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Fermi’s golden rule for N-body systems in a blackbody radiation
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We review the calculation of Fermi’s golden rule for a system of N -body dipoles, magnetic or electric, weakly
interacting with a blackbody radiation. By using the magnetic or electric field-field correlation function evaluated
in the 1960s for blackbody radiation, we deduce a general formula for the transition rates and study its limiting,
fully coherent or fully incoherent, regimes.
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The incoherent electromagnetic (EM) radiation within a
cavity at thermal equilibrium, namely, the blackbody radiation,
has, actually, a certain degree of coherence. This is well evi-
denced by the analysis of the second-order correlation function
between electric or magnetic fields reported more than 50
years ago using techniques analogous to those employed in the
theory of isotropic turbulence of an incompressible fluid [1–3].
See also [4] for an experimental result. Quite surprisingly, this
result has received little attention in the literature, even in deal-
ing with problems of vast interest (see [5] for an exception).
Complex quantum systems, schematized as N -body systems,
are usually driven to thermal equilibrium by letting them
interact with blackbody radiation. In this equilibration, often
described in terms of a quantum optical master equation [6], the
transition rates induced by the radiation between two states of
the system, as well as the spontaneous emission contribution,
describe the core processes. We do not have a formula for these
transition rates which covers the whole spectrum of situations,
from those in which the coherence properties of the blackbody
radiation are important to those in which they are irrelevant.
The study of N -body systems, N electric or magnetic dipoles
in the simplest case, exchanging photons with blackbody
radiation appears to be mandatory for understanding many
modern mesoscopic experiments.

In this paper, we review from the very beginning the
calculation of Fermi’s golden rule for a system of N dipoles,
magnetic or electric, weakly interacting with blackbody
radiation. Using the magnetic or electric field-field correlation
function evaluated in [1–3], we deduce a general formula for
the transition rates and study its limiting, fully coherent or
fully incoherent, regimes.

Consider an isolated N -body system described by the
Hermitian Hamiltonian operator Ĥ acting on a Hilbert space
H of dimension M . For example, we have M = 2N in the
case of N qubits. We assume that the eigenproblem, Ĥ |Em〉 =
Em|Em〉, has discrete, possibly degenerate, eigenvalues and
that the eigenstates {|Em〉} form an orthonormal system in H .
The eigenvalues are thought to be arranged in ascending order
E1 � E2 � · · · � EM .

We let the system interact with the EM field of blackbody
radiation at thermal equilibrium at temperature T . As usual,
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we suppose that this interaction is sufficiently weak so that
it can be tackled by a first-order perturbative analysis. We
specialize the discussion to a system consisting of N chargeless
spins σ i , i = 1, . . . ,N , interacting with the radiation as pure
magnetic dipoles. Similar considerations apply to spinless
charged particles interacting as electric dipoles. The analysis
is easily extended to mixed electric and magnetic couplings.
We adopt the Gaussian system of units.

Let μ be the magnetic dipole moment associated with
each spin and r i the position vector of the ith spin. The
locations of the N spins are considered fixed. Due to the
interaction with the radiation inside the cavity, the system can
change its quantum state by absorbing or emitting photons.
In the semiclassical theory of radiation, these processes are
associated with the coupling of the dipoles with, respectively,
the real or the imaginary part of the plane-wave magnetic
fields B(k) cos(k · r − kct). We thus need to introduce two
separate interaction operators for each exchanged photon of
wave vector k,

V̂ ±(k,t) = −
N∑

i=1

μσ i · 1

2
B(k)e±i(k·r i−kct), (1)

the operator with the plus sign corresponding to an absorbed
EM quantum, and that with the minus sign to an emitted one.

Under the effect of the time-dependent perturbation given
by Eq. (1), in a time t the system evolves from state m to state
n according to the first-order transition amplitude [7]

a±
n,m(k,t) = − i

�

∫ t

0
ds V ±

n,m(k,s)e
i
�

(En−Em)s , (2)

where

V ±
n,m(k,s) = 〈En|V̂ ±(k,s)|Em〉

=−μ

2

N∑
i=1

3∑
h=1

〈En|σh
i |Em〉Bh(k)e±i(k·r i−kcs). (3)

The squared modulus of Eq. (2) gives the probability of
the system’s evolving in a time t from state m to state n

due to the interaction with the mode (k,±). However, for m

and n fixed, there are several modes (k,±) contributing to
the transition m → n, namely, all those compatible with the
energy conservation law En = Em ± �kc. We thus evaluate
the effective probability for the transition m → n in a time t
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by taking the expectation of |a±
n,m(k,t)|2 over all the modes in

the cavity:

E(|a±
n,m(k,t)|2)

= μ2

4�2

∫ t

0
ds e

i
�

(En−Em)s
∫ t

0
du e− i

�
(En−Em)u

×
N∑

i=1

N∑
j=1

3∑
h=1

3∑
l=1

〈En|σh
i |Em〉〈En|σ l

j |Em〉

× E(Bh(k)e±i(k·r i−kcs)Bl(k)e∓i(k·rj −kcu)). (4)

In the above formula, all the statistical properties of the
blackbody radiation are enclosed in the field-field correlation
function E(Bh(k)e±i(k·r i−kcs)Bl(k)e∓i(k·rj −kcu)). This correla-
tion function was first evaluated by Bourret [1] in the case of
real fields and then extended to the case of complex fields by
Kano and Wolf [2] and by Metha and Wolf [3]. The result
which applies directly to our case is [3]

E(Bh(k)e±i(k·r i−kcs)Bl(k)e∓i(k·rj −kcu))

=
∫

dk e±i(k·(r i−rj )−kc(s−u))

× 1

π2

�kc

e�kc/kBT − 1

(
δh,l − khkl

k2

)
. (5)

Note that an identical expression holds for the electric-field
correlation function. On plugging Eq. (5) into Eq. (4), the
integrals over the times s and u can be separately performed
as follows:∫ t

0
ds e

i
�

(En−Em∓�kc)s
∫ t

0
du e− i

�
(En−Em∓�kc)u

=
∣∣∣∣
∫ t

0
ds e

i
�

(En−Em∓�kc)s

∣∣∣∣
2

= 2π�t
sin2

[
(En − Em ∓ �kc) t

2�

]
π (En − Em ∓ �kc)2 t

2�

� 2π�t δ(En − Em ∓ �kc). (6)

As usual, this approximation is proved to be accurate for t

large by using the representation of the Dirac distribution

δ(x) = lim
y→∞

sin2(xy)

πx2y
. (7)

We conclude that the effective transition rate from state m to
state n is

P ±
n,m = 1

t
E(|a±

n,m(k,t)|2)

= μ2

2π�

N∑
i=1

N∑
j=1

3∑
h=1

3∑
l=1

〈En|σh
i |Em〉〈En|σ l

j |Em〉

×
∫

dk e±ik·(r i−rj ) �kc

e�kc/kBT − 1

× δ(En − Em ∓ �kc)

(
δh,l − khkl

k2

)
. (8)

The plus-minus sign in the factor e±ik·(r i−rj ) is irrelevant and
is omitted hereafter.

In Eq. (8) we can evaluate the integral over the modulus k of
the wave vector by means of the Dirac distribution. We write
k = ku, with k = |k| and u = (sin θ cos φ, sin θ sin φ, cos θ )
unit vector given in terms of the longitudinal and azimuthal
angles θ and φ ranging, respectively, in [0,π ] and [0,2π ].
Using dk = k2dk sin θdθdφ, we get

P ±
n,m = μ2

2π�c3

ω3
n,m

e�ωn,m/kBT − 1

N∑
i=1

N∑
j=1

3∑
h=1

3∑
l=1

Qi,j ;h,l
n,m

× 〈En|σh
i |Em〉〈En|σ l

j |Em〉, (9)

where

ωn,m = |En − Em|/� (10)

and

Qi,j ;h,l
n,m =

∫ π

0
sin θdθ

∫ 2π

0
dφ eiu·(r i−rj )ωn,m/c(δh,l − uhul).

(11)

The notation in Eq. (9) has been simplified by using ωn,m =
|En − Em|/� instead of two separate angular frequencies ω±

n,m

for the energy-gaining and the energy-losing transitions. Ac-
tually, it results that ω±

n,m = ±(En − Em)/� = |En − Em|/�.
Note that for En = Em we have P ±

n,m = 0, which expresses
the fact that there is no zero-mode (constant) EM field, in
agreement with the homogeneity and isotropy of the radiation
in the cavity. Contributions in which Em = En, including also
the case m = n, may appear only at higher orders of the
time-dependent perturbation theory.

Equation (9) is our general expression of the transition
rate m → n for a system of N magnetic dipoles interacting
with blackbody radiation. In the case of N electric dipoles,
we have an identical formula with μσ i replaced by pi , the
moment of the ith electric dipole. In this case, as well as
in the case of spatial magnetic dipoles, Eq. (9) still holds if
dn,mωn,m/c � 1, where dn,m = maxi |〈En|δr i |Em〉| and δr i

is the vector between the positive and negative charges of
the ith dipole. This condition allows for a long-wavelength
approximation in Eq. (3), so that the phase factors e±i(k·r i−kcs)

can still be considered constant factors in respect of the N -body
matrix element.

Depending on the spatial distribution of the N dipoles and
the value of ωn,m, two limiting regimes of Eq. (9) can be
attained.

Fully coherent limit. If the N dipoles are localized in
a region of extension � � λn,m, where λn,m = 2πc/ωn,m,
we have |r i − rj |ωn,m/c � 2π for any i,j . This implies
that in Eq. (11) we can approximate eiu·(r i−rj )ωn,m/c � 1 and
straightforwardly perform the integrals over θ and φ. The result
is

Qi,j ;h,l
n,m =

∫ π

0
sin θdθ

∫ 2π

0
dφ (δh,l − uhul) = 8π

3
δh,l . (12)
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In this limit, Eq. (9) reduces to

P ±
n,m = 4μ2

3�c3

ω3
n,m

e�ωn,m/kBT − 1

×
3∑

h=1

∣∣∣∣∣〈En|
N∑

i=1

σh
i |Em〉

∣∣∣∣∣
2

. (13)

The total dipole of the system,
∑N

i=1 μσ i , couples coherently
with an isotropic radiation mode of angular frequency ωn,m

weighed according to the Plank distribution. In particular, in
the limit of noninteracting particles we get

∑
m P ±

n,m = O(N ).
For N = 1, Eq. (13) is the standard textbook formula based

on the long-wavelength approximation. Reference [8] suggests
that this formula is appropriate for describing many electron
atoms in a blackbody radiation upon just replacing the dipole
(electric or magnetic) of the single electron with the total dipole
of the electrons in the atom.

Fully incoherent limit. A much different result is obtained
if the N dipoles are separated from each other by a distance
much longer than λn,m. Suppose, for simplicity, that the
dipoles occupy the sites of a regular linear lattice of spacing
a. Choosing the reference frame in such a way that the
lattice points are determined by the vectors r i = (0,0,ai),
we have u · (r i − rj ) = (i − j )a cos θ , with i,j = 1, . . . ,N .
In the general expression for the coefficients Q

i,j ;h,l
n,m given by

Eq. (11), we can separately evaluate the integral over φ and
obtain

∫ 2π

0
dφ (δh,l − uhul) = fh(θ ) δh,l, (14)

where

fh(θ ) =
{

2π − π sin2 θ, h = 1,2,

2π − 2π cos2 θ, h = 3.
(15)

Performing the remaining integral over θ , we get

Qi,j ;h,l
n,m =

∫ π

0
sin θdθ eia cos θ(i−j )ωn,m/c fh(θ ) δh,l = qi,j ;h

n,m δh,l,

(16)

where

qi,j ;h
n,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π(bi,j
n,m cos b

i,j
n,m+((bi,j

n,m)2−1) sin b
i,j
n,m)

(bi,j
n,m)3

, i 	= j , h = 1,2,

8π(sin b
i,j
n,m−b

i,j
n,m cos b

i,j
n,m)

(bi,j
n,m)3

, i 	= j , h = 3,

8π
3 , i = j,

and

bi,j
n,m = (i − j )aωn,m/c. (17)

For aωn,m/c 
 2π , i.e., a 
 λn,m, neglecting terms
O(λn,m/a), we can approximate

Qi,j ;h,l
n,m = 8π

3
δi,j δh,l . (18)

In this limit, Eq. (9) reduces to

P ±
n,m = 4μ2

3�c3

ω3
n,m

e�ωn,m/kBT − 1

×
N∑

i=1

3∑
h=1

∣∣〈En|σh
i |Em〉∣∣2

. (19)

The transition rate m → n is now the incoherent sum of N

contributions from the single dipoles. Note, however, that the
matrix elements 〈En|σh

i |Em〉 between two eigenstates of Ĥ

still retain their full N -body character. Equation (18) and,
therefore, the fully incoherent formula, (19), apply also when
the N dipoles are placed at arbitrary positions, provided the
minimal distance between two of them is still a 
 λn,m. As in
the coherent case, for noninteracting particles we have, again,∑

m P ±
n,m = O(N ).

The conditions for the validity of the fully coherent and
fully incoherent limits are better expressed in terms of the
energies of the levels n and m. We have, respectively,

|En − Em| � hc/�, � = max
i 	=j

|r i − rj |, (20)

|En − Em| 
 hc/a, a = min
i 	=j

|r i − rj |. (21)

Observing that hc = 1.23 eV μm, it is evident that for atomic
or molecular systems in which |En − Em| is, at most, a few
electron volts and � is not larger than a few tens of angstroms,
Eq. (20) is well satisfied and the fully coherent formula, (13),
applies. Vice versa, for microscopic systems in which a is
1 μm and the energy-level separations |En − Em| are much
larger than the atomic electron volt scale, condition (21) is met
and we can apply the fully incoherent formula, (19). However,
this may not be true for systems having, in the thermodynamic
limit N → ∞, a phase transition which implies the existence
of a vanishing gap. For systems of intermediate extension or
in particular regions of the energy spectrum in the presence of
a phase transitions, the general formula, (9), must be applied.

Equation (9) has been obtained on the basis of the
semiclassical theory of radiation. The field-field correlation
function, (5), which is its foundation, can be evaluated in the
framework of the quantized theory of radiation and provides
an identical result [9]. In this case, however, the interaction of
the N -body system with the zero-point energy of the quantized
EM modes gives rise to spontaneous emission processes which
add to the transition rate for stimulated emission P −

n,m. The total
emission rate, stimulated and spontaneous, is still given by our
P −

n,m, with the average number of photons at energy �ωn,m

increased by one unity [8], namely,

1

e�ωn,m/kBT − 1
→ 1

e�ωn,m/kBT − 1
+ 1.
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