a half-spin system S+
i S+

i = S−
i S−

i = 0, which implies
(
b

†
i

)2 = 0.
Therefore, the bosons have a hard core and a site can be occupied by at most one particle. In
order to have a negative sign in the kinetic energy term, a further transformation is necessary.
The spins on the sublattice B are rotated as Sx

j → −Sx
j , S

y

j → −S
y

j and Sz
j → Sz

j . Since this
transformation is unitary, the commutation relations are left unchanged. The hard-core boson
Hamiltonian then reads

H = −J

2

∑
〈i,j〉

(
b

†
i bj + b

†
j bi

)
+ J

∑
〈i,j〉

ninj + EN, (5)

where EN = −JZ|�|/8, Z being the number of nearest neighbours for the given lattice, e.g.
Z = 4 for a square lattice in two dimensions.

3. Probabilistic representation

We are interested in evaluating matrix elements of the form 〈n| e−Ht |n0〉 or 〈n| e−iHt |n0〉
between two Fock states n0 and n with t ∈ R. As usual, we will speak of imaginary times in
the former case and of real times in the latter one.

Let � be the set of links, i.e. the pairs (i, j) with 1 � i < j � |�| such that ηij �= 0. For
simplicity, we will assume ηij = η if i and j are first neighbours and ηij = 0 otherwise. For a
d-dimensional lattice the number of links per spin component is |�| = d|�|. Let us introduce

λijσ (n) ≡ 〈n ⊕ 1iσ ⊕ 1jσ |c†
iσ cjσ + c

†
jσ ciσ |n〉, (6)

V (n) ≡ 〈n|H |n〉, (7)

where 1iσ = (0, . . . , 0, 1iσ , 0, . . . , 0). Note that the values assumed by λijσ are 0 or 1
(λijσ = 0,±1 is possible in the case of fermion systems not considered here). We will call
the link (ijσ ) active if λijσ �= 0. Let

{
Nt

ijσ

}
, (i, j) ∈ �, be a family of 2|�| independent left

continuous Poisson processes with jump rate ρ = η if λijσ �= 0 and 0 otherwise4. Let us now
define the stochastic dynamics on the lattice. At each jump of the process Nt

ijσ a particle with
spin σ moves from site i to site j or vice versa. Let us indicate with A(n) the number of active
links in the configuration n

A(n) ≡
∑

(i,j)∈�

∑
σ=↑↓

|λijσ (n)|. (8)

The total number of jumps at time t is Nt = ∑
(i,j)∈�

∑
σ=↑↓ Nt

ijσ . By ordering the jumps
according to the times sk, k = 1, . . . , Nt , at which they take place in the interval [0, t), we
define a trajectory as the Markov chain n1,n2, . . . ,nNt

generated from the initial configuration
n0 by the stochastic dynamics described above. Let us call λ1, λ2, . . . , λNt

, V1, V2, . . . , VNt

and A1, A2, . . . , ANt
the values of the matrix elements (6), (7) and (8) occurring along the

trajectory, respectively. For simplicity, we will indicate the last configuration reached after Nt

jumps as nt = nNt
. We will also use the symbols A0 = A(n0), V0 = V (n0) and s0 = 0.

4 Note that in [4] a more fundamental family of Poisson processes and stochastic functional are first introduced.
Equation (10) is then derived as an effective algorithm.
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According to [4], the following representation holds,

〈n| e−Ht |n0〉 = E
(
δn,nt

M[0,t)
n0

)
, (9)

where the expectation E (·) has to be taken with respect to the Poisson processes Nt
ijσ and the

stochastic functional M[0,t)
n0

is defined by

M[0,t)
n0

= e
∫ t

0 [A(ns )η−V (ns )] ds . (10)

The subscript n0 in M[0,t)
n0

specifies the initial state. For real times an analogous representation
holds

〈n| e−iHt |n0〉 = E
(
δn,nt

M[0,it)
n0

)
, (11)

where

M[0,it)
n0

= iNt e
∫ t

0 [A(ns )η−iV (ns )] ds . (12)

In the following, we will consider the case of imaginary times. Except when explicitly said,
all the formulae are trivially extended to the case of real times.

Any ground-state quantity can be obtained from the matrix elements (9) by a proper
manipulation and taking the limit t → ∞. For instance, the ground-state energy is given by

E0 = lim
t→∞

−∑
n ∂t 〈n| e−Ht |n0〉∑
n〈n| e−Ht |n0〉 = lim

t→∞
−∂tE

(
M[0,t)

n0

)
E
(
M[0,t)

n0

) . (13)

It is easy to see [4] that −∂tE
(
M[0,t)

n0

) = E
(
M[0,t)

n0
H(nt )

)
, where H(nt ) is given by

H(nt ) ≡
∑
n′

〈n′|H |nt 〉 = −[A(nt )η − V (nt )]. (14)

Equation (14) is the local energy of the last visited configuration nt . Therefore, equation (13)
becomes

E0 = lim
t→∞

E
(
H(nt )M[0,t)

n0

)
E
(
M[0,t)

n0

) . (15)

These identities are valid if the initial configuration n0 is such that 〈E0|n0〉 �= 0. For a finite
t, this scheme allows a good estimate of E0 if t 
 (E1 − E0)

−1, where E1 is the first-excited
state of H. This implies that t must be increased by increasing the lattice size |�|.

4. Correlation functions

Let us consider a generic operator O. By using twice the Fock representation of the identity
operator and twice equation (9) with functionals M[0,t)

n0
and M′[0,t ′)

n′
0

, respectively defined by

two sets of independent Poisson processes
{
Nt

ijσ

}
and

{
N ′t ′

ijσ

}
, we have

〈n| e−Ht ′O e−Ht |n0〉 =
∑
n′

0

∑
n′′

〈n| e−Ht ′ |n′
0〉〈n′

0|O|n′′〉〈n′′| e−Ht |n0〉

=
∑
n′

0

∑
n′′

E
(
M′[0,t ′)

n′
0

δn′
t ′ ,n

〈n′
0|O|n′′〉M[0,t)

n0
δnt ,n′′

)
=
∑
n′

0

E
(
δn′

t ′ ,n
M′[0,t ′)

n′
0

〈n′
0|O|nt 〉M[0,t)

n0

)
, (16)
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where n′
t ′ is the configuration reached at time t ′ starting from n′

0. From this expression, we
get ∑

n

〈n| e−Ht ′O e−Ht |n0〉 =
∑
n

E
(
M′[0,t ′)

n 〈n|O|nt 〉M[0,t)
n0

)
. (17)

The ground-state quantum expectation of the operator O, assuming 〈E0|E0〉 = 1, is, therefore,

〈E0|O|E0〉 = lim
t,t ′→∞

∑
n E

(
M′[0,t ′)

n 〈n|O|nt 〉M[0,t)
n0

)
E
(
M[0,t+t ′)

n0

) . (18)

We can consider two basic cases for the operator O.

4.1. Diagonal operators

In this case, 〈n′|O|n〉 = δn′,nO(n) and equation (18) becomes

〈E0|O|E0〉 = lim
t,t ′→∞

E
(
M′[0,t ′)

nt
O(nt )M[0,t)

n0

)
E
(
M[0,t+t ′)

n0

) . (19)

Note that E
(
M′[0,t ′)

nt
M[0,t)

n0

) = E
(
M[0,t+t ′)

n0

)
, so that 〈E0|O|E0〉 = 1 if O is the identity operator,

whereas for a single realization of the stochastic functionals we haveM′[0,t ′)
nt

M[0,t)
n0

�= M[0,t+t ′)
n0

.

4.2. Off-diagonal operators

In this case, O is typically given in terms of elementary operators Oijσ connecting two different
Fock states like 〈n′|Oijσ |n〉 = Oijσ (n)δn′,niσ↔jσ , where niσ↔jσ is the configuration obtained
from n exchanging niσ with njσ . Therefore, one has

〈E0|Oijσ |E0〉 = lim
t,t ′→∞

E
(
M′[0,t ′)

n
iσ↔jσ
t

Oijσ (nt )M[0,t)
n0

)
E
(
M[0,t+t ′)

n0

) . (20)

Similar expressions hold for other off-diagonal operators connecting two generic Fock states.

5. EPRMC algorithm

5.1. Pure sampling

Equations (9) and (10) lend themselves to a statistical evaluation of the matrix elements∑
n′ 〈n′| e−Ht |n〉 via a random sampling of jump times and trajectories. As explained in [4],

the practical algorithm works as follows. We start by determining the active links in the initial
configuration n0 assigned at time 0 and make an extraction with uniform distribution to decide
which of them jumps first, say the link (i1j1σ1). We then extract the jump time s1 according
to the conditional probability density

pA0(s) = A0η exp(−A0ηs), (21)

where A0 is the number of active links before the first jump takes place. The contribution to
M[0,t)

n0
at the time of the first jump is, therefore,

e(A0η−V0)s1θ(t − s1) + e(A0η−V0)t θ(s1 − t). (22)

According to equation (10), the contribution of a given trajectory is then obtained by
multiplying the factors corresponding to the different jumps determined in an analogous
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way until the last jump takes place later than t, i.e.,

M[0,t)
n0

=
(

Nt∏
k=1

e(Ak−1η−Vk−1)(sk−sk−1)

)
e(ANt η−VNt )(t−sNt ) (23)

if Nt > 0, and M[0,t)
n0

= e(A0η−V0)t if Nt = 0.
Let us consider N independent trajectories obtained as described above and let M[0,t)(i)

n0

be the functional value (10) calculated along the ith trajectory. From the law of large numbers
we have

E
(
M[0,t)

n0

) = lim
N→∞

1

N

N∑
i=1

M[0,t)(i)
n0

. (24)

5.2. Reconfigurations

Equation (10) represents a product of Nt random factors and, since Nt grows with t, the
fluctuations of the functional M[0,t)

n0
grow exponentially with t. This implies that the number

of trajectories needed to have good statistical averages grows exponentially with t. A
similar problem was successfully tackled some years ago in the framework of GFMC by the
reconfiguration technique [8, 9]. This technique can be adapted also to the present probabilistic
representation. In fact, for boson systems at imaginary times the stochastic functional M[0,t)

n0

is always positive and can be thought of as a weight. Let us divide the time interval [0, t) in
R subintervals of the same length �t = t/R. Let us label the times corresponding to the end
points of these intervals as

tr ≡ r�t, r = 0, . . . , R (25)

and let ntr be the configuration reached at the time tr + 0+ through the dynamics described
in section 3 (we recall that the Poisson processes are left continuous defined). The following
obvious identity follows from equation (10)

M[0,t)
n0

=
R∏

r=1

M[tr−1,tr )
ntr−1

, (26)

which implies

E
(
M[0,t)

n0

) = E

(
R∏

r=1

M[tr−1,tr )
ntr−1

)
. (27)

The functional M[tr−1,tr )
ntr−1

will be referred to as local weight.
Essentially, the idea of the reconfiguration technique is the following. Instead of extracting

independent trajectories, one carries on an ensemble of M trajectories simultaneously in
order to perform dynamically, at the times tr , a suitable replica of those with large weights,
eliminating at the same time the others. This replication/elimination of trajectories, also
referred to as reconfiguration, has to be done in such a way that the number of trajectories M
remains constant. At the end, one can substitute the average of

∏R
r=1 M

[tr−1,tr )
ntr−1

with the average

of
∏R

r=1

〈
M[tr−1,tr )

ñtr−1

〉
, where with ntr → ñtr we indicate the reconfiguration action at the time

tr , and with
〈
M[tr−1,tr )

ñtr−1

〉
the uniform ‘average’ of the local weights over the M reconfigured

trajectories (we use quotation marks since this quantity is itself a random variable). Hence,
the remarkable advantage of using the reconfigurations is that, if the functional

∏R
r=1 M

[tr−1,tr )
ntr−1

has variance �R∗
, the variance of

∏R
r=1

〈
M[tr−1,tr )

ñtr−1

〉
will be roughly (�/

√
M)R

∗
, where � is
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the variance of the local weights and R∗ < R is the number of subintervals in which the local
weights become approximately independent.

5.2.1. Reconfiguration algorithm. Here, we describe in detail the reconfiguration algorithm
at imaginary times postponing the relative proof to the next section. We will indicate with
n(i)

tr , r = 0, . . . , R, and M[tr−1,tr )(i)

n(i)
tr−1

, r = 1, . . . , R, the configurations and the local weights

of the ith trajectory and define the corresponding M-component vectors as ntr and M[tr−1,tr )
ntr−1

,

respectively. We shall also use the operator symbols D and R: D applied to the configurations
ntr gives the configurations ntr+1 according to the dynamics defined in section 3 along the time
interval [tr , tr+1), whereas R gives the reconfigured configurations ñtr = Rntr .

First step. Define ñt0 = nt0 with n(i)
t0 = n0 for i = 1, . . . , M . At the initial time t0 = 0, all

the M trajectories starting from the initial configuration n0 follow the dynamics D and reach
the configurations nt1 = Dnt0 . Correspondingly, evaluate the M local weights along the time

interval [0, t1), M[0,t1)
ñt0

, and compute their average

〈
M[0,t1)

ñt0

〉 ≡ 1

M

M∑
l=1

M[0,t1)(l)
ñt0

. (28)

Second step. Perform the reconfiguration nt1 → ñt1 = Rnt1 . The new configurations are
obtained by drawing out them randomly from the old ones, nt1 , according to the probabilities

P(i)
t1 ≡

M[0,t1)(i)
ñt0∑M

l=1 M
[0,t1)(l)
ñt0

. (29)

The new configurations ñt1 are used as starting configurations of the M trajectories for the
time interval [t1, t2) and, through the dynamics D, are mapped into Dñt1 . Correspondingly,

evaluate the M local weights M[t1,t2)
ñt1

and compute their average

〈
M[t1,t2)

ñt1

〉 ≡ 1

M

M∑
l=1

M[t1,t2)(l)

ñ(l)
t1

. (30)

Third step. Perform the reconfiguration Dñt1 → ñt2 = RDñt1 by drawing out the new
configurations randomly from the old ones according to the probabilities

P(i)
t2 ≡

M[t1,t2)(i)

ñ(i)
t1∑M

l=1 M
[t1,t2)(l)

ñ(l)
t1

. (31)

The new configurations ñt2 are used as starting configurations in the time interval [t2, t3).

Evaluate the local weights M[t2,t3)
ñt2

and compute their average

〈
M[t2,t3)

ñt2

〉 ≡ 1

M

M∑
l=1

M[t2,t3)(l)

ñ(l)
t2

. (32)

By iterating this procedure for R steps, we arrive at the final configurations DñtR−1 =
D(RD)R−1nt0 , with R computed averages

〈
M[tr−1,tr )

ñtr−1

〉
, r = 1, . . . , R. As we will prove later,
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the following identity holds

E
(
M[0,t)

n0

) = Ẽ

(
R∏

r=1

〈
M[tr−1,tr )

ñtr−1

〉)
, (33)

where Ẽ indicates the expectation in which the configurations ñtr are obtained by the
reconfiguration procedure described above. Explicitly, equation (33) implies that to evaluate
the expectation E

(
M[0,t)

n0

)
, instead of equation (24), we can use

E
(
M[0,t)

n0

) = lim
M→∞

R∏
r=1

〈
M[tr−1,tr )

ñtr−1

〉
, (34)

or, more generally, simulating N independent samples each one composed by M reconfigured
trajectories,

E
(
M[0,t)

n0

) = lim
MN→∞

1

N

N∑
p=1

R∏
r=1

〈
M[tr−1,tr )

ñtr−1

〉(p)
. (35)

The label (p) in equation (35) means pth sample. Note that for M = 1 we recover
equation (24).

All what we said about the functionalM[0,t)
n0

can be repeated for the functionalM[0,t)
n0

δn,nt
.

In this case, equation (33) becomes

E
(
M[0,t)

n0
δn,nt

) = Ẽ

(
R−1∏
r=1

〈
M[tr−1,tr )

ñtr−1

〉 1

M

M∑
l=1

M[tR−1,t)(l)

ñ(l)
tR−1

δn,(DñtR−1 )(l)

)
. (36)

Equation (36) allows us to calculate the numerator of equation (15) as

E
(
M[0,t)

n0
H(nt )

) = Ẽ

(
R−1∏
r=1

〈
M[tr−1,tr )

ñtr−1

〉 1

M

M∑
l=1

M[tR−1,t)(l)

ñ(l)
tR−1

H
((
DñtR−1

)(l)))
. (37)

5.2.2. Correlation functions. Let us now consider the reconfiguration procedure for the
functionals introduced in equations (19) and (20) to obtain the correlation functions. In this
case, we perform R steps in the first interval [0, t) and R′ steps in the second interval [0, t ′).
All the quantities relative to the second interval [0, t ′) will be indicated with a prime. In the
pure sampling, the initial configurations of the second interval [0, t ′) are equal to the final ones
of the first interval [0, t): n′

t ′0
= ntR . For diagonal operators, we have

E
(
M′[0,t ′)

nt
O(nt )M[0,t)

n0

) = Ẽ

(
R∏

r=1

〈
M[tr−1,tr )

ñtr−1

〉 R′−1∏
r ′=1

〈
M′[t ′

r′−1
,t ′

r′ )
ñ′

t ′
r′−1

〉
× 1

M

M∑
l=1

M′[t ′
R′−1

,t ′)(l)

ñ′(l)
t
R′−1

O
((
RR′DñtR−1

)(l)))
, (38)

where now the configurations RR′DñtR−1 are obtained by updating the intermediate
configurations at time tR , namely DñtR−1 , R

′ times according to the successive R′ steps.
For off-diagonal operators, we have

E
(
M′[0,t ′)

n
iσ↔jσ
t

Oijσ (nt )M[0,t)
n0

) = Ẽ

(
R∏

r=1

〈
M[tr−1,tr )

ñtr−1

〉 R′−1∏
r ′=1

〈
M′[t ′

r′−1
,t ′

r′ )
ñex

t ′
r′−1

〉
× 1

M

M∑
l=1

M′[t ′
R′−1

,t ′)(l)

ñex(l)

t ′
R′−1

Oijσ

((
RR′DñtR−1

)(l)))
, (39)
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where ñex
t ′
r′−1

, r ′ = 1, . . . , R′, are the configurations obtained after r ′ steps starting from the

intermediate configurations
(
DñtR−1

)iσ↔jσ
in which the occupations of sites i and j with spin

σ have been exchanged, i.e. ñex
t ′
r′−1

= (RD)r
′−1
(
DñtR−1

)iσ↔jσ
.

5.2.3. Real times. A reconfiguration procedure can be performed also at real times. In this
case, the stochastic functional M[0,it)

n0
is complex and we separate the contributions from the

R time intervals in their moduli and arguments, i.e.

M[itr−1,itr )
ntr−1

= ∣∣M[itr−1,itr )
ntr−1

∣∣ ei

[tr−1 ,tr )
ntr−1 , (40)

where ∣∣M[itr−1,itr )
ntr−1

∣∣ = e
∫ tr
tr−1

A(ns )η ds
, (41)


[tr−1,tr )
ntr−1

= π

2

(
Ntr − Ntr−1

)−
∫ tr

tr−1

V (ns) ds. (42)

The moduli can be used as local weights for the reconfiguration operator R. All the steps
described in section 5.2.1 remain unchanged except for the last factor, which takes into account
the R phase factors reconstructing the original stochastic functional. The final result is

E
(
M[0,it)

n0

) = Ẽ

(
R−1∏
r=1

〈∣∣M[itr−1,itr )
ñtr−1

∣∣〉 1

M

M∑
l=1

∣∣M[itR−1,itR)(l)

ñ(l)
tR−1

∣∣ e
i
∑R

r=1 

[tr−1 ,tr )(l)

(RR−r ñtr−1 )(l)

)
. (43)

5.3. Importance sampling

Although the reconfiguration method controls the growth of the fluctuations of M[0,t) along
the trajectories, since the dimension of the Fock space grows exponentially with the lattice
size, an extraction of the jumping links by importance sampling also may be mandatory to
reduce the statistical errors of the local weights [6]. If some a priori approximation |g〉 of
the ground state is known, which has the property 〈n|g〉 ∈ R \ 0 for any Fock state |n〉, then
instead of sampling directly the operator exp(−Ht), it can be notably advantageous to sample
the isospectral operator exp(−Hgt), where 〈n′|Hg|n〉 ≡ 〈n′|g〉〈n′|H |n〉〈n|g〉−1.

As explained in [4, 13], if |g〉 is a guiding function in the sense specified above, the
generalization of the present algorithm to the case with importance sampling consists in
replacing the number of active links, A(n) ≡ ∑

(i,j)∈�

∑
σ=↑↓|λijσ (n)|, in all the previous

formulae with the quantity

Ag(n) ≡
∑

(i,j)∈�

∑
σ=↑↓

∣∣∣∣λijσ (n)
〈n ⊕ 1iσ ⊕ 1jσ |g〉

〈n|g〉
∣∣∣∣ . (44)

Correspondingly, the probability density for the jump times becomes

pAg
(s) = Agη exp(−Agηs), (45)

and the extraction of the jumping link (i, j, σ ) among the active ones must be performed
according to the probabilities |〈n ⊕ 1iσ ⊕ 1jσ |g〉〈n|g〉−1|/Ag(n). Finally, the stochastic
functional (10) is modified as

M[0,t)
g,n0

= e
∫ t

0 [Ag(ns )η−V (ns )] ds . (46)
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The advantage of using importance sampling becomes clear considering the local energy
associated with Hg

Hg(nt ) ≡
∑
n′

〈n′|g〉〈n′|H |nt 〉〈nt |g〉−1 = −[Ag(nt )η − V (nt )]. (47)

In fact, in the limit |g〉 → |E0〉 one has Hg(nt ) → E0 and accordingly M[0,t)
g,n0

→ exp(−E0t)

so that the fluctuations vanish.
For any choice of the guiding function |g〉, the modified stochastic functional (46) provides

unbiased representations of the ground-state energy E0 as well as of the expectation of a generic
operator O in the ground state |E0〉 of H. In fact, equation (15) now reads

lim
t→∞

E
(
Hg(nt )M[0,t)

g,n0

)
E
(
M[0,t)

g,n0

) = E0g, (48)

where E0g is the ground-state energy of Hg , which, however, is an operator isospectral to H.
On the other hand, equation (18) written in terms of a g-modified operator Og becomes

lim
t,t ′→∞

∑
n E

(
M′[0,t ′)

g,n 〈n|Og|nt 〉M[0,t)
g,n0

)
E
(
M[0,t+t ′)

g,n0

) = 〈E0g|Og|E0g〉. (49)

By using 〈n|E0g〉 = 〈n|g〉〈n|E0〉 and 〈E0g|n〉 = 〈n|g〉−1〈E0|n〉, it is simple to see that
〈E0g|Og|E0g〉 = 〈E0|O|E0〉 if we choose Og as the operator defined by 〈n′|Og|n〉 ≡
〈n′|g〉〈n′|O|n〉〈n|g〉−1. Note that, in the case of diagonal operators, Og = O.

Importance sampling may be useful also for a different purpose, namely the determination
of the transition amplitudes 〈g| e−iHt |n0〉 between two chosen states |n0〉 and |g〉. This is
particularly interesting at real times and we illustrate the idea in this case. If |g〉 is a generic
state with the property 〈n|g〉 ∈ R \ 0 so that the isospectral Hamiltonian Hg is well defined,
we have ∑

n

〈n| e−iHgt |n0〉 = 〈g|n0〉〈g| e−iHt |n0〉. (50)

Since the expectation of the stochastic functional M[0,it)
n0

with the modified rules (44) and (45)
provides an exact representation of the lhs of equation (50), we obtain the transition amplitudes
〈g| e−iHt |n0〉 up to the constant 〈g|n0〉.

6. Proof of the reconfiguration algorithm

In this section, we prove equations (33)–(39). Let us consider an ensemble of M
simultaneous trajectories obtained by the dynamics described in section 3 starting from
the initial configuration n0. Let PR

(
M[t0,t1)

nt0
,M[t1,t2)

nt1
, . . . ,M[tR−1,t)

ntR−1
;nt0 ,nt1 , . . . ,ntR

)
be

the probability density to have a realization in which the M trajectories have local weights
M[t0,t1)

nt0
,M[t1,t2)

nt1
, . . . ,M[tR−1,t)

ntR−1
and configurations nt0 ,nt1 , . . . ,ntR at the times t0, t1, . . . , tR ,

respectively. For simplicity, here we shall often use Mr−1 for M[tr−1,tr )
ntr−1

and nr for ntr . Since

the M trajectories are independent, if we take n(l)
0 = n0 for l = 1, . . . ,M , we have

E
(
M[0,t)

n0
δn,nt

) = E

(
R∏

r=1

Mr−1δn,nR

)
= E

(
1

M

M∑
l=1

R∏
r=1

M(l)
r−1δn,n(l)

R

)
. (51)
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Consider, then, the following identity,

1

M

M∑
l=1

R∏
r=1

M(l)
r−1δn,n(l)

R
=
(

M∑
l=1

M(l)
0 p

(l)
0

)(
M∑
l=1

M(l)
1 p

(l)
1

)
· · ·

(
M∑
l=1

M(l)
R−2p

(l)
R−2

)

×
(

M∑
l=1

M(l)
R−1δn,n(l)

R
p

(l)
R−1

)
, (52)

where the quantities p0, p1, . . . , pR−1 are defined recursively by
p

(i)
0 = 1

M

p(i)
r = M(i)

r−1p
(i)
r−1∑M

l=1 M
(l)
r−1p

(l)
r−1

, r = 1, . . . , R − 1.

(53)

Equations (51) and (52) lead to

E

(
R∏

r=1

Mr−1δn,nR

)
= E

(
R−1∏
r=1

〈Mr−1〉w
〈
MR−1δn,nR

〉
w

)
, (54)

where the weighted ‘averages’, 〈Mr〉w and
〈
MR−1δn,nR

〉
w

, are defined as the weighted sums

〈Mr〉w = ∑M
l=1 M(l)

r p(l)
r and

〈
MR−1δn,nR

〉
w

= ∑M
l=1 M

(l)
R−1δn,n(l)

R
p

(l)
R−1, respectively.

Up to now the quantities pr have been thought of as stochastic variables. Actually, since
the components p(l)

r are positive and normalized to 1, we can interpret them as probabilities
to modify the original probability density PR . We introduce a new probability density
P̃R that, besides taking into account the dynamics DR , includes the probabilities pr , for
r = 0, . . . , R−1. In this case, if we indicate with ñ0, ñ1, . . . , ñR−1,DñR−1 the configurations

extracted according to the probability density P̃R , equation (54) transforms into

E

(
R∏

r=1

Mr−1δn,nR

)
= Ẽ

(
R−1∏
r=1

〈
M[tr−1,tr )

ñr−1

〉 1

M

M∑
l=1

M[tR−1,tR)(l)

ñ(l)
R−1

δn,(DñR−1)(l)

)
, (55)

where Ẽ(·) means expectation with respect to P̃R and the weighted ‘averages’ 〈Mr〉w
have been substituted by uniform ‘averages’ over the new configurations,

〈
M[tr−1,tr )

ñr−1

〉 =∑M
l=1 M

[tr−1,tr )(l)

ñ(l)
r−1

/
M .

Equations (51) and (55) reproduce equation (36). To conclude the proof, we still have to
show that the algorithm described in section 5.2.1 coincides with sampling the configurations
ñ0, ñ1, . . . , ñR−1,DñR−1 according to the probability density P̃R . For M trajectories with

local weights M(i)
r−1, let us define the following probabilities:

P(i)
r = M(i)

r−1∑M
l=1 M

(l)
r−1

, r = 1, . . . , R − 1. (56)

Due to the recursiveness of equation (53), for r � 1, we have

p(i)
r = Cr

r∏
r ′=1

P(i)
r ′ , (57)

where Cr is a normalization constant independent of the trajectory index (i). This allows us
to realize the transformation Pr → P̃r recursively for r = 1, . . . , R. At the first step r = 1,
since p0 is uniform we do not have to reconfigure and ñ0 = n0. The density P̃1 will be
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then sampled through the vectors ñ0 and Dñ0. Suppose now we have sampled the density P̃r

through the vectors ñ0, ñ1, . . . , ñr−1,Dñr−1. To sample the density P̃r+1 we must change
the arrival vector of configurations Dñr−1 into a new vector ñr according to the probabilities
Pr , with components

P(i)
r =

M[tr−1,tr )(i)

ñtr−1∑M
l=1 M

[tr−1,tr )(l)

ñtr−1

. (58)

With a further step of the dynamics we get Dñr . The distribution P̃R is sampled by iterating
this procedure R times. This is exactly the procedure explained in section 5.2.1 and the
reconfiguration algorithm is proved.

Equation (33) follows easily by summing equation (36) over n. Finally, equation (37)
can be obtained multiplying M[0,t)

n0
δn,nt

by H(n) and then summing the product over n.
Let us now consider the functional M′[0,t ′)

nt
δn,nt

M[0,t)
n0

. In analogy to the previous case,
we easily arrive at

E

(
R∏

r=1

Mr−1δn,nR

R′∏
r ′=1

M′
r ′−1

)
= E

(
R∏

r=1

〈Mr−1〉w
R′−1∏
r ′=1

〈M′
r ′−1〉w

〈
M′

R′−1δn,nR

〉
w

)
, (59)

where, recalling that n′
t ′0

= ntR , the weighted ‘averages’ are given in terms of probabilities

pr defined recursively as in equation (53) with r = 1, . . . , R + R′ − 1. Let PR+R′ and P̃R+R′

be the obvious extensions of the distributions PR and P̃R previously considered. As before,
by using equations (56) and (57), for r = 1, . . . , R + R′ − 1, we can realize the transformation
PR+R′ → P̃R+R′ recursively: along the interval [0, t) we sample P̃1, P̃2, . . . , P̃R , whereas
along [0, t ′) we sample P̃R+1, P̃R+2, . . . , P̃R+R′ , obtaining the configurations ñ0, ñ1, . . . ,

ñR, ñ′
0, ñ

′
1, . . . , ñ

′
R′−1,Dñ′

R′−1. Therefore, equation (59) transforms into

E

(
R∏

r=1

Mr−1δn,nR

R′∏
r ′=1

M′
r ′−1

)
= Ẽ

(
R∏

r=1

〈
M[tr−1,tr )

ñr−1

〉 R′−1∏
r ′=1

〈
M′[tr′−1,tr′ )

ñ′
r′−1

〉
× 1

M

M∑
l=1

M′[tR′−1,tR′ )(l)
ñ′(l)

R′−1

δn,(RR′DñR−1)(l)

)
, (60)

which yields equation (38) after multiplying M[0,t)
n0

δn,nt
by O(n) and then summing

over n. Note that on the rhs of equation (60) there appears RR′DñR−1 and not
DñR−1. Indeed, according to equation (52), in the last weighted average

〈
M′

R′−1δn,nR

〉
w

=∑M
l=1 M

′(l)
R′−1δn(l)

R ,np
(l)
R+R′−1 there appear the probabilities pR+R′−1 associated with the last time

interval.
In general, in the reconfiguration procedure a weighted ‘average’〈

M[tR−1,tR)
nR−1

f (n0,n1, . . . ,nR−1,nR)
〉
w

(61)

will be substituted by the uniform ‘average’

1

M

M∑
l=1

M[tR−1,tR)(l)

ñ(l)
R−1

f ((RR−1ñ0)
(l), (RR−2ñ1)

(l), . . . , (RñR−1)
(l), (DñR−1)

(l)). (62)

Equation (39) can be obtained in the same way as equation (38). Finally, in the case of real
times, equation (43) is immediately obtained by using for the local weights the quantities
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ntr−1

∣∣ and for the function f (·) of equation (62) the product of the phase factors

f =
R−1∏
r=1

ei

[tr−1 ,tr )
ntr−1 . (63)

7. Numerical results

In this section, we present some numerical applications of the algorithm described above. In
principle, the reconfiguration scheme can be applied for any positive integer R. However, we
have observed optimal reconfiguration for R � 〈A〉ρt , where 〈A〉 is the average number of
active links. This is what one expects as, in this case, the reconfiguration is repeated in the
average at each jump, i.e. as frequently as the stochastic dynamics dictates (see also [14]). In
the simulations reported below, therefore, we always work with this approximately optimal
number of reconfigurations.

The count of the active links and of the potential of a given configuration, quantities to
be determined at each jump, is a core point of the algorithm. Starting from a first count based
on a systematic inspection of the initial lattice configuration, we have implemented a local
updating of these quantities. In fact, when a jump occurs, the new Hubbard potential and the
new number of active links are determined by the change of the lone occupations and of the lone
links involved in the jump. The computational cost of a local update, which takes into account
only these relevant sites and links, is independent of the lattice size. Also the reconfiguration
procedure has been optimized by defining a non-negative integer, the replication multiplicity
µ(i)

r , where (i) is the trajectory index and
∑M

i=1 µ(i)
r = M . Configurations for which µ(i)

r = 0
are substituted by those with µ(i)

r > 1, whereas no operation is performed for the trajectories
with µ(i)

r = 1, which are the largest fraction of the whole set of M trajectories. The efficiency
of the resulting code can be figured out by the following example. With an ordinary personal
computer and without using importance sampling, we are able to simulate lattices with 40×40
sites with 800 hard-core bosons obtaining the ground-state energy up to a relative error of the
order of 1% with 290 min of cpu time. A detailed comparison of the efficiency of our EPRMC
code with those implementing other Monte Carlo methods is beyond the purposes of present
work. In the appendix, we discuss the relative efficiency between EPRMC and GFMC or
GFMCP.

In figures 1–5 we compare several quantities evaluated by the EPRMC algorithm with
the corresponding exact results obtained by numerical diagonalization of the associated
Hamiltonian. The system considered is a hard-core boson Hubbard model of small size,
namely a 2 × 3 lattice at half-filling. The general purpose of these figures is to show the
unbiased statistical convergence of the Monte Carlo data towards the exact values. No
importance sampling is used in these first examples.

In figure 1 we show the expectation E
(
M[0,t)

n0

)
as a function of the imaginary time t. The

agreement with the corresponding quantum matrix element
∑

n〈n| e−Ht |n0〉 is excellent. The
reconfiguration procedure is able to control completely the fluctuations growing with t so that
the error bars, negligible on the scale used, do not increase by increasing the time. Similar
results are obtained for different initial configurations n0.

In figure 2 we show the expectation E
(
M[0,it)

n0

)
as a function of the real time t. Also

in this case there is an exact statistical convergence towards the quantum matrix element∑
n〈n| e−iHt |n0〉. However, in this case the reconfiguration procedure is able to control only

a part of the fluctuations, namely those related to the modulus of the functional M[0,it)
n0

. The
fluctuations associated with the corresponding phase factor make the convergence harder and
harder for large times.
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Figure 1. Expectation of the functional M[0,t)
n0 versus the imaginary time t for a hard-core boson

Hubbard system in a 2 × 3 lattice at half-filling with η = 1, γ = 4 and periodic boundary
conditions. The initial configuration is n0 = (1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0). The Monte Carlo
simulation (dots with error bars) was done with M = 214 trajectories, N = 27 samples and
R = 300 reconfigurations. Error bars correspond to one standard deviation evaluated from the N
samples. The dashed line is the exact result from numerical diagonalization of the corresponding
Hamiltonian. In the inset we show the small time behaviour.
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Figure 2. Expectation of the real and imaginary parts of the functional M[0,it)
n0 versus the real time

t for the same system of figure 1. The Monte Carlo simulation (dots with error bars) was done
with M = 220 trajectories, N = 27 samples and R = 15 reconfigurations. Error bars correspond
to one standard deviation evaluated from the N samples. The dashed (real part) and dot-dashed
(imaginary part) lines are the exact results from numerical diagonalization.

In figure 3 we show the behaviour of the local energy E
(
M[0,t)

n0
H(nt )

)/
E
(
M[0,t)

n0

)
as a

function of the imaginary time t. According to equation (15), the local energy converges to
the ground-state energy of the system, E0, for large times. In fact, after an initial transient
inversely proportional to the gap E1 − E0, the ratio E

(
M[0,t)

n0
H(nt )

)/
E
(
M[0,t)

n0

)
, estimated

with a finite number of trajectories M, fluctuates around an average value that is close but
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Figure 3. Local energy E(M[0,t)
n0 H(nt ))/E(M[0,t)

n0 ) versus the imaginary time t for the same system
of figure 1. The Monte Carlo simulation (solid line) was done with M = 214, N = 1 and R = 300.
The straight dashed line is the exact energy E0 = −10.233 803 obtained by diagonalization. In the
inset we evidence the difference between E0 and the time average of E(M[0,t)

n0 H(nt ))/E(M[0,t)
n0 )

computed over the interval 10 � t � 20 (opaque region baseline).
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Figure 4. Relative error between the local energy E(M[0,t)
n0 H(nt ))/E(M[0,t)

n0 ) and the exact
energy E0 versus the number M of reconfigured trajectories for the same system of figure 1 with
N = 27, t = 5 and R = 75. Error bars correspond to two standard deviations evaluated from the
N samples.

different from E0 (see the inset of figure 3). However, if we increase M, as shown in figure 4,
the statistical accuracy increases and we obtain an unbiased convergence towards E0.

As an example of correlation functions, we have studied the spin–spin structure factor

S(qx, qy) = 1

|�|
∑
i,j∈�

eiqx(xi−xj )+iqy(yi−yj )〈E0|SiSj |E0〉, (64)

where Si = c
†
i↑ci↑ − c

†
i↓ci↓ and xi and yi are the coordinates of the ith lattice point. Note that

the operators SiSj are diagonal in the Fock space and can be evaluated by using equation (38).
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Figure 5. Spin–spin structure factor S(qx, qy) at qx = qy = π versus the interaction strength γ for
the same system of figure 1. The dashed line is the exact result from numerical diagonalization of
the Hamiltonian whereas the dots with error bars are from a Monte Carlo simulation with M = 214

(M = 218 for γ > 10), N = 27, t = t ′ = 3 and R = 45. Error bars correspond to one standard
deviation evaluated from the N samples.

In figure 5 we show S(π, π) evaluated for different values of the interaction strength γ . In
agreement with the exact results from numerical diagonalization, S(π, π) has a sharp transition
between the γ → 0 and γ → ∞ asymptotic values. This transition is expected to take place
when the average kinetic and potential energies are of the same order, i.e., for η〈A〉 ∼ γ 〈N↑↓〉,
where 〈N↑↓〉 is the average number of doubly occupied sites. For the system considered in
figure 5, we have 〈A〉 � 15 and 〈N↑↓〉 � 1.5 so that the transition is expected at γ /η ∼ 10.
This is in agreement with the numerical results.

In figure 6 we report simulations performed for hard-core boson Hubbard systems of large
size. In particular, we show the local energy per site

[
E
(
M[0,t)

n0
H(nt )

)/
E
(
M[0,t)

n0

)]/|�| as a
function of the imaginary time t for two lattices at half-filling having size 20×20 and 40×40.
Note that the standard deviations of the fluctuations around the long-time averaged value of[
E
(
M[0,t)

n0
H(nt )

)/
E
(
M[0,t)

n0

)]/|�| provide an estimated relative error for E0/|�| of the order
of 1%. This result is obtained with a moderate computational effort. In figure 6 an asymmetry
of the fluctuations of the local energy around its mean value is also evident. This behaviour is
due to the reconfiguration procedure that ensures the invariance of the first statistical moment
of M[0,t) (or of related quantities) only.

We have performed simulations also for the Heisenberg model (5). In this case, we used
importance sampling with the following Jastrow-like guiding state [9],

〈n|g〉 ≡ exp

α

2

∑
i,j∈�

υ(ri − rj )

(
ni − 1

2

)(
nj − 1

2

) , (65)

where ri = (xi, yi), α is a real positive parameter, and the long-range potential υ is defined as

υ(r) = 2

|�|
∑

(qx ,qy )�=(0,0)

eiqxx+iqyy

[
1 −

√
1 + (cos qx + cos qy)/2

1 − (cos qx + cos qy)/2

]
, (66)
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Figure 6. Local energy per site [E(M[0,t)
n0 H(nt ))/E(M[0,t)

n0 )]/|�| versus the imaginary time t for
two different-size hard-core boson Hubbard systems at half-filling with η = 1, γ = 4 and periodic
boundary conditions. The Monte Carlo simulations (solid lines) were done with M = 212, R = 215,
and N = 1. The straight solid lines are the time averages of the simulation results computed over
the interval 10 � t � 40 whereas the straight dashed lines indicate the relative standard deviations.
The simulations took 79 (20 × 20 lattice) and 290 (40 × 40 lattice) min on a computer with a
2.40 GHz Intel Xeon CPU.

the sum over qx and qy being extended over the Brillouin zone 2π/L, 4π/L, . . . , 2π , with 0
excluded. From equation (65) we have

〈n ⊕ 1k ⊕ 1l|g〉
〈n|g〉 = exp

α
∑

i∈�,i �=k,l

(
ni − 1

2

)
[(nk ⊕ 1 − nk)υ(ri − rk)

+ (nl ⊕ 1 − nl)υ(ri − rl )]

 . (67)

We assumed α = 1.2 as suggested in [9].
In figure 7 we show the local energy per site

[
E
(
M[0,t)

g,n0
Hg(nt )

)/
E
(
M[0,t)

g,n0

)]/|�| as

a function of the imaginary time t for a 6 × 6 Heisenberg system having
∑|�|

i=1 Sz
i = 0.

The amplitude of the error bars shown in figure 7 is considerably reduced with respect to
the value that one would obtain without using importance sampling. We also stress that the
dynamics shown in figure 7 is relative to the Hamiltonian Hg modified by the chosen guiding
function |g〉.

In figure 8 we show the local staggered magnetization
{
3
[
E
(
M′[0,t ′)

g,nt
Sz

ππ (nt )M[0,t)
g,n0

)/
E
(
M[0,t+t ′)

g,n0

)]/|�|}1/2
evaluated in Heisenberg systems of different size as a function of the

imaginary time t ′ and for a large value of the other imaginary time t. Here Sz
ππ (n) = 〈n|Sz

ππ |n〉
is the quantum expectation in the Fock state n of the diagonal operator

Sz
ππ = 1

|�|
∑
i,j∈�

eiπ(xi−xj )+iπ(yi−yj )Sz
i S

z
j . (68)

As noted in the case of figure 7, also the dynamics of the local staggered magnetization shown
in figure 8 is relative to the Hamiltonian Hg modified by the guiding function (67). The
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Figure 7. Local energy per site [E(M[0,t)
g,n0Hg(nt ))/E(M[0,t)

g,n0 )]/ |�| versus the imaginary time

t for a 6 × 6 Heisenberg system with
∑|�|

i=1 Sz
i = 0 and J = 1. The Monte Carlo simulation

(dots with error bars) was done by using importance sampling with the guiding function (67) and
statistical parameters M = 216, N = 26 and R = 20.
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Figure 8. Local staggered magnetization {3[E(M′[0,t ′)
g,nt Sz

ππ (nt )M[0,t)
g,n0 )/E(M[0,t+t ′)

g,n0 )]/|�|}1/2,
defined in terms of the operator (68), versus the imaginary time t ′ for different-size Heisenberg
systems with

∑|�|
i=1 Sz

i = 0 and J = 1. The Monte Carlo simulations (dots with error bars) were
done by using importance sampling with the guiding function (67) with α = 1.2 and parameters
t = 5,M = 216, N = 22 and R = 10 in the 4 × 4 case, t = 10,M = 216, N = 22 and R = 20 in
the 6 × 6 case, t = 20,M = 217, N = 22 and R = 40 in the 8 × 8 case.

asymptotic values of the local staggered magnetization reached for large t ′ are in agreement
with those obtained with different Monte Carlo algorithms [9, 15]. The statistical errors shown
in figure 8 can be reduced by a factor of about 10 by exploiting the covariance between the
local estimators for Sz

π,π and E0, as explained in [15].
Finally, in figure 9 we provide an example of how the local expectation values shown

in figure 8 depend on the parameter α of the guiding function (67). For different values of
α the local expectations have different evolutions determined by Hg(α); however, as stated in
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Figure 9. Local staggered magnetization versus the imaginary time t ′ for the 4 × 4 Heisenberg
system of figure 8. The three curves were obtained with different values of the parameter α defining
the importance sampling function (67). The other parameters were t = 5,M = 216, N = 22 and
R = 20.

section 5.3 for a general guiding function, they all converge to the quantum expectation of
Sz

ππ in the ground state of H. In agreement with [9], the value α = 1.2 is close to the
optimal choice, which provides smallest fluctuations and minimal evolution with respect to
the asymptotic values.

In figures 1 and 2 we have shown that the imaginary- and real-time evolution of the
expectation of the basic functional M[0,t)

n0
coincides with that of the corresponding quantum

matrix element
∑

n〈n| e−Ht |n0〉. Of course, a similar behaviour is general. Even if not
shown explicitly, in all the considered examples the evolution of the relevant time-dependent
probabilistic expectations coincides with that of the corresponding time-dependent quantum
correlation functions.

8. Conclusions

We have exploited an exact probabilistic representation of the quantum dynamics in a lattice
to derive a Monte Carlo algorithm, named EPRMC, for which standard fluctuation control
techniques such as reconfigurations and importance sampling have been adapted and rigorously
proved. This exact representation holds for both imaginary and real times, even if in the latter
case only a partial fluctuation control is possible so that reliable statistical simulations are
limited to short times.

Monte Carlo algorithms, such as GFMC or GFMCP, provide similar representations of
the evolution operator, which are affected, however, by a systematic error ε controlled by the
number of iterations performed. With respect to these approximated methods, EPRMC gives
an efficiency gain proportional to the accuracy ε−1.
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Appendix

In this appendix, we calculate the relative efficiencies of GFMC and EPRMC methods. Both
the methods have the aim to sample the operator e−Ht for large t. We can write

U(t) = e−Ht ∼ e−E0t , for t 
 t, (A.1)

where t is the characteristic time to filter out the excited states E1, E2, . . . with respect to the
ground state E0,

t = 1

E1 − E0
. (A.2)

As explained in the introduction, GFMC samples the operator (1−Ht/N)N whereas EPRMC
samples directly the operator e−Ht . Since limN→∞(1 + x/N)N = ex , GFMC → EPRMC as
the number of iterations N in the GFMC method grows. However, for a finite value of N,
GFMC remains affected by a systematic error. We are interested in evaluating the critical
value of N above which this error becomes smaller than a given value. Let us consider the
relative difference

fN(x) = ex − (
1 + x

N

)N
ex

. (A.3)

By using

log(1 + y) =
∞∑

k=1

(−1)k+1

k
yk, (A.4)

equation (A.3) becomes

fN(x) = (
1 − e− x2

2N
+ x3

3N2 −···)
. (A.5)

For concreteness, let us put x = −E0t in equation (A.5). If we require that the relative error
is fN(−E0t) = ε � 1, then we must have N � Nt(ε), where

Nt(ε) = E2
0 t

2

2ε
. (A.6)

In conclusion, Nt(ε) is the number of steps needed in GFMC to sample the operator e−Ht

for large t with a relative error equal to ε. On the other hand, the number of steps needed in
EPRMC to sample e−Ht for large t is given by the average number of jumps that, when an
optimal reconfiguration scheme is chosen as discussed in section 7, coincides with the number
of reconfigurations Rt

Rt = 〈A〉ηt � E
(0)
0 t, (A.7)

where 〈A〉 is the average number of active links and E
(0)
0 is the ground-state energy in the

non-interacting case. Therefore, the relative efficiency of EPRMC with respect to GFMC is
given by the ratio

Nt(ε)

Rt

= E2
0 t

2E
(0)
0 ε

. (A.8)

We see that the superiority of EPRMC grows by increasing the time t or increasing the accuracy
ε−1 required in GFMC. In particular for t = t we have

Nt(ε)

Rt

= E2
0

2E
(0)
0 (E1 − E0)ε

. (A.9)
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It is clear that if, instead of GFMC, we consider the GFMCP method, the efficiency ratio
(A.8) changes. In fact, any step in GFMCP, on the average, amounts to 〈ns〉 elementary GFMC
steps, where roughly 〈ns〉 = 〈A〉ηt [4]. Thus, in GFMCP the number of steps needed to sample
the operator e−Ht for large t with a relative error ε is reduced to Nt(ε) = E2

0 t
/(

2E
(0)
0 ε

)
so

that the relative efficiency of EPRMC with respect to GFMCP is given by the ratio

Nt(ε)

Rt

=
(

E0

E
(0)
0

)2
1

2ε
. (A.10)

This ratio no longer depends on t but remains proportional to the accuracy required in GFMCP.
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