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Abstract – Given a M ×M Hermitian matrix H with possibly degenerate eigenvalues E1 < E2 <
E3 < . . . , we provide, in the limit M → ∞, a lower bound for the gap µ2 = E2 − E1 assum-
ing that i) the eigenvector (eigenvectors) associated to E1 is ergodic (are all ergodic) and ii) the
off-diagonal terms of H vanish for M → ∞. Under these hypotheses, we find limM→∞ µ2 ≥
limM→∞ minn Hn,n. This general result turns out to be important for upper bounding the relax-
ation time of linear master equations characterized by a matrix equal, or isospectral, to H. As
an application, we consider symmetric random walks with infinitesimal jump rates and show that
the relaxation time is upper bounded by the configurations (or nodes) with minimal degree.
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Introduction. – In classical and quantum physics, as
well as in applied sciences, many systems can be effectively
described by linear master equations [1–6]. If the system
is characterized by M states that we can label with an
index n ∈ {1, . . . , M}, the master equation reads

dp(t)
dt

= −L p(t), (1)

where p(t)T = (p1(t), . . . , pn(t)) is a row vector in which
each component pn(t) represents the probability that
the system is in the state n at time t. The matrix L
(a weighted Laplacian) is a singular M × M real matrix
having the property

∑
m Lm,n = 0, n ∈ {1, . . . , M},

which stems from the conservation of the total probabil-
ity

∑
m pm(t) = 1, and where, for m �= n, −Lm,n ≥ 0

represents the transition rate from state n to state m.
In some cases L is symmetric and, therefore, has real

distinct eigenvalues μ1 = 0, μ2, μ3, . . .. Furthermore, if
the associated stochastic matrix S = 1 − r−1L, where
r = maxn Ln,n, is irreducible, the Perron-Frobenious the-
orem [7] implies that μ1 = 0 is the minimal eigenvalue,
it is simple (because μ1 is real), and μk > 0 for k ≥ 2.
Finally, we have that p

(eq)
m = 1/M is the m-th component

of the normalized eigenvector p(eq) corresponding to the
eigenvalue μ1 = 0.

If L is asymmetric, we expect, in general, complex
eigenvalues. However, if we assume that a detailed bal-
ance condition holds, i.e. there exist M positive val-
ues, p

(eq)
m > 0, such that Lm,np

(eq)
n = Ln,mp

(eq)
m , then

Lp(eq) = 0 (p(eq) is a right eigenvector), and the spec-
trum of L is still real and non-negative. In fact, L is
similar (and therefore isospectral) to the real symmetric
matrix Ls = R−1LR, where R is the diagonal matrix
defined by the elements Rm,n = δm,n(p(eq)

m )1/2. Note that
the condition p

(eq)
m > 0 for any m, which ensures the exis-

tence of the inverse R−1, guarantees that both Lm,n and
Ln,m are 0 if one of the two is so.

Whether L is symmetric or not, but satisfies a de-
tailed balance condition and has an associated irreducible
stochastic matrix S, its spectrum consists of real eigenval-
ues 0 = μ1 < μ2 < μ3 < . . . . The eigenvalue μ1 = 0 is sim-
ple and the corresponding eigenvector p(eq) is necessarily
an ergodic ground state, i.e. all its components are posi-
tive, and represents the unique stationary state of eq. (1)
toward which the system eventually converges. For almost
all initial conditions, up to terms exponentially smaller,
we have ‖p(t) − p(eq)‖ ∼ C exp(−μ2t), where C is a con-
stant. In other words, μ2, the minimal non-zero eigenvalue
of L, provides the inverse of the relaxation time to equilib-
rium. Determining μ2 is evidently of crucial importance.
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In particular, the existence of a finite lower bound to μ2
in the limit of M → ∞ is pivotal in establishing if L
represents a gapped system [8].

Motivated by the above remarks, we consider a generic
real symmetric or, more in general, Hermitian matrix
H and let E1 < E2 < E3 < . . . be its distinct, possi-
bly degenerate, eigenvalues. We are interested in eval-
uating μ2 = E2 − E1. The matrix H can be seen as
a M -dimensional Hamiltonian operator. In fact, we can
always split H as

H = V + K, (2)

where, on the chosen base {|n〉}, n ∈ {1, . . . , M},

Vm,n = δm,nVn, (3)

and

Km,n = − (1 − δm,n)σm,n, (4)

the definitions of the vector Vn and matrix σm,n being
implicit. Note that σm,n is an Hermitian matrix with
σm,m = 0 and its off-diagonal elements have non-defined
signs or phases. With such a decomposition, V and K
play the role of “potential” and “kinetic” operators, re-
spectively. Suppose that the lowest eigenstate E1 is k-fold
degenerate, with k finite, and let |E(1)

1 〉, . . . , |E(k)
1 〉 be the

corresponding orthonormalized eigenstates. We represent
the components of each ground state (GS) in the form

〈n|E(i)
1 〉 =

u
(i)
n√
Z(i)

, Z(i) =
∑

n

|u(i)
n |2, i = 1, . . . , k. (5)

In case E1 is simple, i.e. k = 1, we will omit the super-
script (i).

In this paper, we state and prove a general lower bound
for the gap μ2 = E2−E1 valid for a large class of Hermitian
matrices H whose unique or multiple ground states are all
ergodic. By an ergodic GS here we mean that, for any M ,
each component of the GS is non-zero, and finite (apart
from the normalization condition). More precisely, we say
that the GS |E1〉 is ergodic if

∃ M0 : ∀M ≥ M0, 0 < |un|, ∀n. (6)

In other words, |E1〉 is ergodic if all the states |n〉 tend to
be populated. In the next section, we precisely state and
prove the lower bound in the form of a theorem valid for
arbitrary finite degeneracy of E1. Note that the index k of
this degeneracy is thought to be a constant independent
of the size M . Then we apply the result to symmetric
random walks characterized by infinitesimal jump rates,
and show that the relaxation time τ is upper bounded by
the minimal degree of the configurations (called nodes in
graph theory).

Lower bound for μ2. – We shall make use
of the definitions (2)–(6) previously introduced and

assume that the following fair condition always applies:
limM→∞ E1/Z = 0.

Theorem 1 (Non-degenerate case). Let H be a M × M
Hermitian matrix with distinct, possibly degenerate, eigen-
values E1 < E2 < E3 < . . . . Let us suppose that the GS
of H is unique, ergodic, and that there exists a positive
function g(M) such that

σ = max
m,n

|σm,n|
|unum| < g(M), (7)

lim
M→∞

g(M) = 0, lim
M→∞

1
Z2g(M)

= 0. (8)

Then, for the gap μ2 = E2 − E1, we have

lim
M→∞

μ2 ≥ lim
M→∞

min
n

Vn. (9)

The same result holds essentially unchanged if E1 is
k-fold degenerate, with k finite and independent of M ,
and each one corresponding GS is ergodic.

Theorem 2 (Finite degenerate case). Let H be a M ×M
Hermitian matrix with distinct, possibly degenerate, eigen-
values E1 < E2 < E3 < . . .. Let us suppose that we have k
degenerate ergodic GSs and there exists a positive function
g(M) such that

σ = max
i

max
m,n

|σm,n|
|u(i)

n u
(i)
m |

< g(M), (10)

lim
M→∞

g(M) = 0, lim
M→∞

1
(Z(i))2g(M)

= 0. (11)

Then, for the gap μ2 = E2 − E1, we have

lim
M→∞

μ2 ≥ lim
M→∞

min
n

Vn. (12)

Proof. We shall make use of the following short-hand
notation: given a Hermitian operator C, GSL[C] stands
for the GS level of C (i.e., the minimal eigenvalue of C).

Let us first suppose that the GS of H is unique and that
E1 = 0 (so that μ2 = E2). Let us introduce the following
new Hamiltonian:

F(λ) = H + λ|E1〉〈E1|. (13)

We have

GSL [F(λ)] =

{
λ, λ < μ2,

μ2, λ ≥ μ2.
(14)

Equation (14) in particular implies that (the limit exists
due to the monotonicity)

μ2 = lim
λ→∞

GSL [F(λ)] . (15)

Uniform ergodic state. For the moment being, let us
suppose that 〈n|E1〉 = 1/

√
Z =

√
M (such a situation

occurs, for example, when we are considering a random
walk, where Vn = − ∑

m Km,n). In this case, we can
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rewrite eq. (13) as

F(λ) = V +
λ

Z
I + K +

λ

Z
U , (16)

where we have introduced

U = Z|E1〉〈E1| − I, (17)

and I is the identity matrix. Note that, in the chosen
base, we have Un,n = 0 and Um,n = 1 for m �= n. Further-
more, from

U |E1〉 = (Z − 1)|E1〉, (18a)
U |Ei〉 = −|Ei〉, i �= 1, (18b)

it follows that for any α ∈ R

GSL [αU ] =

{
−|α|(Z − 1), α < 0,

−|α|, α ≥ 0.
(19)

Equation (19), despite its simplicity, is the key of our
proof: when α changes from a negative to a positive value,
the GS level of αU changes from being extensive, i.e. of
order O(Z), to being intensive, i.e. of order O(1). From
the first Weyl’s inequality [7], we have

GSL [F(λ)] ≥ min
n

Vn +
λ

Z
+ f

(
λ

Z
, σ

)
, (20)

where

f

(
λ

Z
, σ

)
= GSL

[
K +

λ

Z
U

]
. (21)

We are not able to exactly calculate f
(

λ
Z , σ

)
, however,

from eq. (19) we see that

f

(
λ

Z
, σ

)
∼

⎧⎪⎪⎨
⎪⎪⎩

−(Z − 1)
λ

Z
+ GSL [K] ,

λ

Z
� σ,

−
(

λ

Z
− σ∗

)
,

λ

Z
� σ,

(22)

where σ has been defined in eq. (7), and σ∗ ∈ R is
some appropriate value of the order of magnitude of
2

∑
m,n σm,n/(M(M − 1)) (which is real). We stress that

we do not need to know σ∗, nor to assume eq. (22) as an
actual equality. However, eq. (22) makes clear that there
exists a threshold in λ/Z, which is of order σ, where there
occurs a sort of phase transition, the GS of K + Uλ/Z
transiting from being extensive to being intensive. In the
latter phase, we see that there exists a regime where λ/Z,
σ and σ∗ tend all to zero. In fact, let us choose λ = λ(M)
such that

λ(M)
Z

=
√

g(M). (23)

With this choice and due to eqs. (7) and (8), we have that
the following limits are simultaneously satisfied

lim
M→∞

σ = lim
M→∞

σ∗ = 0, (24)

lim
M→∞

λ(M)
Z

= 0, (25)

lim
M→∞

σ
λ(M)

Z

= 0, (26)

lim
M→∞

λ(M) = +∞. (27)

Equations (24)–(26) plugged into eq. (22) provide

lim
M→∞

f

(
λ(M)

Z
, σ

)
= 0, (28)

whereas, by using eq. (27) in eq. (20) we have

lim
M→∞

GSL [F(λ(M))] ≥ lim
M→∞

min
n

Vn. (29)

Finally, by using eq. (15) the proof of the theorem in the
case of a uniform ergodic state is complete.

General ergodic state. Now we still consider a unique
(and ergodic) GS with E1 = 0, but we have 〈n|E1〉 =
un/

√
Z with un �= 1. Little changes are necessary to gen-

eralize the previous proof to the present case. We define

F(λ) = V +
λ

Z
D + K +

λ

Z
U , (30)

where

U = Z|E1〉〈E1| − D, (31)

and D is a diagonal matrix with elements

Dm,n = |un|2δm,n. (32)

In the chosen base we have Un,n = 0 and Um,n = umun

for m �= n. Furthermore, from

〈n|U |E1〉 = (Z − |un|2)〈n|E1〉, (33a)
〈n|U |Ei〉 = −|un|2〈n|Ei〉, i �= 1, (33b)

follows that, for any α ∈ R, we have

GSL [αU ] =

{
−|α|(Z − s∗(M)), α < 0,

−|α|s∗(M), α ≥ 0,
(34)

where s∗(M) is an appropriate value of the order of
magnitude of s(M):

s(M) = max
n

|un|2. (35)

Equation (34) can be verified rigorously by using the
“Matrix Determinant Lemma” [7]. More precisely, s∗ is
the smallest root of the equation in s:

∑
n |un|2/(|un|2 −

s) = 1.
From the first Weyl’s inequality, we have

GSL [F(λ)] ≥ min
n

(
Vn +

λ

Z
|un|2

)
+ f

(
λ

Z
, σ

)
, (36)

where

f

(
λ

Z
, σ

)
= GSL

[
K +

λ

Z
U

]
. (37)
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From eq. (34) we have

f

(
λ

Z
, σ

)
∼

⎧⎪⎨
⎪⎩

−(Z − s∗(M))
λ

Z
+GSL [K] ,

λ

Z
� σ,

−
(

λs∗(M)
Z

− σ∗
)

,
λ

Z
� σ,

(38)

where σ has been defined in eq. (7), and σ∗ ∈ R is
some appropriate value of the order of magnitude of
2

∑
m,n σm,n/(M(M − 1)) (which is real). As in the uni-

form case, we do not need to know σ∗, nor to assume
eq. (38) as an actual equality. The proof is completed by
observing that, as in the uniform case, eqs. (7) and (8)
imply the existence of a regime where λ(M)s∗(M)/Z, σ,
and σ∗, tend all to zero.

So far we have considered, for simplicity, E1 = 0. The
generalization to the case E1 �= 0 is immediate. In eq. (13)
or in eq. (30), we replace λ|E1〉〈E1| with (λ − E1)|E1〉〈E1|
and use limM→∞ E1/Z = 0.

Degenerate case. Let us consider a two-fold degenerate
case. We introduce

F(λ(1), λ(2)) = H +
(
λ(1) − E1

)
|E(1)

1 〉〈E(1)
1 |

+
(
λ(2) − E1

)
|E(2)

1 〉〈E(2)
1 |. (39)

Instead of eq. (15), we now have to exploit

μ2 = lim
λ(1)→∞,λ(2)→∞

GSL
[
F(λ(1), λ(2))

]
. (40)

By defining

U (i) = Z(i)|E(i)
1 〉〈E(i)

1 | − D(i), (41)

where D(1) and D(2) have matrix elements

D(i)
m,n =

(
u(i)

n

)2
δm,n, i = 1, 2, (42)

we proceed as in the non-degenerate case. The generaliza-
tion to a k-fold degeneracy, with k finite and independent
of M , is obvious.

Weak ergodicity. – From the comments following
eq. (38), it is evident that, in order for the theorem to
hold, we can ask for a weaker condition on the GSs |E(i)

1 〉.
The following theorem accounts for such a generalization.

Theorem 3 (Weak ergodicity). Let H be a M × M
Hermitian matrix with distinct, possibly degenerate,
eigenvalues E1 < E2 < E3 < . . .. Let us suppose to have k
degenerate GSs and there exists a positive function g(M)
such that

σ = max
i

max
m,n

|σm,n|
|u(i)

n u
(i)
m |

< g(M), (43)

lim
M→∞

g(M) = 0, lim
M→∞

1
(Z(i))2g(M)

= 0. (44)

Let each GS of H be weakly ergodic, i.e. ∃ M0 such that
for any M ≥ M0 and for any i:

0 < |u(i)
n | if ∃ m : σm,n �= 0 or σn,m �= 0, (45)

and

lim
M→∞

s∗(M)
√

g(M) = 0, (46)

where s∗ is the smallest root of the equation in
s:

∑
n |u(i)

n |2/(|u(i)
n |2 − s) = 1. Then we have

lim
M→∞

μ2 ≥ lim
M→∞

min
n

Vn. (47)

Application to random walks with infinitesimal
jump rates. – A master equation of the form of eq. (1)
can be interpreted as a weighted continuous-time random
walk taking place on a graph whose adjacency matrix A
is defined by Am,n = (1− δm,n)θ[−Lm,n], where θ[·] is the
Heaviside function. The evolution of the probability pn(t)
goes through random jumps characterized by the jump
rates

W (n → m) = −Lm,n(1 − δm,n). (48)

In the case of unweighted random walks, the non-zero off-
diagonal elements of L are uniform, whereas the diagonal
elements Ln,n coincide with the degree k(n) of the config-
uration with label n, namely,

Ln,n = k(n) =
∑
m �=n

W (n → m) = −
∑
m �=n

Lm,n. (49)

Furthermore, if the random walk is symmetric, i.e. the
induced graph is indirect, we have Lm,n = Ln,m. In such
a case, we can directly identify L as the Hamiltonian H.
The GS of H = L has zero energy, E1 = 0, and is uniform,
〈n|E1〉 = 1/

√
M (here Z = M).

Consider now a symmetric random walk in which the
jump rates are infinitesimal with M . We assume, for
instance,

|Lm,n| ≤ 1
[log(M)]α

, m �= n, 0 < α < 1. (50)

Taking into account that the GS is ergodic, we see that
for this model the hypotheses of the theorem are satisfied,
and we can conclude that (we keep using the symbol k(n)
as a weighted degree to include also symmetric weighted
random walks because, although these have non-uniform
jump rates, their GS is still the uniform one)

lim
M→∞

μ2 ≥ lim
M→∞

min
n

k(n). (51)

Equation (51) tells us that, in symmetric random walks
having jump rates decaying with the logarithm of the
system size M , the relaxation time τ to reach equilib-
rium is upper bounded by the configuration having min-
imal degree, namely τ ≤ 1/ minn k(n). This result is
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quite intuitive: a necessary condition to observe a fast
dynamics is that the configurations (or nodes) have not
too small degrees. However, we warn the reader that,
in the usual definition of random walk, the jump rates
are either W (n → m) = 0 or W (n → m) = O(1),
so that the theorem cannot be directly applied, its hy-
potheses being not satisfied. Nevertheless, if minn k(n)
is a function of M which diverges as 1/g(M), with
1/(M2g(M)) M→∞−−−−→ 0, we can apply the theorem to the
matrix H = L/(minn k(n)), and we conclude that

lim
M→∞

μ2

minn k(n)
≥ 1. (52)

Conclusions. – We have stated and proved a lower
bound, in the limit M → ∞, for the gap of Hermitian
M × M matrices characterized by i) ergodic GS, simple
or degenerate, and ii) off-diagonal terms which are in-
finitesimal in M . The “infinitesimal” conditions (7), (8)
under which the theorem is satisfied are quite mild, and,
in particular, cover the common cases in which the off-
diagonal terms decay as the logarithm of the system
size M . This includes random-walks models with infinites-
imal jump rates, thermalization of classical models char-
acterized by infinitesimal couplings arbitrarily distributed,
and the Pauli master equation characterizing the thermal-
ization of open quantum systems [5,6]1.

The key ingredient of the proof of the present theo-
rem is eq. (19), or its generalization eq. (34). From a
physics viewpoint, these equations describe a sort of phase
transition between a “bosonic” extensive phase, and a
“non-bosonic” intensive phase. Here, the terms “bosonic”
and “non-bosonic” come from the observation of the signs
of the off-diagonal matrix elements of the operator αU ,
which, in turn, determine those of the “kinetic” oper-
ator K + Uλ/Z. Essentially, the proof of the theorem
consists in finding a scaling λ(M) such that the sys-
tem stays in the non-bosonic intensive phase, and, at the
same time, the parameters characterizing K+ Uλ/Z tend
to zero.

To compare our theorem with previously known re-
sults, a few comments are in order. Consider a symmetric
and unweighted Laplacian matrix L, with Ln,n = k(M),
where k(M) is a suitable growing function of M . We
can apply the theorem to the matrix H = L/k obtaining
limM→∞ μ2 ≥ 1. On the other hand, the graph induced

1The arbitrariness of the representation of the GS via eq. (5)
can play an advantage in applying our theorems, as in the cases
in which the GS of H coincides with the square root of the Gibbs
distribution of a system having energy eigenvalues En and corre-
sponding eigenvectors |En〉, namely, 〈En|E1〉 = exp(−βEn/2)/

√
Z,

where β is an inverse temperature and Z is the usual partition func-
tion. By choosing the natural representation un = exp(−βEn/2),
|E1〉 is manifestly ergodic. Furthermore, since the En are extensive
in the system size N , with N ∼ O(log M), and the Gibbs distribu-
tion is invariant with respect to an overall energy shift, it is easy to
check that, whenever the matrix elements of K decay polynomially
in N , up to a suitable energy shift, conditions (10), (11) of theorem 2
can always be satisfied for a sufficiently large size N .

by L is a regular graph of degree k, and classical results of
spectral graph theory applied to H provide the more accu-
rate estimate μ2 � 1−2/(

√
k − 1) [9]. This example shows

that for matrices associated to graphs satisfying special
properties, our lower bound can be somehow not compet-
itive. However, our result may become crucial whenever,
besides the above conditions i) and ii), there are no other
assumptions or information about H. Notice, in partic-
ular, that H can be quite different from a Laplacian, its
matrix elements being weighted and with no definite sign
or phase. We are not aware of other lower bounds for such
a general case. In ref. [10] general weighted non-symmetric
Laplacians L are considered and the eigenvalues of the
standardized Laplacian L/M are bounded in a region of
the complex plane which contains the real segment [0, 1].
If we assume a Laplacian with real eigenvalues and take
Ln,n = αnM , with 0 ≤ αn ≤ 1, and Lm,n = −βm,n, with
0 ≤ βm,n ≤ 1, m �= n, for the standardized Laplacian
our theorem provides limM→∞ μ2 ≥ limM→∞ mink αk,
asymptotically localizing, as a function of the values of the
set {αk}, the second eigenvalue in the same segment [0, 1]
of ref. [10]. However, we stress that a standardized Lapla-
cian with its off-diagonal elements vanishing as 1/M is not
of great interest for physics, whereas our theorem covers
the widespread cases in which the off-diagonal terms de-
cay as 1/ logM , i.e. linearly with the inverse of the system
size N where, typically, N is the number of particles or
the physical volume.
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