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Abstract. By using a recently proposed probabilistic approach, we determine
the exact ground state of a class of matrix Hamiltonian models characterized
by the fact that in the thermodynamic limit the multiplicities of the potential
values assumed by the system during its evolution are distributed according
to a multinomial probability density. The class includes (i) the uniformly
fully connected models, namely a collection of states all connected with equal
hopping coefficients and in the presence of a potential operator with arbitrary
levels and degeneracies, and (ii) the random potential systems, in which the
hopping operator is generic and arbitrary potential levels are assigned randomly
to the states with arbitrary probabilities. For this class of models we find a
universal thermodynamic limit characterized only by the levels of the potential,
rescaled by the ground-state energy of the system for zero potential, and by the
corresponding degeneracies (probabilities). If the degeneracy (probability) of the
lowest potential level tends to zero, the ground state of the system undergoes a
quantum phase transition between a normal phase and a frozen phase with zero
hopping energy. In the frozen phase the ground state condenses into the subspace
spanned by the states of the system associated with the lowest potential level.
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1. Introduction

A multitude of evolution problems can be cast in the form of linear flows, ∂tψ = Ĥψ,
where Ĥ is a matrix operator not necessarily Hamiltonian. For an initial value ψ(0), the
solution ψ(t) of these systems of linear differential equations requires, as is well known,
the evaluation of the exponential of the operator Ĥ. The solution, with a real or an
imaginary time t, also admits an exact probabilistic representation in terms of a proper
collection of independent Poisson processes [1]–[3].

Recently, we have exploited this probabilistic representation to derive exact finite-
time solutions of a Hamiltonian flow by a Monte Carlo algorithm [4], as well as analytical
results in the long-time limit [5, 6]. In the latter approach, the Hamiltonian operator
is decomposed, in a chosen representation, into diagonal and off-diagonal parts, the
potential and the hopping terms, respectively. On applying a central limit theorem to
the rescaled multiplicities of the values assumed by the potential and hopping terms in
the configurations visited by the system during its evolution, we have obtained a simple
scalar equation whose solution provides an approximated semi-analytical expression for
the lowest eigenvalue of Ĥ, in the following often called ground-state energy.

The scalar equation derived in [5] contains only the first two statistical moments of the
potential and hopping multiplicities and suggests that it is a second-order truncation of
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an exact cumulant expansion. We have obtained this exact cumulant expansion by a large
deviation analysis of the relevant probability density [7]. In principle, were all the cumu-
lants known, we would be in possession of a scalar equation whose straightforward solution
is the exact lowest eigenvalue of Ĥ . In general, however, only a finite number of cumulants
is available so that we have an approximated truncated equation whose level of accuracy
depends on the system considered. In some cases, the convergence as a function of the
number of cumulants is rather fast and the use of the first few cumulants provides results
indistinguishable from those obtained by exact numerical simulations; see [7] for details.

In this paper we revisit the probabilistic approach [5]–[7] from a different point of
view. We suppose that the asymptotic probability density of the potential and hopping
multiplicities is known and derive an exact equation for the ground state in a closed form,
i.e. not as a series expansion in cumulants. This formal result is then made concrete by
observing that there exists a class of systems whose associated probability density is a
multinomial. In fact, in the case of uniformly fully connected models and for random
potential systems we obtain a very simple equation which relates the lowest eigenvalue
of Ĥ , E0, to that of the Hamiltonian operator with zero potential, E(0)

0 . This equation
becomes exact in the limit M → ∞, where M is the size of the matrix representing Ĥ,
provided that in the same limit E(0)

0 diverges, namely a thermodynamic limit.
By reason of the analytical expression found for E0(M) as a function of E(0)

0 (M),
supposed known, the thermodynamic limit of the ground state of the above systems can
be exactly characterized. We realize that, in this limit, a singularity may show up in the
solution for E0 and a quantum phase transition takes place. Such a behaviour is obtained
when the degeneracy, or probability, the name depends on the kind of system we consider,
of the lowest potential level vanishes. We also provide the equation of the critical surface
separating the two phases and show that the hopping energy represents an effective order
parameter of the transition. For both the uniformly fully connected models and the
random potential systems, the thermodynamic features of the ground state, including the
existence of a quantum phase transition, are universal, in the sense that these depend,
up to a rescaling by |E(0)

0 |, only on the levels and on the corresponding degeneracies
(probabilities) of the potential. In particular, for the random potential systems we obtain a
universal behaviour independently of the nature of the hopping operator. This conclusion
compares rather well with the results of exact numerical solutions for finite-size systems
of quantum particles in one- and two-dimensional lattices. In fact, independently of the
range chosen for the hopping operator, long or first neighbour, and independently of the
nature of the particles, hard-core bosons or fermions, in all cases we have a clear tendency
toward the universal thermodynamic behaviour predicted by our formula.

The paper is organized as follows. In section 2 we introduce the uniformly fully
connected models and the systems with random potential we deal with in the rest of
the paper. In section 3 we summarize our main result, namely a scalar equation whose
solution provides the exact ground-state energy of the Hamiltonian operator for the above
models in the limit M → ∞. The proof of this result is given in section 4. In section 4.1
we revisit the probabilistic approach in the case in which the asymptotic probability
density of the potential and hopping multiplicities is known. The lowest eigenvalue of
Ĥ is obtained, together with the asymptotic frequencies associated with the potential
and hopping multiplicities, as the solution of a general system of equations. This result
is specialized to the case of uniformly fully connected models and to random potential
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systems in sections 4.2 and 4.3, respectively. In section 5 we discuss the thermodynamic
limit and show its universal behaviour and the appearing of a quantum phase transition
when the degeneracy (probability) of the lowest potential level vanishes. Comparisons with
exact numerical results obtained for finite-size lattice systems are provided in section 6 in
the case of random potentials with discrete spectrum and in section 7 for a potential with
continuous spectrum. The general features and results of our approach are summarized
in section 8.

2. Uniformly fully connected models and random potential systems

Let us consider a finite set of M states labelled by a vector index n. We will indicate this
set as F, i.e. F = {n} and |F| = M . The nature of the vector n depends on the context;
in the case of an Hamiltonian particle model, for example, n represents an element of a
Fock space. Let us also consider a state function V : F → R with V (n) = Vn. We look for
the lowest eigenvalue, E0, of the M × M matrix H whose off-diagonal matrix elements
are all equal to −η, with η > 0 arbitrary, whereas the diagonal terms are given by the
values Vn, with n ∈ F. In equations,

H = K + V , (1)

where the elements of the hopping and potential matrices, K and V , are given by

Kn,n′ = −η(1 − δn,n′), (2)

Vn,n′ = Vnδn,n′ . (3)

In the following, we will indicate with V the set of all the possible different values of Vn

with n ∈ F, the levels of the potential for brevity, and with pV the degeneracy of level V ,

pV =
1

M

∑

n

δV,Vn . (4)

Note that |V | ≤ M and
∑

V ∈V pV = 1.

The matrix H is the F representation of a Hamiltonian operator Ĥ describing a
fully connected model, or complete graph. This can be understood as follows. In
general, a linear operator Ĥ defines the time evolution of the state function ψ(n; t) of
the system according to the equation ∂tψ(n; t) = Ĥψ(n; t) starting from some given
initial condition ψ(n; 0). We can always split Ĥ into two terms, K̂ and V̂ , such that in
the F representation the corresponding matrices have, respectively, only off-diagonal and
diagonal non-vanishing elements. As is clear from the probabilistic representation of the
evolution equation, see [3], the off-diagonal terms of H are the rates for the transitions
n → n′ between two different states, whereas the diagonal terms represent weights
associated with the permanence in the states of the system. Therefore, equations (1)–(3)
describe a system in which all the possible M(M − 1) transitions n → n′, with n '= n′,
take place with the same rate, namely a uniformly fully connected model.

The other class of models which we will consider in this paper are defined in the
following way. Given an arbitrary hopping matrix with elements Kn,n′, the values of the
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potential matrix Vn are assigned to the states n randomly with the probability

P (Vn = V ) =

{
pV , V ∈ V ,

0, V /∈ V ,
(5)

where, now, V is the set of the chosen levels of the potential V and {pV } the set of the
corresponding given normalized probabilities,∑

V ∈V

pV = 1. (6)

The choice of V and {pV } is arbitrary. The M values Vn associated to the states n are
independent identically distributed (iid) random variables. Once the assignment of these
M values is performed, they are kept fixed; in other words, we are considering a so-called
quenched system.

The two classes of models described above are, in a sense, complementary to each
other. In fact, for the former we have the particular hopping operator (2), which allows
uniformly random connections among all the states, and an arbitrary potential operator,
whereas for the latter we have an arbitrary hopping operator and random potential levels.

3. Main result

Consider first the uniformly fully connected models. For V ≡ 0, the lowest eigenvalue
of (1), which we call E(0)

0 , is trivially related to the lowest eigenvalue of the unit matrix
and is given by

E(0)
0 = −η(M − 1). (7)

It coincides, up to the factor −η, with the number of states connected to any state
of the system. Similarly, for V constant, let say Vn = V0 for any n ∈ F, we have
E0 = −η(M − 1) + V0. Note that, for the particular value V0 = −η, we get the obvious
result E0 = −ηM .

In the case of an arbitrary potential operator V̂ , an expression for E0 is not known.
By using the probabilistic approach developed in [5]–[7], in this paper we will show that,
in the limit M → ∞, E0 is the unique solution of the following equation

∑

V ∈V

pV

−E0 + V
=

1

η(M − 1)
, E0 ≤ Vmin, (8)

or, in terms of the non-interacting energy E(0)
0 ,

∑

V ∈V

pV

E0 − V
=

1

E(0)
0

, E0 ≤ Vmin. (9)

It is easy to check that equation (9) with E0 as an unknown has always solution and that
the condition E0 ≤ Vmin, where Vmin is the smallest element of V , ensures the uniqueness
of this solution.

Similarly, we will show that for M → ∞ the ground state of the random potential
systems defined by equations (5) and (6) is also given by equation (9), provided that in

the same limit E(0)
0 diverges. For these systems, the non-interacting ground-state energy

has no more a trivial form like in (7), as it is the lowest eigenvalue of an arbitrary hopping
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matrix K. In this case, E(0)
0 must be determined as a separated problem, e.g. by using

Monte Carlo simulations in the absence of sign problem, or by Fourier transformation if
K represents the hopping operator of a system of independent particles.

It is worth to stress that even if, in general, E0 is given only implicitly by equation (9),
this is a simple one-dimensional equation which can be straightforwardly solved by an
iterative method.

As we will show in details in section 5, in the thermodynamic limit the solution of
equation (9) may develop a singularity in its derivatives with respect to the potential
levels V , signalling a two-state quantum phase transition with a frozen phase having
zero hopping energy. These results hold for potentials with both discrete and continuous
spectrum.

4. Proof of equation (9)

The derivation of equation (9) follows from an analytical probabilistic approach we have
recently developed to analyse the ground state of an arbitrary Hamiltonian operator Ĥ
represented by a finite matrix. In section 4.1 we review the basic definitions and results
of the above approach referring the reader to [7] for details. Although in [7] we have
explicitly considered lattice systems, i.e. the states n are lattice configurations with n
indicating the occupation numbers of the sites, nothing changes if one looks at the states
n as arbitrary abstract states. Moreover, unlike [7], we will assume that the probability
density which is the core of our approach is known. As a result, we will find a formal
equation for E0 in a closed form.

In general, given an arbitrary Hamiltonian matrix H , each row n of the corresponding
hopping matrix K has a different number of non-zero elements, let say A(n). We call
A(n) the number of active links of the state n. When the number of active links of each
state are all equal to the maximum value allowed, namely A(n) = M − 1, we recover a
fully connected model. First, we will consider the analytical probabilistic approach in the
general case. Applications to the uniformly fully connected models and to the random
potential systems will be discussed in sections 4.2 and 4.3, respectively.

4.1. Analytical probabilistic approach

Given the Hamiltonian operator Ĥ and separated its corresponding F representation
matrix H into the hopping and potential matrices, K and V , respectively, we define
a virtual dynamics as follows. Let us parametrize the matrix K as

Kn,n′ = λn,n′ ηn,n′, (10)

such that |λn,n′| can be either 0 or 1 and ηn,n′ > 0. In graph theory the matrix with
elements |λn,n′| is known as the adjacency matrix: in fact, it establishes whether two
given states n, n′ are first neighbours or not. We consider the Markov chain defined by
the transition matrix P with elements

Pn,n′ =
|λn,n′|
A(n)

, (11)

where
A(n) =

∑

n′

|λn,n′|. (12)

doi:10.1088/1742-5468/2006/11/P11012 6
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Starting from a given initial configuration n0, we draw a new configuration n1 with
probability Pn0,n1 . By iterating this procedure for N steps we construct a path, or
trajectory, in the space Fn0, n1, . . . , nN . For simplicity, in this paper we consider Ĥ
to be a Hamiltonian operator, i.e. H is a complex Hermitian or real symmetric matrix.
The approach can be generalized to non-Hamiltonian operators.

We will show that the information about the ground state of H is contained in the
ensemble of the infinitely long paths. Along each finite path with N steps we have the
sequences of data A0, A1, . . . , AN , V0, V1, . . . , VN , λ1, . . . ,λN , and η1, . . . , ηN , where

Ak = A(nk), k = 0, . . . , N, (13)

Vk = V (nk), k = 0, . . . , N, (14)

λk = λnk−1,nk
, k = 1, . . . , N, (15)

ηk = ηnk−1,nk
, k = 1, . . . , N. (16)

For later use we also define the sequence of values T0, T1, . . . , TN−1, where

Tk = Akηk+1/ε, k = 0, . . . , N − 1, (17)

ε being an arbitrary reference constant, which has the same dimensions of the η’s, typically
an energy. Note that by construction |λk| = 1. Let us indicate with V , T and L the
sets of all the possible different values that can be taken by the functions V , T and λ,
respectively. Let mV , mT and mL be the cardinalities of these sets. In [7] we have
shown that the ground-state energy of H can be expressed in terms, not of the detailed
sequences of the functions V , T and λ, but just of the ensemble of their multiplicities,
i.e. the number of times, NV , NT and Nλ, a given value for V , T and λ has, respectively,
occurred along each path, i.e.

NV =
N∑

k=0

δV,Vk
, (18)

NT =
N−1∑

k=0

δT,Tk
, (19)

Nλ =
N−1∑

k=0

δλ,λk
. (20)

Note that these multiplicities are normalized to the number of steps N
∑

V ∈V

NV = N + 1,
∑

T∈T

NT =
∑

λ∈L

Nλ = N. (21)

More precisely, in [7] we have proven that the matrix elements of the evolution operator
at time t have the following probabilistic representation

∑

n

〈n|e−Ĥt|n0〉 =
∞∑

N=0

〈
WN({NV }; t)

∏

T∈T

T NT
∏

λ∈L

λNλ

〉

N

, (22)

doi:10.1088/1742-5468/2006/11/P11012 7
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where 〈.〉 means an average over the paths of length N generated by the Markov chain (11)
starting from the initial configuration n0. These averages over paths of fixed length are
named canonical. The path functional weights WN that appear in equation (22) are
defined by the system

WN ({NV }; t) =
exp

(
x0t −

∑
V ∈V NV log[(x0 + V )/ε]

)
√

2π
∑

V ∈V (ε2NV /(x0 + V )2)
, (23a)

∑

V ∈V

NV

x0 + V
= t, x0 > −Vmin. (23b)

For brevity, in the following we will drop the dependence of the weights on the potential
multiplicities.

Once we have access to the canonical averages and the series in the rhs of equation (22)
is summed, we obtain the lowest eigenvalue of H as

E0 = lim
t→∞

−∂t log
∑

n

〈n|e−Ĥt|n0〉, (24)

with n0 arbitrary provided that it has a non-zero projection onto the ground state |E0〉.
To evaluate the canonical averages it is useful to introduce the frequencies νV =

NV /N , V ∈ V , νT = NT /N , T ∈ T , and νλ = Nλ/N , λ ∈ L , which for N large become
continuously distributed in the range [0, 1] with the constraints

∑

V ∈V

νV =
∑

T∈T

νT =
∑

λ∈L

νλ = 1. (25)

Note that, for N large, we do not distinguish the different normalizations, N + 1 for
NV and N for NT and Nλ, respectively. When possible, for the multiplicities and the
frequencies we will use a compact notation in terms of the vectors µ and ν, which have
m = mV + mT + mL components indicated by a Greek index α ∈ H = V ∪T ∪L and
are defined as νT = (. . . νV . . . ; . . . νT . . . ; . . . νλ . . .). We have

µ = Nν. (26)

For later use, we also define uT = (. . . − log[(x0 + V )/ε] . . . ; . . . log T . . . ; . . . log λ . . .),
vT = (. . . (x0+V )−1 . . . ; . . . 0 . . . ; . . . 0 . . .) and wT = (. . . (x0+V )−2 . . . ; . . . 0 . . . ; . . . 0 . . .).
Note that the vectors u, v and w depend on ν through x0 = x0(ν) and v = −∂x0u,
w = −∂x0v. Finally, we will take advantage of a scalar product notation. For instance,
we rewrite equation (23b), which determines x0, as (ν, v) = t/N .

By using the above compact notation, we express the Nth term of the series in the
rhs of equation (22) in the following explicit form

〈
WN (t)

∏

T∈T

T NT
∏

λ∈L

λNλ

〉

N

=
∑

µ

PN (µ)
ex0t+(µ,u)

√
2πε2(µ, w)

, (27)

where the probability PN (µ) is given by the fraction of trajectories branching from the
initial configuration n0 and having, after N steps, multiplicities µ.

In the limit of long times t the paths most contributing to the evolution of the system
are those with N ∼ t large; see [7] for details. In this limit, therefore, we can change from

doi:10.1088/1742-5468/2006/11/P11012 8
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discrete paths with multiplicity µ to continuous paths with frequency ν
〈
WN(t)

∏

T∈T

T NT
∏

λ∈L

λNλ

〉

N

=

∫
d(Nν)PN(Nν)

ex0t+N(ν,u)

√
2πNε2(ν, w)

=

∫
d(Nν)

eN[x0t/N+(ν,u)+N−1 logPN (Nν)]
√

2πNε2(ν, w)
. (28)

Here, we assume that the constraints (25) are automatically taken into account by the
probability PN(Nν). Later, we will find more convenient to relax this feature of PN(Nν)
and explicitly introduce proper Lagrange multipliers. For t and N large, with N ∼ t, we
can evaluate the integrals in equation (28) by steepest descent

〈
WN (t)

∏

T∈T

T NT
∏

λ∈L

λNλ

〉

N

- exsp
0 t+N[(νsp,usp)+N−1 logPN (Nνsp)], (29)

where νsp is the saddle point of the non-smooth, exponentially varying part of the
integrand in equation (28) and we added the superscript sp to any function of ν to indicate
the value of this function for ν = νsp. The symbol - means asymptotic logarithm equality.
The saddle-point frequency νsp is the solution of the system of equations

uα(x0(ν)) + N−1∂να logPN(Nν) = 0, α ∈ H , (30)

which are obtained by differentiating the exponent in equation (28) with respect to να

and using the property (ν, v) = t/N .
The series of the canonical averages in equation (22) is easily summed by replacing

the sum with an integral over N , which is asymptotically exact for t → ∞, see [7],
and computing the integral by steepest descent. The result coincides, in the sense of
asymptotic logarithm equality, with the rhs of equation (29) evaluated at the saddle point
N sp(t) solution of the equation

(νsp, usp) + N−1 logPN(Nνsp) + N∂N

[
N−1 logPN(Nνsp)

]
+

dxsp
0

dN
[t − N (νsp, vsp)]

+ N
∑

α∈H

dνsp
α

dN

[
usp

α + N−1∂νsp
α

logPN (Nνsp)
]
∣∣∣∣∣
N=Nsp(t)

= 0. (31)

The last two terms of the above equation take into account the non-explicit dependence
on N of the exponent in equation (29) through xsp

0 and νsp, respectively. We get rid of
the third term in equation (31) by observing that for N large we have

lim
N→∞

N−1 logPN (Nν) = ω(ν), (32)

where ω(ν) depends only on the frequencies ν; see appendix A. The fourth and fifth terms
in equation (31) also vanish due to the property (νsp, vsp) = t/N and the saddle-point
equation for νsp, respectively. In conclusion, N sp(t) is determined by

(νsp, usp) + N−1 logPN (Nνsp)
∣∣
N=Nsp(t)

= 0. (33)

doi:10.1088/1742-5468/2006/11/P11012 9
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As expected from a physical point of view, we have N sp(t) ∼ t when t → ∞; see [7] for
details. Finally, we obtain

∑

n

〈n|e−Ĥt|n0〉 - exsp
0 t
∣∣∣
N=Nsp(t)

. (34)

Observing that for t large we must have
∑

n〈n|e−Ĥt|n0〉 - e−E0t, the ground-state energy
E0 is given by

E0 = − lim
t→∞

xsp
0 |N=Nsp(t) . (35)

Taking into account the definition of u, which depends on x0, in the limit t → ∞
equation (33) can be read as a time independent equation that determines the quantity
E0. Note that in the same limit νsp|N=Nsp(t) assumes a constant value.

The key ingredient of the approach outlined above is the knowledge of the probability
PN (µ). Once this is known, the ground state can be derived analytically by solving the
equation

lim
t→∞

[
(νsp, usp) + N−1 logPN (Nνsp)

]
N=Nsp(t)

= 0, (36)

where limt→∞ νsp|N=Nsp(t) is a finite vector dependent on E0 and

lim
t→∞

(
usp|N=Nsp(t)

)T
= (. . . − log[(−E0 + V )/ε] . . . ; . . . log T . . . ; . . . log λ . . .). (37)

Equation (36) allows the determination of the ground-state energy E0 in terms of
asymptotic saddle-point frequencies, for brevity ν hereafter, which are determined by the
system (30) in the limit N → ∞. Therefore, by using again equation (32), we find that
E0 and ν are the solution of the following system of coupled equations

uα(E0) + ∂ναω(ν) + cα = 0, α ∈ H ,

(ν, u(E0)) + ω(ν) = 0, E0 ≤ Vmin,∑

V ∈V

νV = 1,

∑

T∈T

νT = 1,

∑

λ∈L

νλ = 1,

(38)

where uT = (. . . − log[(−E0 + V )/ε] . . . ; . . . log T . . . ; . . . log λ . . .) and

cα =






cV , α ∈ V ,

cT , α ∈ T ,

cL , α ∈ L ,

(39)

are the three Lagrange multipliers introduced to explicitly take into account the
constraints (25) so that the function ω(ν), i.e. the corresponding probability, is now
meant to have support on the whole hypercube [0, 1]m. In other words, the function ω(ν)
in the system (38) is the analytic continuation to the set [0, 1]m of the function defined in
equation (32).
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In [7] we have used a cumulant expansion theorem to express, in the general case
in which PN (µ) is not known, E0 as a function of the cumulants of the variables V , T
and λ generated the Markov chain over the states n. It is clear that in this case only
the first few cumulants can be considered available, numerically or analytically, and the
expression found for E0 is necessarily approximated. On the other hand, the exact value
of E0 can be obtained in the cases in which PN(µ) is known. As we shall show in the next
two subsections, the uniformly fully connected models and the random potential systems
provide non-trivial and important examples of the latter class.

4.2. Uniformly fully connected models

Up to now we have formulated the problem in the most general case. In this section, we
specialize the discussion to the uniformly fully connected models defined by equations (1)–
(3). For these models, both the sets T and L have a single element, namely T =
(M − 1)η/ε and λ = 1, whereas we may count, in general, M distinct values V in
the set V . This implies that we have to consider only the potential multiplicities NV ,
V ∈ V , i.e. µT = (. . . NV . . . ; N ; N). Furthermore, due to the fact that all the transitions
n → n′, with n '= n′ are allowed with the same probability, we can assume that after N
steps the Markov chain (11) is well represented by a multinomial distribution, in which,
at each step, any state has the probability 1/M to be extracted. This representation
will become exact in the limit M → ∞, i.e. when the introduced extra transitions
n → n become immaterial. According to this multinomial distribution, the probability
to have, after N steps, multiplicities µ satisfying the constraint

∑
V ∈V NV = N , is

given by

PN (µ) = N !
∏

V ∈V

pV
NV

NV !
. (40)

The parameters pV , with V ∈ V , are the degeneracies of the potential values V in the space
of the states F; see equation (4). Due to the ergodic properties of the Markov chain (11),
they also coincide with the asymptotically expected frequencies of the multiplicities
NV

pV = lim
N→∞

1

N
〈NV 〉N . (41)

The latter expression is relevant to calculate by Monte Carlo simulations the
parameters pV in those cases in which a direct evaluation in the space F is not
feasible.

By using the Stirling approximation for N large, the probability for the potential
multiplicities Nν, with each component of ν continuously distributed in the range [0, 1],
can be written as

PN (Nν) - exp

[
N
∑

V ∈V

νV log

(
pV

νV

)]
, (42)

from which we get

ω(ν) =
∑

V ∈V

νV log

(
pV

νV

)
. (43)

doi:10.1088/1742-5468/2006/11/P11012 11
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Taking into account that for this model we have νT≡(M−1)η/ε = 1 and νλ≡1 = 1, the
only random multiplicities being those of the potential values, the system of equations (38)
becomes

uV (E0) + log

(
pV

νV

)
− 1 + cV = 0, V ∈ V ,

∑

V ∈V

νV uV (E0) + log [(M − 1)η/ε] +
∑

V ∈V

νV log

(
pV

νV

)
= 0, E0 ≤ Vmin,

∑

V ∈V

νV = 1.

(44)

By using uV (E0) = −log[(−E0 + V )/ε] and observing that the Lagrange multiplier cV

does not depend on the index V , from the first equation of the above system we find

νV =
1

Z

pV

−E0 + V
, (45)

where the normalization constant, Z = ε−1 exp(cV − 1), is determined by using the third
equation in (44), namely

Z =
∑

V ∈V

pV

−E0 + V
. (46)

By inserting the result (45) into the second equation of the system (44), we get

1

Z
log(Zε)

∑

V ∈V

pV

−E0 + V
+ log [(M − 1)η/ε] = 0, (47)

which, on using the value (46) for Z, brings immediately to equation (8).

4.3. Random potential systems

The above derivation can be readily extended to those systems in which, both the hopping
values T and the phases λ are general, whereas the potential levels V ∈ V are independent
random variables assigned to the states n with arbitrary probabilities pV ; see section 2.
It is clear that different realizations of the values Vn correspond to different Hamiltonian
matrices, i.e. we deal with an ensemble of random matrices. In this case, therefore, the
study of the ground-state energy should be meant as the evaluation of the average lowest
eigenvalue of the ensemble and of its fluctuations around this value. In the following,
we will assume that the probability for the ground-state energy to assume a given value
becomes infinitely peaked around its average E0.

Even if the Vn are iid random variables, for a finite system with a specific realization of
the potential values, the corresponding ground-state energy is affected by the correlations
among the Vn’s induced by the virtual hopping dynamics. Consider, in particular, the
possibility that a state n comes back to itself after a few steps. However, such correlations
must vanish if the number of active links associated with each state, A(n), diverges. In
this limit, any step of the Markov chain is equivalent to a random extraction of the value
V distributed according to the given pV . In fact, the situation in which the numbers A(n)

doi:10.1088/1742-5468/2006/11/P11012 12
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increase by increasing the number of states M is rather common, later we will consider
the important example of many-body systems on a lattice. For these systems, in the limit
M → ∞ the potential becomes exactly uncorrelated from the states n and along the
virtual dynamics there holds the following factorization

PN ({NV }, {NT}, {Nλ}) = PV
N ({NV }) P(0)

N ({NT}, {Nλ}), (48)

where the superscripts V and (0) refer to the probability density for the potential
multiplicities {NV } and for the rest of the variables {NT} and {Nλ}, respectively. In
terms of the asymptotic function ω defined by equation (32), this implies that

ω(ν) = ωV ({νV }) + ω(0)({νT}, {νλ}). (49)

The consequences of the factorization (48) are immediately obtained. Note that in
the probabilistic representation illustrated in section 4.1, unlike other probabilistic
representations in which importance sampling is included, the frequencies νT and νλ are
independent of the potential values, so that their distribution can be evaluated for V ≡ 0.
In this case, we have νV ≡0 = 1 and uV ≡0 = −log(−E(0)

0 /ε) and, therefore,

(ν, u(E(0)
0 )) = −log(−E(0)

0 /ε) +
∑

T∈T

νT log T +
∑

λ∈L

νλ log λ. (50)

From this relation and from the second equation of the system (38), we find that the

energy of the non-interacting system, E(0)
0 , satisfies the equation

log(−E(0)
0 /ε) =

∑

T∈T

νT log T +
∑

λ∈L

νλ log λ + ω(0)({νT}, {νλ}). (51)

From equation (49) and assuming that E(0)
0 is known, we can use equation (51) to get rid

of the quantities in the rhs in the general case V '= 0. In fact, by inserting equations (49)
and (51) in the general system (38), we are left with the following reduced system

uV (E0) + ∂νV ωV ({νV }) + cV = 0, V ∈ V ,
∑

V ∈V

νV uV (E0) + log(−E(0)
0 /ε) + ωV ({νV }) = 0, E0 ≤ Vmin,

∑

V ∈V

νV = 1.

(52)

Finally, by using the fact that the potential levels V ∈ V are randomly assigned with
probabilities pV , we have that ωV ({νV }) is again given by the multinomial formula (43).

Therefore, apart from the exchange of E(0)
0 with −(M − 1)η, the system (52) is formally

identical to the system (44) so that, in the limit M → ∞, the ground-state energy E0 of
the random potential systems satisfies equation (9).

5. Thermodynamic limit: quantum phase transition and universality

For the uniformly fully connected models and the random potential systems, the solution
E0(M) of equation (9) approaches the exact ground-state energy when the number of

doi:10.1088/1742-5468/2006/11/P11012 13
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states M becomes infinitely large provided that the number of active links associated
with each state, A(n), also diverges. The condition on the number of active links,
which is evidently fulfilled by any uniformly fully connected model, for random potential
systems can be viewed as a condition on the non-interacting ground-state energy E(0)

0 (M),
which is proportional to a proper average of A(n) with n ∈ F. In this section,
we will study a non-trivial thermodynamic M → ∞ limit of equation (9) always

assuming that limM→∞ |E(0)
0 (M)| = ∞, as happens for any system of particles with fixed

density.
For simplicity, we suppose that the number of potential levels, i.e. the cardinality mV

of the set V , does not change by increasing the number of states M . Consistently, we
assume that the degeneracies (probabilities) {pV (M)} tend to constant values for M → ∞.
Looking at equation (9), it is immediately clear that if the potential levels {V (M)}
diverge for M → ∞ more slowly than E(0)

0 (M), we have limM→∞ E0(M)/E(0)
0 (M) = 1.

Another trivial limiting solution is found if the potential levels {V (M)} diverge faster

than E(0)
0 (M), namely limM→∞ E0(M)/Vmin(M) = 1. A thermodynamic non-trivial

limit is obtained only for V (M) ∼ E(0)
0 (M). In this limit, we rewrite equation (9)

as ∑

v∈V

pv

v − e0
= 1, e0 ≤ vmin, (53)

where we have defined pv = limM→∞ pV (M), v = limM→∞ V (M)/|E(0)
0 (M)| and e0 =

limM→∞ E0(M)/|E(0)
0 (M)| and we have assumed, as usual if K̂ represents a hopping

operator, that E(0)
0 (M) < 0. With an abuse of notation, we keep using the same symbol

chosen for the set {V } also for the set of the asymptotic rescaled potential levels {v}.
The asymptotic rescaled ground-state energy e0 cannot exceed the minimum asymptotic
rescaled potential level vmin = minv∈V {v}. In the following, we will find handy ordering the
elements of V as v1 < v2 < · · · < vmV , and indicate with p1, p2, . . . , pmV the corresponding
degeneracies (probabilities).

For what concerns the uniformly fully connected models, although equation (53) is
formally equivalent to equation (9), it has a richer structure. In fact, unlike the finite-M
case in which the pV ’s vary in the rational field, see equation (4), in the limit M → ∞ the
pv’s vary in the continuum so that we are allowed to consider the analytic continuation of
the solution e0 toward limits in which one or more of the pv’s tend to zero. Regarding the
random potential systems a similar observation, strictly speaking, does not apply. In this
case, in fact, the pV ’s can vary in the continuum even with a finite M ; see equation (5). On
the other hand, as explained in the previous section, for the random potential systems the
ground-state energy becomes a well defined quantity with vanishing relative fluctuations
only in the limit M → ∞.

We shall show that, due to the constraint e0 ≤ vmin, for p1 → 0 the solution e0 of
equation (53) becomes non-analytic and a quantum phase transition takes place.

First we illustrate in detail an example with only two potential levels. In this case,
equation (53) is a quadratic equation for e0 which can be solved explicitly. Observing that
p2 = 1 − p1, we find

e0 = v1 − 1
2

[√
(v2 − v1 − 1)2 + 4p1(v2 − v1) − (v2 − v1 − 1)

]
, (54)

doi:10.1088/1742-5468/2006/11/P11012 14
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Figure 1. Thermodynamic limit of a system with two potential levels: asymptotic
rescaled ground-state energy e0 − v1 as a function of p1 and v2 − v1; see
equation (54).
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Figure 2. As in figure 1: sections of e0 − v1 as a function of v2 − v1 for different
values of p1. For p1 = 0 a quantum phase transition takes place at the critical
point v2 − v1 = 1.

the other solution being incompatible with the condition e0 ≤ v1. The behaviour of e0−v1

as a function of p1 and v2 − v1 is shown in figure 1. For p1 → 0 we have

lim
p1→0

e0 − v1 = 1
2 [(v2 − v1 − 1) − |v2 − v1 − 1|]

=

{
v2 − v1 − 1, v2 − v1 < 1,

0, v2 − v1 > 1,
(55)

i.e. a singularity shows up at v2−v1 = 1; see figure 2. It is trivial to check that for p1 = 0,
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1
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<

1

Figure 3. Graphical solution of equation (56) in a system with four potential
levels for p1 = 0.1 (top) and p1 = 0 (bottom) in two cases W > 1 (left) and
W < 1 (right). The continuous lines are the lhs of equation (56) plotted as a
function of e0 whereas the horizontal dashed lines represent the unit level. The
rescaled ground-state energy is given by the unique intersection (dots) in the
region e0 ≤ v1. For p1 = 0, a singularity shows up at W = 1, namely e0 stalls at
its maximum value e0 = v1 for W ≤ 1.

e0 has a discontinuity in the first derivative and a divergence in the second derivative with
respect to v2 − v1 at v2 − v1 = 1. In conclusion, for p1 = 0 we have a quantum phase
transition at the critical point v2 − v1 = 1. We stress that this behaviour emerges due to
the constraint e0 ≤ v1, which keeps to hold only if the limits performed are taken in the
correct order: M → ∞ first and p1 → 0 later.

It is easy to generalize the above result to a case with mV > 2. Let us rewrite
equation (53) as

− p1

e0 − v1
+

mV∑

k=2

pk

(vk − v1) − (e0 − v1)
= 1, e0 − v1 ≤ 0. (56)

The unknown e0−v1 is a function of the 2(mV −1) parameters pk, vk −v1, k = 2, . . . , mV .
Note that p1 is fixed by the normalization condition. We show the graphical construction
of the solution of equation (56) in figure 3. For p1 > 0, i.e.

∑mV
k=2 pk < 1, we always have

e0 < v1 and, furthermore, e0 is an analytic function of its arguments. When p1 = 0, a
singularity of e0 shows up, which can be characterized in the following way. Let us define
the function

W (p2, v2 − v1, . . . , pmV , vmV − v1) =
mV∑

k=2

pk

vk − v1
. (57)

From equation (56) we see that, if p1 = 0 and e0 < v1, then

W >
mV∑

k=2

pk

(vk − v1) + (v1 − e0)
= 1. (58)
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On the other hand, if e0 → v1 for p1 → 0, from the same equation (56) we have

1 − W = lim
p1→0,e0→v−1

p1

v1 − e0
≥ 0, (59)

i.e. W ≤ 1. In conclusion, for p1 → 0 the below relations hold between W and e0

W > 1 ⇔ e0 < v1, (60)

W ≤ 1 ⇔ e0 = v1. (61)

These two equations establish the following scenario for p1 → 0. As we move inside the
2(mV − 1)-dimensional region determined by the condition W ≤ 1, the rescaled energy e0

stalls at its maximum value e0 = v1. Outside this region, we have e0 < v1. Therefore, we
find that ∇e0|S + '= 0 and ∇e0|S − = 0, where S + and S − are generic points arbitrary
close to the surface S , determined by the condition W = 1, and such that W > 1 or
W < 1, respectively. More precisely, we find that on the critical surface S any directional
derivative of e0 has a discontinuity for any direction not tangent to S , which, in turn,
implies a divergence of any double derivative of e0 for any direction not tangent to S .

We observe that according to equation (57) the critical surface is determined by a
sum over all the potential levels of the ratios pk/(vk − v1). Therefore, even levels very
far from the lowest one, v1, can contribute to the critical behaviour if the corresponding
degeneracies are large enough. This is a cooperative phenomenon due to the intrinsic
quantum nature of the considered systems.

We wish to discuss now in more detail the nature of the phase transition corresponding
to the above singularity and also determine an order parameter. Let us write the potential
operator V̂ in terms of the projectors onto the configuration subspaces at fixed potential
values

V̂ =
∑

V ∈V

V π̂V , π̂V =
∑

n∈F:V (n)=V

|n〉〈n|. (62)

On differentiating the ground-state energy E0 with respect to a potential level V and
using the Hellmann–Feynman theorem, we find

∂E0

∂V
=

∂

∂V

〈E0|Ĥ|E0〉
〈E0|E0〉

=
〈E0|∂V Ĥ|E0〉

〈E0|E0〉
= CV , (63)

where

CV =
〈E0|π̂V |E0〉
〈E0|E0〉

=
∑

n∈F:V (n)=V

|〈n|E0〉|2

〈E0|E0〉
(64)

is the ground-state expectation of the projector π̂V . On the other hand, in the limit
M → ∞ we have ∂V E0 = ∂ve0 so that by differentiating equation (53) with respect to a
generic v, we get, in the notation in which the potential levels are ordered,

Ck =
∂e0

∂vk
=

pk

(vk − e0)2

[
mV∑

k′=1

pk′

(vk′ − e0)2

]−1

, k = 1, . . . , mV . (65)
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Figure 4. Thermodynamic limit of a system with two potential levels: asymptotic
rescaled hopping energy ehop

0 as a function of p1 and v2 − v1.

Equation (65) holds at any point of the 2(mV − 1)-dimensional space (p2, v2 −
v1, . . . , pmV , vmV − v1). If p1 = 0, from equations (60), (61) and (65) we get

C1 =

{
1, W ≤ 1,

0, W > 1,
(66)

whereas for k = 2, . . . , mV

Ck =






0, W ≤ 1,

pk

(vk − e0)2

[
mV∑

k′=2

pk′

(vk′ − e0)2

]−1

, W > 1.
(67)

We deduce that in the thermodynamic limit we have the following behaviour of the
ground state |E0〉. In the region W > 1, |E0〉 turns out to be an analytic function
of its arguments pk, vk − v1, k = 2, . . . , mV , while in the region W ≤ 1 it collapses
into the subspace spanned by the configurations with minimum potential value V1. The
susceptibilities ∂(vk−v1)Ck diverge on the critical surface S determined by the condition
W = 1. Finally, it is simple to check that the asymptotic rescaled hopping energy in the
ground state, ehop

0 = limM→∞〈E0(M)|K̂|E0(M)〉/|E(0)
0 (M)|, is given by

ehop
0 = −

[mV∑

k=1

pk

(vk − e0)2

]−1

. (68)

Therefore, the phase for W ≤ 1 is a frozen phase with ehop
0 = 0, whereas a non-vanishing

hopping energy is obtained for W > 1. In figure 4 we show the behaviour of ehop
0 (p1, v2−v1)

in the case with two potential levels described above. For p1 = 0, it is evident the
discontinuity of ehop

0 at the critical point W = 1, i.e. v2 − v1 = 1.
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Figure 5. Universality of the thermodynamic limit of random potential systems:
rescaled ground-state energy e0 as a function of the rescaled potential level v2

for systems of spinless hard-core bosons with long range hopping. The random
potential has two levels: V1 = 0 with probability p1 = 0.6 and V2 = v2|E(0)

0 |
with probability p2 = 0.4. The solid line is the universal thermodynamic limit
predicted by equation (53) whereas the dots corresponds to the numerical results
found for the finite-size systems indicated in the legend. Here, m×n.N connotes
a system of N particles in a m×n lattice. The error bars represent the standard
deviation of the stochastic variable e0 as evaluated from an ensemble of 100 exact
diagonalizations of the Hamiltonian matrix with the specified random potential.

6. Many-body lattice models: random potential with discrete spectrum

Hereinafter we will focus our analysis on the thermodynamic limit of random potential
systems. Equation (53) states that for these systems the asymptotic rescaled energy
e0 is universal, independently of the nature of the hopping operator, provided that
limM→∞ |E(0)

0 (M)| = ∞. In this section we present the results of numerical simulations
which help to quantify the rapidity with which this universality is approached by systems
with different complexity.

To begin, we investigate quantum particles moving in two-dimensional lattices and
interacting via a potential with two random levels. Three cases have been considered:
spinless hard-core bosons with long range hopping, spinless hard-core bosons and spinless
fermions with first-neighbour hopping. The results are displayed in figures 5, 6 and 7,
respectively. For these systems, in table 1 we report the non-interacting ground-state
energy E(0)

0 and the average number of active links

Aav =
1

M

∑

n∈F
A(n) (69)

as a function of the dimension M of the Fock space. In the case of fermions, due to
sign cancellations, the effective average number of active links which is responsible of the
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Figure 6. As in figure 5 in the case of systems of spinless hard-core bosons with
first-neighbour hopping.
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Figure 7. As in figure 5 in the case of systems of spinless fermions with first-
neighbour hopping.

potential decorrelation is the difference

Aav =
1

M

∑

n∈F
(A+(n) − A−(n)) (70)

between the active links A±(n) associated with positive or negative jumps, respectively.
The case of hard-core bosons with long range hopping presents the closest analogy

with a uniformly fully connected model. The number of active links A(M), although being
much smaller than the number of states M and diverging more slowly than M for M → ∞,
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Table 1. For different systems m×n.N of N particles in a two-dimensional m×n
lattice with periodic boundary conditions we report the number of states M , the
non-interacting ground-state energy E(0)

0 and the average number of active links
Aav in the case of spinless hard-core bosons with long range (hcb.lrh) and first-
neighbour hopping (hcb.fnh) and spinless fermions with first-neighbour hopping
(f.fnh).

hcb.lrh hcb.fnh f.fnh

System M E(0)
0 Aav E(0)

0 Aav E(0)
0 Aav

3 × 3.4 126 −20 20 −10.346 99 10 −7 3.333 33
3 × 4.4 495 −32 32 −12.105 48 11.63636 −9 4.848 48
3 × 4.6 924 −36 36 −13.714 26 13.09090 −10 4
4 × 4.4 1 820 −48 48 −13.251 69 12.8 −10 5.520 87
4 × 4.5 4 368 −55 55 −15.300 41 14.66666 −12 5.641 02
4 × 5.5 15 504 −75 75 −16.446 02 15.78947 −13.236 07 7.223 94

is a constant which does not depend on the configuration n. In particular, we have that
A(M) = Aav(M) = −E(0)

0 (M) is given by the simple formula number of sites − number
of particles) × number of particles. The numerical results, shown in figure 5 by dots
with error bars, have been obtained by exact diagonalizations of the Hamiltonian matrix
for several realizations of the random potential. The error bars represent the standard
deviation of the stochastic variable E0/|E(0)

0 | evaluated in this way. The agreement with
the universal curve for e0, obtained from equation (53) as a function of the second rescaled
potential level v2, worsen by increasing the value of v2. However, we have a clear tendency
toward the universal result by choosing systems closer and closer to the thermodynamic
limit.

For systems with first-neighbour hopping, we have a much greater complexity with
respect to a uniformly fully connected model. The number of active links is a function of
the configuration n and, in the case of fermions, a sign problem is also present. Therefore,
we expect a convergence to the universal thermodynamic limit slower than that obtained
with long range hopping. This is confirmed by the results shown in figures 6 and 7.
Whereas the trend toward the universal behaviour is clear in both cases, for fermions the
convergence is indubitably slower than for hard-core bosons.

Note that for practical reasons, essentially the finite amount of memory (4 Gb)
of the computer used to perform the numerical diagonalizations, the different
systems considered in figures 5, 6 and 7 do not have exactly the same density,
number of particles/number of lattice sites, as it would be convenient in looking at the
thermodynamic limit of a lattice particle system. In fact, we have chosen a set of systems
in which M and |E(0)

0 |, i.e. Aav, possibly both increase compatibly with the condition
M ≤ Mmax, where Mmax is the size of the largest diagonalizable Hamiltonian matrix. At
constant density this set would contain only two or three elements, so we decided to allow
for density fluctuations. These fluctuations may reflect a non-monotonic approach to the
thermodynamic limit. Such a behaviour is quite evident in the fermion case of figure 7
where the system 3× 4.6 with M = 924 and Aav = 4 is closer to the asymptotic universal
curve than the next system 4 × 4.4 which has M = 1820 and Aav = 5.520 87.
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Figure 8. Difference ∆e0 between the rescaled ground-state energy e0 predicted
in the thermodynamic limit for v2 = 100 by the multinomial formula (53) and
that obtained in the finite-size systems analysed in figure 5 (hcb.lrh ◦ ), figure 6
(hcb.fnh !) and figure 7 (f.fnh 2) as a function of the inverse of the average
number of active links Aav. The lines are a weighted linear fit with errors on ∆e0

assumed equal to the standard deviations of e0 for the corresponding finite-size
systems.

In figure 8 we show a quantitative test for the convergence of data in figures 5, 6 and 7.
The difference ∆e0 between the rescaled ground-state energy of the finite-size systems
and the thermodynamic value predicted by the multinomial formula (53) is reported,
for v2 = 100, as a function of A−1

av . In all cases, the data are fitted by straight lines
which, compatibly with the associated errors, give ∆e0 → 0 for A−1

av → 0. This behaviour
corresponds to the scenario depicted in section 4.3: as the average number of active
links Aav diverges, the multinomial formula (53) becomes exact with a residual error
proportional to A−1

av . This law also explains the progressively larger errors observed, at
a fixed system size, passing from hard-core bosons with long range hopping to hard-
core bosons with first-neighbour hopping to fermions with first-neighbour hopping; see
equations (69) and (70).

The models considered above, even if share some realistic features with systems of
interest in physics, have been studied in connection with a toy random potential defined
by only two levels V1 and V2 with assigned probabilities p1 and p2. For these models, in
order to obtain the phase transition in the ground state we must impose the additional
condition p1 → 0 after the thermodynamic limit has been taken. In the remaining part
of this section, we discuss a more realistic random potential which has the following
characteristics: (i) the number of levels increases by increasing the number of states M ,
and (ii) the probability associated with the lowest level vanishes for M → ∞.

Consider a lattice Λ with some ordering of the lattice points 1, 2, . . . , n|Λ| occupied by
N quantum particles. As above, we assume that the particles are fermions or hard-core
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bosons so that the occupation numbers can be ni = 0, 1, i = 1, 2, . . . , |Λ|. To each of the
M = |Λ|!/(N !(|Λ|−N)!) Fock states n = (n1, n2, . . . , n|Λ|) of the system we associate the
potential

V (n) = γ
|Λ|∑

i=1

niri(n), (71)

where ri(n) are a set of |Λ|M independent random variables assuming the values 0, 1.
Let p be the probability that ri(n) = 1. Since the Fock states are normalized by the
condition

∑|Λ|
i=1 ni = N , we have N + 1 different potential levels Vk = γk, k = 0, 1, . . . , N

with associated probabilities

pk =
N !

k!(N − k)!
pk(1 − p)N−k. (72)

Note that p0, the probability of the lowest potential level V0 = 0, vanishes for N → ∞ as
far as p > 0.

Before going further, we want to make a few comments about the introduced
potential (71). From a mathematical point of view, equation (71) turns out to be a
redundant way to express the random variable V . In fact, as regards the potential, all
the Fock states are equivalent and there is no reason to write a dependence of V on n;
we could instead more simply say that any Fock state has associated a random variable
Vk with distribution pk. However, from a physical point of view, equation (71) lends itself
to be read as an effective medium potential as follows. It represents the on site random
coupling of a set of |Λ| impurities with the particles of the system. The impurities, spins
to be concrete, may be in one of two available states with probabilities p and 1 − p.
Impurity–impurity interactions are neglected. Moreover, the potential (71) treats the
impurities itself as classical spins, i.e. it does not take into account the correlations of
the state of each single impurity with itself in the presence of different dispositions of the
particles in the lattice (Fock states). The latter decoupling could be the effective result
of an impurity dynamics fast on the timescale of the evolution of the particle system or
of the presence of an external random field.

In the thermodynamic limit |Λ|, N → ∞ with N/|Λ| constant, the rescaled ground-

state energy e0 = E0/|E(0)
0 | is determined by equation (53). In this limit the sum over the

discrete rescaled levels vk = Vk/|E(0)
0 | can be approximated by an integral over k so that

equation (53) reads
∫ N

0

pk

vk − e0
dk = 1, e0 ≤ 0. (73)

For N large the distribution pk becomes exponentially peaked at the value k = Np and a
steepest descent evaluation of the integral in equation (73) gives

1

vNp − e0
= 1, e0 ≤ 0. (74)

In conclusion, the solution for the rescaled ground-state energy is

e0 =

{
−1 + γNp/|E(0)

0 |, γNp/|E(0)
0 | < 1,

0, γNp/|E(0)
0 | ≥ 1.

(75)
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Figure 9. Universality of the thermodynamic limit of random potential systems:
rescaled ground-state energy e0 as a function of the rescaled potential strength
γ/η for systems, 1×n .N , of N spinless fermions with first-neighbour hopping in
a one-dimensional lattice with n sites. The potential is the impurity potential of
equation (71) with p = 0.4. The solid line is the universal thermodynamic limit
predicted by equation (76) whereas the dots corresponds to the numerical results
found for the finite-size systems indicated in the legend. The inset shows a linear
fit of ∆e0 versus A−1

av as displayed in figure 8.

Whether or not the solution given above represents a non-trivial rescaled ground-
state energy depends on how fast the potential levels diverge in the thermodynamic limit
with respect to the non-interacting ground-state energy. For a system of fermions with
first-neighbour hopping E(0)

0 can be evaluated analytically by Fourier transformation. In
one dimension with periodic boundary conditions, at half filling and neglecting spin, for
N → ∞ we have E(0)

0 - −4π−1Nη, where η is the value of the hopping coefficient between
any two first neighbours. Equation (75) then becomes

e0 =

{
−1 + πγp/4η, πγp < 4η,

0, πγp ≥ 4η.
(76)

A comparison of e0 predicted by the above expression for p = 0.4 with the values obtained
from numerical simulations of finite-size systems is shown in figure 9. The main parameters
of the simulated systems are given in table 2. The numerical results are consistent with a
phase transition occurring in the thermodynamic limit at γ/η = 4/πp - 3.18.

The value of the non-interacting ground-state energy can be given analytically also for
spinless hard-core bosons with long range hopping. At half filling with periodic boundary
conditions we have E(0)

0 = −N2η, where η is the value of the hopping coefficient between
any two sites. In this case, for γ constant the potential levels diverge for N → ∞ slower
than E(0)

0 and equation (75) always gives e0 = −1. A non-trivial result is obtained
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Figure 10. As in figure 9 in the case of spinless hard-core bosons with long range
hopping. The potential is the impurity potential of equation (71) with p = 0.4
and γ = γ1N , with γ1 constant.

Table 2. As in table 1 in the case of one-dimensional systems 1 × n . N .

hcb.lrh hcb.fnh f.fnh

System M E(0)
0 Aav E(0)

0 Aav E(0)
0 Aav

1 × 8.4 70 −16 16 −5.226 25 4.571 42 −4.828 42 3.428 57
1 × 10.5 252 −25 25 −6.472 13 5.555 55 −6.472 13 5.555 55
1 × 12.6 924 −36 36 −7.727 41 6.545 45 −7.464 10 5.454 54
1 × 14.7 3 432 −49 49 −8.987 92 7.538 46 −8.987 91 7.538 46
1 × 16.8 12 870 −64 64 −10.251 66 8.533 33 −10.054 67 7.466 66

assuming γ = γ1N , with γ1 constant,

e0 =

{−1 + γ1p/η, γ1p < η,

0, γ1p ≥ η.
(77)

In figure 10 we show the behaviour of equation (77) for p = 0.4 in comparison with
numerical simulations for finite-size systems. Again, there is a consistent matching with
the singularity displayed by e0 at γ1/η = 1/p = 2.5. As discussed in section 5, in the
present case the approach to the thermodynamic behaviour is faster (smaller differences
∆e0) with respect to the case of spinless fermions with first-neighbour hopping shown in
figure 9.

Note that, for clarity, we have plotted in figures 9 and 10 different curves for e0.
However, as is evident by equations (76) and (77), the behaviour of the rescaled ground-
state energy is universal once it is expressed in terms of the rescaled potential levels
Vk/|E(0)

0 |, provided, of course, that the same probabilities pk are used.
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7. Many-body lattice models: random potential with continuous spectrum

The results obtained in section 5 are readily extended to the case of a random
potential with continuous spectrum. In the thermodynamic limit, for a continuous
distribution of rescaled levels v = limM→∞ V (M)/|E(0)

0 (M)| described by the density
p(v) = limM→∞ p(V (M)), the equation determining the rescaled energy e0 =

limM→∞ E0(M)/|E(0)
0 (M)| reads

∫
p(v)

v − e0
dv = 1, e0 ≤ vmin. (78)

The only point which we have to pay attention to concerns the definition of the lowest
potential level. In order to avoid ambiguities, we define vmin as the value of v such that

p(vmin + δ) > 0 and p(vmin − δ) = 0, (79)

with δ > 0 arbitrarily small. Note that definition (79) does not include the case
vmin = −∞, which occurs, for example, if the density p(v) is a Gaussian. However,
since for vmin = −∞ we can only have the trivial result e0 = vmin = −∞, in the following
we will assume vmin finite.

In order to recover the analogous results of section 5, it is useful to define

F (x) =

∫
p(v)

v − x
dv (80)

and

W = F (vmin) =

∫
p(v)

v − vmin
dv. (81)

Observe that F (x) is a positive monotonically increasing function for x ∈ (−∞, vmin]
with

−∞ < F (x) ≤ W = sup F x ∈ (−∞, vmin]. (82)

We have that e0 is solution of equation (78) if F (e0) = 1 and e0 ≤ vmin. If p(vmin) > 0,
and therefore W = ∞, equation (82) shows that the solution e0 exists, it is unique and
smooth, i.e. without singularities with respect to the parameters of the density p(v).
If p(vmin) = 0 then, since

∫
p(v) dv = 1, we have W < ∞. For 1 ≤ W < ∞, we

still have a unique smooth solution e0 of equation (78), with e0 < vmin for W > 1 and
e0 = vmin for W = 1. For W < 1, equation (78) has no solution and, as discussed in
the discrete case, we have to consider for e0 its analytic continuation for p(vmin) → 0.
More explicitly, we first solve equation (78) with a modified density p̃(v) having the same
support of p(v) but with p̃(vmin) > 0 and then evaluate e0 as the limit for p̃ → p of the
solution so found. Clearly, this analytic continuation cannot exceed vmin and it is easy
to demonstrate that we have e0 = vmin. In fact, if it were e0 < vmin, there would be no
singularity in the integrand of equation (78) and the analytic continuation of e0 for p̃ → p
would coincide with the solution of equation (78) with density p. As a consequence, we
should have W > F (e0) = 1 in contradiction with the hypothesis W < 1. In conclusion,
for p(vmin) = 0 the characterization of the ground state in terms of W is the same as in
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the discrete case

W > 1 ⇔ e0 < vmin, (83)

W ≤ 1 ⇔ e0 = vmin. (84)

Even when the potential levels V are continuous random variables, the definition (62)
and the relations (63) and (64) remain unchanged, and by performing functional
derivatives of the rescaled ground-state energy e0 with respect to v, we have

C(v) =
δe0

δv
=

p(v)

(v − e0)2

[∫
p(v′)

(v′ − e0)2
dv′
]−1

. (85)

Equation (85) holds for any density p(v). Again, if p(vmin) = 0, from equations (83), (84)
and (85) we get

C(vmin) =

{
1, W ≤ 1,

0, W > 1,
(86)

whereas for v > vmin

C(v) =






0, W ≤ 1,

p(v)

(v − e0)2

[∫
p(v′)

(v′ − e0)2
dv′
]−1

, W > 1.
(87)

Finally, it is simple to extend equation (68) for the rescaled hopping energy in the
ground state,

ehop
0 = −

[∫
p(v)

(v − e0)2
dv

]−1

. (88)

Again, if p(vmin) = 0, we see that whereas a non-vanishing hopping energy is obtained for
W > 1, the phase for W ≤ 1 is a frozen phase with ehop

0 = 0.
We conclude this section by discussing the results of numerical simulations on finite-

size systems with a random potential having a continuous spectrum. The systems
considered are spinless hard-core bosons with long range hopping in a one-dimensional
lattice. Similar results, not shown here, are obtained for spinless hard-core bosons and
spinless fermions with first-neighbour hopping. The relevant parameters are given in
table 2. No relevant differences are observed in two-dimensional lattices. In figures 11
and 12 we illustrate the results for two distinct potentials. In both cases we have
V = γx where x is a random variable in the interval [0, 1] with normalized constant
density p(x) = 1 in figure 11 and with normalized linear density p(x) = 2x in figure 12.
Equation (78) predicts, in the thermodynamic limit, a smooth rescaled ground-state

energy e0 = E0/|E(0)
0 | for the potential in figure 11 and a phase transition for the potential

in figure 12. In the latter case, the singularity is localized by the condition W = 1, i.e. at
γ/|E(0)

0 | = 2. The results from the finite-size systems in figures 11 and 12 clearly show
convergence towards the predicted thermodynamic behaviour.

Finally, in figure 13 we show the rescaled hopping energy in the ground state, ehop
0 , as

a function of the rescaled potential strength for the two potentials considered in figures 11
and 12. In the case of constant potential, we have a smooth transition between the values
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Figure 11. Universality of the thermodynamic limit of random potential systems:
rescaled ground-state energy e0 as a function of the rescaled potential strength
γ/|E(0)

0 | for systems, 1 × n . N , of N spinless hard-core bosons with long range
hopping in a one-dimensional lattice with n sites. The potential randomly
associated with the states is V = γx, where x is a random variable in the
interval [0, 1] with normalized constant density p(x) = 1. The solid line is the
universal thermodynamic limit predicted by equation (78) whereas the dots are
the numerical results for the finite-size systems indicated in the legend.

ehop
0 = −1 at γ = 0 and ehop

0 → 0 for γ 3 |E(0)
0 |. On the other hand, in the case of the

linear potential there is a discontinuity in the first derivative of ehop
0 as a function of γ

at γ/|E(0)
0 | = 2. This behaviour is consistent with that observed in the simulations of

finite-size systems.
The random potential systems considered in this section are a many-body

generalization of the well known Anderson models [8], namely a single particle in a d-
dimensional lattice in the presence of a disorder potential. For the Anderson models with
tight binding Hamiltonian the following rigorous results have been established [9]. For
d > 1, the eigenstates of the Hamiltonian undergo a localization phase transition for large
disorder; in one dimension, all states are localized for arbitrarily small non-zero disorder. It
is clear that our analysis does not apply to the single-particle Anderson models, in which
the number of active links, i.e. the non-interacting ground-state energy E(0)

0 , remains
constant in the limit M → ∞. Note that in the single-particle case the Fock dimension
M coincides with the number of lattice points. However, in the many-body case the phase
transition predicted by equation (78) has some analogies with the phase transition in the
Anderson models. The transition of the ground state to the frozen phase characterized by
ehop
0 = 0 takes place, universally, for W ≤ 1. In appendix B we show that this condition

on the functional W [p(·)] is equivalent to a condition of large disorder, i.e. large support
of p(v) or large potential strength. Moreover, as predicted by equations (86) and (87) and
also checked in the numerical simulations for finite-size systems, in the frozen phase the
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Figure 12. As in figure 11 in the case of the potential V = γx, where x is a
random variable in the interval [0, 1] with normalized linear density p(x) = 2x.
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Figure 13. Rescaled hopping energy in the ground state ehop
0 as a function

of the rescaled potential strength γ/|E(0)
0 | for the systems with constant and

linear random potential considered in figures 11 and 12. The solid lines are
the thermodynamic values predicted by equation (88) whereas the dots are the
numerical results for the finite-size systems indicated in the legend.

ground state of the system |E0〉 condenses into a superposition of the Fock states which
are eigenstates of the potential operator with eigenvalue V = Vmin. This condensation,
which is a sort of superlocalization in the Fock space, does not correspond, in general, to
a localization in the lattice space and takes place for any dimension d.
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8. Conclusions

We have revisited the probabilistic approach [5]–[7] to evaluate the ground state of general
matrix Hamiltonian models from a different point of view. The asymptotic probability
density of the potential and hopping multiplicities which is the core of the approach is
considered known and an exact equation for the ground-state energy E0 is obtained in a
closed form. For a class of systems, which includes the uniformly fully connected models
and the random potential systems, we have that the above mentioned probability density
factorizes into separated potential and hopping contributions, the potential part being of
multinomial form. This permits us to write a very simple scalar equation which relates
E0 to the lowest eigenvalue of the Hamiltonian operator with zero potential E(0)

0 . Such a

relation becomes exact in the thermodynamic limit in which E(0)
0 diverges.

The factorization of the probability density into separated potential and hopping
contributions has a different origin in the uniformly fully connected models and in the
random potential systems. In the former case, due to the particular structure of the
hopping operator which connects with equal probability any state to any other one, the
potential values assumed by the system during its evolution are uncorrelated to the number
of allowed transitions, equal for any state. In the latter case, the nature of the potential
operator ensures that the potential levels are associated randomly with the states of the
system. Correlations between potential and hopping values are, however, reintroduced
by the dynamics at a degree which depends on the structure of the hopping operator.
The correlations disappear if the number of allowed transitions from any state diverges,
i.e. Aav ∼ |E(0)

0 | → ∞. This explains why the relation that we have found between E0

and E(0)
0 becomes exact in the thermodynamic limit.

In the thermodynamic limit, we find that the rescaled energy e0 = E0/|E(0)
0 | is a

universal function of the potential levels, rescaled by |E(0)
0 |, and of the corresponding

degeneracies, for the uniformly fully connected models, or probabilities, for the random
potential systems. In the case of the random potential systems this means that e0

does not depend on the nature of the hopping operator. In general, if the degeneracy
(probability) associated with the lowest potential level vanishes, the ground state of the
system undergoes a quantum phase transition between a normal phase and a frozen phase
characterized by zero hopping energy. The control parameter W of the phase transition
is related to the whole set of levels and corresponding degeneracies (probabilities) of the
potential. This parameter measures the inverse amount of the spread (disorder) introduced
by the potential operator (random potential). In the frozen phase, corresponding to large
spread (disorder), i.e. small W , the ground state condenses into the subspace spanned by
the states of the system associated with the lowest potential level.

We have performed numerical simulations on different finite-size random potential
systems. In particular, we considered many-body lattice systems in which the particles
are fermions or hard-core bosons, with long range or first-neighbour hopping, in one or
two dimensions. The results found for the ground state are nicely consistent with the
universal behaviour predicted in the thermodynamic limit.
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Appendix A. Proof of equation (32)

Let us rewrite the probability density PN (Nν) in terms of its Fourier transform P̃N (q)

PN(Nν) =

∫
dq elog[P̃N (q)]−iN(q,ν). (A.1)

If we indicate with 〈να1 . . . ναk
〉(c)N , with α1, . . . ,αk ∈ H , a generic cumulant of order k,

we have

log P̃N(q) = log
〈
eiN(ν,q)

〉
N

=
∞∑

k=1

Nk

k!

〈
(ν, iq)k

〉(c)

N
. (A.2)

For any given N , due to the inequalities 〈µα1 . . . µαk
〉N ≤ Nk, valid for any k, and due

to the asymmetry PN(µ) '= PN (−µ), the series in equation (A.2) converges for every
q ∈ Cm (see, for example, [10]).

Let us introduce the rescaled cumulants of order k, in a compact notation Σ(N ;k),
which are defined as the tensors of rank k with components

Σ(N ;k)
α1,...,αk

= Nk−1 〈να1 . . . ναk
〉(c)N , α1, . . . ,αk ∈ H , (A.3)

and let Σ(k)
α1,...,αk be their asymptotic values

Σ(k)
α1,...,αk

= lim
N→∞

Nk−1 〈να1 . . . ναk
〉(c)N = lim

N→∞

1

N
〈Nα1 . . . Nαk

〉(c)N . (A.4)

These limits exist and are finite since the irreducible and finite Markov chain formed by
the evolving configurations has a finite correlation length Nc with respect to the number
of jumps N . As a consequence, up to corrections exponentially small in N/Nc, for N → ∞
we have

log P̃N(q) = N
∞∑

k=1

ik

k!

∑

α1∈H

. . .
∑

αk∈H

Nk−1 〈να1 . . . ναk
〉(c)N qα1 . . . qαk

= Ng(q), (A.5)

where the function g(q) is independent of N .
By using the result (A.5) and evaluating the integral in equation (A.1) by steepest

descent, we find the asymptotic logarithm equality

PN(Nν) - exp [Nω(ν)] , (A.6)

where ω(ν) = g(qsp) − i(qsp, ν) is the function at the exponent evaluated in the saddle
point qsp(ν). Equation (32) follows immediately.
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Appendix B. The critical condition W = 1 in terms of the disorder

In this appendix we show that the condition under which the ground state of the system
undergoes a quantum phase transition, namely W = 1, is equivalent to WA = O(1),
where A is the amount of disorder defined as A = v − vmin.

Let us consider a density p(v) with p(vmin) = 0 and suppose that all the statistical
moments of p(v) are finite, 〈vk〉p < ∞, with k non-negative integer. Let us also suppose,
for simplicity, that the density p(v) is symmetric around the mean value v so that all the
odd centred moments are zero and, furthermore, for any v in the support of p(v) we have

|v − v| < |v − vmin|. (B.1)

By using the geometric series, which is convergent due to the above strict inequality, for
any small positive δ we have
∫

p(v)

v − vmin
dv =

∫ vmin+δ

vmin

p(v)

v − vmin
dv +

1

v − vmin

∫ vmax

vmin+δ

p(v)
∞∑

k=0

(v − v)2k

(v − vmin)
2k dv. (B.2)

In the interval [vmin + δ, vmax], for sufficiently small positive δ we also have

v − v

v − vmin
= 1 − v − vmin

v − vmin
< 1 − δ

v − vmin
< 1. (B.3)

Equation (B.3) implies that the series in the following inequality,
∞∑

k=0

∫ vmax

vmin+δ

p(v)
(v − v)2k

(v − vmin)
2k dv < (vmax − vmin − δ)

∞∑

k=0

(
1 − δ

v − vmin

)2k

, (B.4)

converges absolutely for any positive (sufficiently small) δ, so that in the second term of the
rhs of equation (B.2) we can exchange the order in which the operations of integration and
series appear. Finally, by performing the limit δ → 0 and using the fact that p(vmin) = 0,
we get

W =
1

(v − vmin)

∞∑

k=0

〈
(v − v)2k

〉
p

(v − vmin)
2k . (B.5)

From equation (B.5) we see that W is a decreasing function of A = v − vmin and
W = O(1)/A, so that the critical condition amounts to A = O(1). By recalling

that v = V/|E(0)
0 |, in terms of the non-rescaled potential the critical condition reads

V − Vmin = O(|E(0)
0 |). This result is a generalization to many-body systems (in

any dimension) of the result established for the single-particle Anderson models with
dimension d > 1 [8, 9].
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