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this dynamics. In [4] an ensemble over the wave functions was introduced, 1 hereafter
named Schrödinger-Gibbs (SG) ensemble, with formal measure

dµSG(ψ) = Z−1
SGe−β 〈ψ,Hψ〉δ (1−〈ψ,ψ〉)∏dψ, (1)

where 〈·, ·〉 is the usual scalar product in the Hilbert space. A simple calculation shows
that in terms of (1) the canonical ensemble can be written

ρρρβ =
∫
|ψ〉〈ψ|

(
∑
k

δ (ψ−ψk)

)
dµSG(ψ), (2)

where ψk are the unnormalized eigenstates of H, assumed to have a discrete spectrum.
In [4] the motivation was to calculate the distribution of quantum expectation values of

the operators q and p induced by the SG ensemble. A formula for such a distribution was
found at low temperature and the wave functions giving the largest contributions were
characterized in terms of an appropriate Legendre transform of the ground state energy
of the system in an external field. These wave functions in the case of the harmonic
oscillator are the usual coherent states and, by analogy, we shall adopt this name also in
the general case.

The distribution for the expectation values 〈q〉 and 〈p〉 is different from that obtained
with the usual quantum canonical ensemble. For example, in the latter case for reflection
invariant systems 〈q〉 does not fluctuate at all, a rather unphysical result.

In this paper, after recalling the main steps in [4], we analyze in detail the case of
a one-dimensional double well, which is an ubiquitous system in physics and deeply
non classical at low energies. The result is a Gibbsian distribution of the expectation
values 〈q〉 and 〈p〉 of the form P(〈q〉,〈p〉) ' exp{−β [〈p〉2/(2m) +Veff(〈q〉)]}, where
Veff(〈q〉) is an effective potential with a single minimum. This minimum is at zero for the
symmetric double well or near the point where the ground state function is concentrated
in the asymmetric case. This result may be of interest in connection with pyramidal
molecules, like ammonia or other molecules potentially chiral. For these systems which
are adequately described, as far as the inversion degrees of freedom are concerned, by
a symmetric double well [6, 7], fluctuations of 〈q〉 correspond to fluctuations of the
electric dipole moment and could be in principle observable providing thereby a test of
the statistical assumption (1).

LOW TEMPERATURE LIMIT

We discuss first the harmonic oscillator defined by the Hamiltonian H = p2/2m +
mω2q2/2. For this system the Heisenberg equations of motion of the canonical operators
q and p, namely q̇ = p/m and ṗ = −mω2q, bring to the c-number equations for the

1 We became aware recently that the same ensemble was introduced also in [5]. While some general
motivations of [4] and [5] are essentially the same, [4] dealt with a specific problem which is further
analysed in the present paper.
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expectations

˙〈q〉 = 〈p〉/m (3)
˙〈p〉 = −mω2〈q〉. (4)

In the following, we will use the notation 〈q〉 = q and 〈p〉 = p. The Hamiltonian
flow (3-4) admits the canonical invariant measure Z−1 exp[−βH(q, p)]dqd p, where
H(q, p) = p2/2m + mω2q2/2 and β is a constant. We want to show that this result can
be obtained from the formal SG-measure (1). The probability density of the expectation
values q and p is given by

P(q, p) =
∫

δ (q−〈ψ,qψ〉)δ (p−〈ψ,pψ〉)dµSG(ψ). (5)

The Fourier transform of the above expression can be evaluated exactly and transforming
back to the variables q and p one finds

P(q, p) =
βω
2π

exp[−β (p2/2m+mω2q2/2)]. (6)

It is interesting to determine which kind of wave functions contribute mostly to P(q, p)
in the low temperature regime β → ∞. To this purpose we have to minimize 〈ψ,Hψ〉
with the three constraints 〈ψ,ψ〉 = 1, 〈ψ,qψ〉 = q, and 〈ψ,pψ〉 = p. Once more the
calculation can be performed exactly and one finds that the minimizing wave functions
are

ψq,p(x) =
(mω

π h̄

)1/4
exp

[
i
h̄

px− 1
2

mω
h̄

(x−q)2
]
, (7)

i.e. the harmonic oscillator coherent states.
We wish now to generalize the above results to systems described by Hamiltonians

H = p2/2m+V (q) with non quadratic potentials V (q). In that case, the density P(q, p)
cannot be evaluated exactly, however, we can estimate it for low temperatures. In fact,
for β large from steepest descent we have

P(q, p) ' exp[−β 〈ψq,p,Hψq,p〉], (8)

where ' means asymptotic logarithmic equality and ψq,p is a normalized state
which minimizes the expectation of H with the constraints 〈ψq,p,qψq,p〉 = q and
〈ψq,p,pψq,p〉= p. First we get rid of the latter constraint by putting

ψq,p(x) = exp(ipx/h̄)φq(x) (9)

with 〈φq,φq〉= 1. The state φq is determined as the ground state φ 0
λ (q) of the eigenvalue

problem

(H+λq)φλ = Eλ φλ , (10)

solved self-consistently with the Lagrange multiplier λ = λ (q) specified by the condi-
tion

〈φ 0
λ ,qφ 0

λ 〉= q. (11)

202

Downloaded 01 Nov 2006 to 129.170.26.37. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



If E0
λ (q) is the eigenvalue associated to the ground state φ 0

λ (q), we have

〈ψq,p,Hψq,p〉=
p2

2m
+ 〈φq,Hφq〉=

p2

2m
+E0

λ (q)−λ (q)q. (12)

In conclusion, we obtain

P(q, p) ' exp
[−β

(
p2/2m+Veff(q)

)]
, (13)

where the effective potential Veff(q) = E0
λ (q)− λ (q)q is evaluated by solving the non-

linear eigenvalue problem (10-11). In analogy to the harmonic oscillator case, we call
ψq,p(x) = exp(ipx/h̄)φ 0

λ (q)(x) coherent states.
On the other hand, in the canonical ensemble for the probability density of the

expectations of q and p we immediately obtain

P(q, p) = Z−1 ∑
k

e−βEkδ (q−qk)δ (p), (14)

where Z = ∑k e−βEk and qk = 〈ϕk,qϕk〉. Here, ϕk are the normalized eigenstates of
H with eigenvalues Ek. In particular, for system invariant under reflection we have
P(q, p) = δ (q)δ (p).

DOUBLE WELL SYSTEMS

We consider a particle in a symmetric double well potential of the form

V (q) = W0(q2− x2
0)

2 (15)

and solve numerically the nonlinear eigenvalue problem (10-11) to obtain the effec-
tive potential Veff(q). This task is accomplished efficiently by the selective relaxation
algorithm [8]. The results are reported in Fig. 1. We expect that in this problem one
can approximate the original Hamiltonian H with a two-state Hamiltonian restricted to
the lowest two eigenfunctions of H corresponding to the splitting of the ground state
induced by tunneling. For this reason, we report in Fig. 1 both the exact numerical cal-
culations and the two-state approximation. In the latter case, the effective potential can
be evaluated analytically and one finds

Veff(q) =
E2 +E1

2
− E2−E1

2

√
1−

(q
d

)2
, (16)

where
d = (ϕ1,qϕ2) (17)

and ϕ1 and ϕ2 are the lowest eigenstates of H with eigenvalues E1 and E2, respectively.
Figure 1 shows that the two-state approximation is rather good and, in fact, it becomes
more and more accurate in the semiclassical limit, for example by increasing the value
of the mass m.
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FIGURE 1. Rescaled effective potential (Veff(q)− (E2 + E1)/2)/((E2 −E1)/2) as a function of the
rescaled expectation q/d evaluated numerically for the double well potential (15) with different values
of the mass m. The solid thick line represents the two-state approximation (16). For the other parameters
we set, in all cases, h̄ = 1, x0 = 1.5, and W0 = 1. The values of E1, E2, and d used in the rescaling have
been evaluated numerically and are: E1 = 3.415753, E2 = 4.877688, and d = 1.158335 for m = 0.2,
E1 = 2.582908, E2 = 2.865508, and d = 1.268715 for m = 0.5, E1 = 1.970442, E2 = 2.012262, and
d = 1.353385 for m = 1, E1 = 1.64383345, E2 = 1.65329839, and d = 1.38670188 for m = 1.5.
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FIGURE 2. Rescaled fluctuation ∆q/d as a function of the rescaled temperature 2/(β (E2 − E1))
evaluated numerically for the double well potential (15) with different values of the mass m as in Fig. 1.
The solid thick line is the approximated result obtained from Veff given by Eq. (16).
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In the two-state approximation the coherent states ψq,p are given by

ψq,p(x) = eipx/h̄ [c1(q)ϕ1(x)+ c2(q)ϕ2(x)] , (18)

where

c1(q) =
1√
2

√
1−q/d c2(q) =

1√
2

√
1+q/d. (19)

In the semiclassical limit the difference E2−E1 tends to zero exponentially and the
effective potential becomes flat between ±x0. In this limit d → x0. This reflects the fact
that the two levels become equiprobable for low temperatures so that any superposition
of the corresponding states has the same probability. In the same limit, the dispersion
∆q = (q2−q2)1/2 tends to x0/

√
3 as it is apparent in Fig. 2.
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