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We review a novel approach to evaluate the ground-state properties of many-body lattice
systems based on an exact probabilistic representation of the dynamics and its long
time approximation via a central limit theorem. The choice of the asymptotic density
probability used in the calculation is discussed in detail.
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1. Introduction

The real- or imaginary-time dynamics of systems described by a finite Hamilto-
nian matrix, representing bosonic or fermionic degrees of freedom, admits an exact
probabilistic representation in terms of a proper collection of independent Poisson
processes.! 23 For a lattice system, the Poisson processes are associated to the links
of the lattice and the probabilistic representation leads to an optimal algorithm
3 which coincides with the Green Function Quantum Monte Carlo method in the
limit when the latter becomes exact.

In the recent Ref. 5 we have exploited the above probabilistic representation to
derive analytical expressions for the matrix elements of the evolution operator in
the long time limit. In this way, the ground-state energy as well as the expectation
of a generic operator in the ground state of a lattice system without sign prob-
lem are obtained as the solution of a simple scalar equation. The result is based
on the application of a central limit theorem to the rescaled multiplicities of the
values assumed by the potential and hopping energies in the configurations dynam-
ically visited by the system. As a consequence, the probabilistic expectations can
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be calculated by using a Gaussian-like probability density. In this paper, we briefly
review the approach developed in Ref. 5 and discuss in detail the choice of the
asymptotic probability density used in the calculation.

2. Exact Probabilistic Representation of Lattice Dynamics

We illustrate our approach in the case of imaginary-time dynamics for a system of
hard-core bosons described by the Hamiltonian

=D D millatio + (1)
i#jEA o=T]

where A C Z¢ is
destruction operators at site i and spin mdex o with the property 2 = O The po-

sites and ¢;, the commuting

tential operator V is arbitrary, e.g. for the Hubbard model V= EZEA ¥iC ﬁc TCIJ, c;) -
Tor simplicity, we assume 7,;; = € if ¢ and j are first neighbors and 7,; = 0 otherwise.

In order to study the ground-state properties of the Hamiltonian H it is
sufficient to evaluate the long time behavior of Y, (nle”*|ng), where n =

(n11,n1),-.-,nA|7,1)a)y) are the lattice occupation numbers taking the values 0
or 1. In fact, the ground-state energy is given by
. —-H
Ey = lim —0;log > (nle T ng), (2)
n

while the quantum expectation of a generic operator O in the ground state of H
can be obtained via the Hellman-Feynman theorem ® by evaluating the ground-state
energy Fy(€) of the modified Hamiltonian H + £O.
At any finite time ¢, the matrix elements of the evolution operator considered
above admit the exact probabilistic representation
Z<n|6_Ht|n0> =E (M’tn(1> ) (3)
n
where Mﬁm is a stochastic functional defined in terms of independent Poisson pro-
cesses associated to the links of the lattice, see Ref. 3 for a detailed description. At
each jump of a Poisson process relating sites ¢ and j with spin ¢ and taking place
at a given configuration n, a particle of spin ¢ moves from site ¢ to site 5 or vice
versa if the mod 2 sum of the occupations of these two sites is A;;j, (n) = 1, while
the lattice configuration m remains unchanged if A;;,(n) = 0. Hereafter, links with
Aijo = 1 will be called active. By ordering the jumps according to the times sy,
k=1,..., N at which they take place in the interval [0,t), we define a trajectory
as the Markov chain ny,nq,..., ,ny, generated from the initial configuration ny.
The number of jumps N is, of course, a random integer associated to each tra-
jectory. We associate to each trajectory also two sequences, Ag, A1,..., An,—1 and
Vo, Vi ..., Vy,, representing the number of active links and the potential energy of

Do Aijeln), (4)

(t,5)eT o=Tl

the visited configurations
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Vi = (ng|H|ng) = (ng[Ving). (5)

Here, I" is the set of system links, i.e. the pairs (i,7) with ¢ < j and 7,5 € A
such that 7;; # 0. The stochastic functional M

n, Which appears in Eq. (3) actu-

ally depends on the jump times s1, s2, ..., sy, and on the corresponding sequences
A07A17 s 7AN/,—1 and %a ‘/1 sy VN/,'

3. Probabilistic Expectation in the Long Time Limit

Evaluating the expectation E (M,tn(]) over the detailed sequences above specified can
be done numerically by a Monte Carlo method.? In Ref. 5 we have demonstrated

that an analytical expression of E (M? ) can be obtained in the limit of long times.

n
This result is reached in four steps de;cribed in the next subsections. The crucial
point is that, if one integrates over all the possible jumps times, what matter are not
the detailed sequences Ag, A1,..., An,—1 and V5, Vi ..., Vi, but the multiplicities
N4 and Ny of the possibles values which the variables A and V' may assume. We
call & and ¥ the sets of these values and m, and my their cardinalities. It is
clear that the nature of these sets depends only on the structure of the system
Hamiltonian, not on the values of the Hamiltonian parameters. The expectation

E (M!

o
evaluated analytically by using saddle-point techniques and a central limit theorem.

) is reduced to an average over N4 and Ny . For t — oo, this average can be

3.1. Canonical decomposition of the expectation

Referring to Ref. 5 for the details, we decompose the expectation as a series of
conditional expectations with a fixed number of jumps (canonical averages)

E(Mp,) = Y E(M, [Ny = N). (6)

Integrating over the N jumps times, each term of the series (6) can be written as

E (M}, IN:=N) = <WN(t) H ANA> , (7)
N

Acgl
where (), means average over the trajectories with N jumps generated by extract-
ing with uniform probability one of the active links available at the configurations
g, N1, ..., y_1, and Wy (t), named weight, is defined as

t i i
WN(t):eN/O dsl/ dsz.../ dsyeVosi—Vilsamsn) = =V (t=sn) (g
S1 SN -1

3.2. FEwvaluation of the weights

According to their definition, the weights satisfy a recursive differential equation
which is easily solved in terms of the Laplace transform Wy (z),?

Wi (z) = €V H m (9)

Vey
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While this expression shows that Wy (t) depends on the multiplicities Ny for any
value of N, the explicit inversion of the Laplace transform can be done analytically
only for N large. However, this is the limit we are interested in since the weights
Wh (t) have a maximum at some N which increases by increasing ¢. By using a
complex saddle-point method which is asymptotically exact for N — oo, we get °

em(]t—z vey Nv logl(zo+V) /€]
&Ny
\/277 ZVEV/ ot V)2

where z¢ is the solution of the equation

> AL, (11)

yoy TtV

Wi (t) = (10)

3.3. Canonical averages via a central limit theorem

To evaluate the canonical averages it is useful to introduce the frequencies, vy, =
Ny /N and v, = Ny /N, which for N large become continuously distributed in the
range [0, 1] with the constraints

ZVV:ZVA:' (12)

Note that for NV large we will not distinguish the different normalizations, N + 1
and N, of Ny and Ny, respectively. Equation (7) can be then rewritten as

xl,t+N(u u)
Wi (t) [T A /di/PN : (13)
Aest \/27TN diver x€ e

(zo+V)2

where v and u are vectors with m = my + m, components defined as v7 =

(coovyeensevy.)and ul = (.. log[(ajg—l—V)/]...;...logA...),respectively.
For later use, we also define v’ = (...(x0+V) copen 00 )y and wl = (L (a +
V)=2...;...0...). Note that u, v and w depend on v through zo = x¢(r) and
V= —0g U, W= —0g V.

The probability density Py (v) is given by the fraction of trajectories branching
from the initial configuration ng and having after N jumps multiplicities Ny =
vy N and Ny = v, N. For N large, it can be approximated in the following way.
We rewrite the multiplicities as Ny = Zg:o xy(nk) and Ng = 22[:1 Xa(ng_1),
where x,(n) = 1 if V(n) = V and xy(n) = 0 otherwise, and similarly for x 4.
Since the configurations ny form a Markov chain with finite state space, a central
limit theorem applies to each rescaled sum Ny / VN or N A/ VNS Therefore, these
rescaled variables are completely described in terms of the mean values v N and
of the covariance matrix 32, which are easily measured by sampling over trajectories
with a large number of jumps. Due to the constraints (12), it is easy to see that

dmy =Y Ta=1, (14)

vey Acot
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Y Sav =Y Vva=D Yaa= 3 Saa=0, acdUYV. (15)

Vey Vey Acg Acgl

In the next two subsections we will describe two different choices for the density
Pn(v). The two densities differ only for the fact that the first one satisfies the
constraints (12) in mean, while the other one identically. We will show that, at least
in the limit of large N, the results obtained by assuming the two densities coincide.

3.3.1. Purely Gausstan density

In this case, we assume a purely Gaussian probability density

Nm detEfl _N Y o_D(v-T
PN(V),’/WQ > (27 (PP (16)

Due to Eq. (15), we have that det3 = 0, i.e. X is singular and the density (16)
ill defined. Nevertheless, this singularity is climinable and the calculation with this
density has the advantage to be rather simple. We rewrite Eq. (13) as

<WN(t) 11 ANA> = / dveN*WIR(v), (17)
N

Aed

where
p(v) = :CO% + (v,u) — % (271(1/ -v), (v - ﬁ)) (18)

and R(v) is a smooth function. The parametric dependence of ¢ and R on ¢t and N
is omitted for brevity. We will perform the integral (17) with a saddle-point method
by solving the m-dimensional stationary problem for ¢(v). The derivatives of ¢ with
respect to the V and A components of v read

{E),,V (V) = %0y, To fl(u,v) Ay, o+ uy — (E (v — F))v
Oy dv)=u, — (E’ (v— ﬁ))A.
On the other hand, by using the definition of z¢(r), Eq. (11), it is easy to see that
(v,v} =t/N, so that ¢(v) is stationary for ¥ = v*P solution of the equation

VP = v 4 Su(vP). (19)
Note that, due to Egs. (14) and (15), we have Y,y 7V = > 4c,y V4 = 1 and only

m — 2 equations in (19) are independent. The result of the saddle-point integration
then is

Ny _ eN(i)(VSI’) 5P (27r)m
<WN(t) H A >N R )\/Nm|det V2¢(vr)|’ 20)

Aco

where

o) = vy + @)+ 5 () (21)

v=psP
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and V2¢(r*P) = =371 — A(v°P), A being the m x m matrix with elements
Valps
Anp = ; Berud. 22
2= wow) a, B (22)
By writing det V2¢(r*P) = —det X 1det(l + X A) and observing that det X1

cancels out, Eq. (26) becomes

Wi (t A —
Aot L Vet A \/2rNe (v, w)

(23)

v=v*P

Note that for V' = 0 the matrix A is uniform and det(1 + 3 A) = 1. In general,
det(3XA) = 0 so that det(1 4+ 32 A) >~ 1 up to terms of second order in A.

3.3.2. Density with constraints identically satisfied

In the previous subsection we have evaluated the canonical averages by exploiting
a central limit theorem for the rescaled variables Ny-/v/N and N4/v/N. However,
due to the constraints (12), the joint probability for these m rescaled sums is not
purely Gaussian. Given an arbitrary set of my — 1 V-like components and m — 1
A-like components, we can assume a joint probability density as the product of a
Gaussian density for this set of m — 2 variables and two delta functions which take
into account the constraints (12}, i.e.

PN(V)fN(9)5(ZVV1> 5<Z”Al>’ (24)

vey Acg

where F () is the normal density defined in terms of the vector & having the m —2
chosen components of v

X Nm=2|det B _n(s-1p_5) (o5
Fa(o) = || g — ¢ HE ), (25)

In the following, with the symbol " over a vector or a matrix we will indicate the
projection onto the chosen m — 2 dimensional index space.
By using the density (24}, we rewrite Eq. (13) as

<WN(t) I1 ANA> = / AN R(i), (26)
Aest N

where R is a smooth function of & and, if V. and A, are the two components chosen
to reduce to m — 2 the dimension of the index space,

. £ X X X
¢() = Zowr + (P, @(Zo)) + | 1~ Dot fup @)+ (1= D P4 fua
VEN\V. A€t \A,

(2—1(19 _ D), (& _v)). (27)

&>
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Note that &9 = Zo(») is the solution of Eq. (11) where the constraints (12) have
been explicited. The function ¢ can be rewritten as

$(i) = @0% n (:9, 5&) - % (2—1(19 _B), (7 — ﬁ)) Fuy dug, (29

where du = u—ug and uf = (uy, ... uy ;u, ... u, ). By evaluating the derivatives

of ¢ with respect to the components of &, we get
Do, (D) = L0y &g — (19,53;) s, Fo + duy, — (ﬁ:—l(p - ﬁ))v — vy, Dp, o
0, 9(0) = duy — (2710 -D))

where dv = — 9z ,0u = — (93,4 — Jz,u0). Observing that (19,(5};) + vy, =t/N, we
can rewrite these derivatives as
By, S(D) = duy, — (2*1(19 - ﬁ))

By, S(D) = bu,y — (ﬁ:—l(a - ﬁ)) '

A
Therefore, the saddle-point equation is

P =T + Bou(DP). (29)
Finally, we calculate ¢(2P). By using Egs. (28) and (29) and the identities (ﬁ, (5¢u) +
uy, tuy = (P,u) and (25 (5Au> = (Xu, u), we get

S .t S
0Py = |Fo—= + (1/—1— Eéu,éu) - = (Eéu 5u> +auy, +uy
N 2 * * D=psp
ot . 1 . .
= |To— + (V,U(IQ)) + = (Eu(xo)u(xo)) . (30)
N 2 D=pD5P
Due to the identity (25&, 53;) = (Xu, v), we have &¢ (D) = ("), where x4 (v°P)
is the value obtained with the purely Gaussian density. Therefore, Eq. (30) shows
that, at least at the saddle-point level, the chosen probability density provides the
same results obtained in the previous subsection.

3.4. Resumming the canonical series
In order to evaluate the expectation E (M, ) we need to resum the series (6). For
t — o0, the sum can be substituted with the integral

(BN

1
dN ;
V|det(1 + X A)| V2 Ne2(Usp w(xo(VP)))

E (M) =

(31)

where

(N) = zo(@®)t + N [(EU(ﬂfo(VSp))) + %(EU(%(VS")),U(fco('/sp))) - (32)
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The integrand in (31) is exponentially peaked at N = NP where NP satisfies
ONY(N®P) = 0. For a generic N we have

ING(N) {{t CN[7v) + (Su, 0)]} oo + (7,u) + % (Su,u)

v=pspP

oty |

y=v"pP
where, due to Egs. (11) and (19), we noticed that the term {t — N [(7,v) + (Zu,v)]}
vanishes for v = v*P. The stationarity condition for 1(N) is, therefore,

1

{(U, u)+ 5 (Eu,U)} =0. (33)

v=v5P N=N*pP

Equation (33) is a time independent equation which determines x| p—ps N—Nep 88
a function of ¥ and 3. According to Eq. (11), this means that the quantity NP
increases linearly with ¢ so that x0|y:,ﬁp’ N—nsp becomes independent of time in the
limit ¢ — oc. By evaluating the second derivative of ¥ (V)

RAP(N) = =P, v(2o(VP)))Onzo (VP), (34)
where

1 (v 0 (w0 (7))
)= R o wmem) - @) Sewmen)” )

and approximating ¢(N) =~ ¢(NP) + 1% (N*P)(N — N*)? in the exponent and
N ~ N*P elsewhere, the integral (31) reduces to a Gaussian one which gives

E)Nxo (VSp

1+tr(ZA) et

E(M*tm)) - |det(1 + 2 A)| e(v,v)

(36)

pv=vsP N=Nsp
Note that, since the peak of the Gaussian at N = N3 moves to infinity linearly
with ¢ while its width increases only as v/, the result (36) is asymptotically exact
for ¢t — oo.

According to Eq. (2), the result (36) shows that the ground-state energy of the
hard-core boson system is

EOB = — xoll/:usp’N:Nsp . (37)

Equation (33) is, therefore, the equation for the ground-state energy. It defines Eqp
in terms of ¥ and ¥ and explicitly reads

B Z leog< EOB+V) Z 7, log (A

vey Acor
Eyp+V —Eyg +V’
LS (VY g(f
2 vy

-y ¥ zVA10g< Eor +V> log (A)

vey Acol
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% ST Y Saalog (A)log (4)). (38)

A€ol A€ot

In the case V =0, the ground-state energy E(()?B) can be solved analytically

0 _ = . 1 ’
Eyp = —€exp Z U4 log(A) + 3 Z Z 4.4 log(A)log(A')| . (39)
Aed Acot Alegd

4. Conclusions

By using saddle-point techniques and a central limit theorem, we have exploited an
exact probabilistic representation of the quantum dynamics in a lattice to derive
analytical approximations for the matrix elements of the evolution operator of a
system of hard-core bosons in the limit of long times. The approach yields a simple
scalar equation for the ground-state energy. This equation depends on the values of
the generalized potentials V and of the kinetic quantities A, and on the statistical
moments 7 and X of their asymptotic multiplicities Ny and N4. In turn, these
moments depend only on the structure of the system Hamiltonian, not on the values
of the Hamiltonian parameters. This implies that the statistical moments must be
measured una tantum for a given Hamiltonian structure and, once v and X are
known, our approach provides the ground-state energy analytically as a function of
the Hamiltonian parameters.

The ground state energies obtained with the present formula reveal a small sys-
tematic error when compared with exact results.® In fact, a more accurate analysis
which takes into account the large deviations neglected by the central limit theo-
rem shows that the present approach corresponds to a second order truncation of
an exact cumulant expansion for the ground-state energy.”

Similar results hold in the case of Hamiltonians with arbitrary kinetic operators.
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