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In a recent work, we have derived simple Lindblad-based equations for the thermalization of systems in contact
with a thermal reservoir. Here, we apply these equations to the Lipkin-Meshkov-Glick model in contact with
blackbody radiation and analyze the dipole matrix elements involved in the thermalization process. We find that
the thermalization can be complete only if the density is sufficiently high, while, in the limit of low density, the
system thermalizes partially, namely, within the Hilbert subspaces where the total spin has a fixed value. In this
regime, and in the isotropic case, we evaluate the characteristic thermalization time analytically, and show that
it diverges with the system size in correspondence with the critical points and inside the ferromagnetic region.
Quite interestingly, at zero temperature the thermalization time diverges only quadratically with the system size,
whereas quantum adiabatic algorithms, aimed at finding the ground state of the same system, imply a cubic
divergence of the required adiabatic time.
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I. INTRODUCTION

The main difference between open and isolated systems is
the lack of conservation laws in the former, the most common
one being the energy conservation. For open quantum systems
[1–3], another peculiar but less uniquely defined quantity,
quantum coherence, is being lost. In more formal terms, if the
system, when isolated, is governed by some time-independent
Hamiltonian H , and if O1, . . . ,Oq are a set of q-independent
operators that commute with H , and commute with each
other, the quantum-mechanical averages of these operators,
including H , provide a set of q + 1 constants of motion.
If instead the system interacts with some environment, in
general, none of these operators is a constant of motion.
Nevertheless, if the system-environment interaction can be
reduced to one of the operators O1, . . . ,Oq , say O1, then,
even if the system loses both energy and quantum coherence,
O1 remains conserved during what we can call a partial
thermalization process. This is what happens in the Lipkin-
Meshkov-Glick (LMG) model [4] when put in contact with a
thermal reservoir constituted by blackbody radiation at thermal
equilibrium.

It has been proven in [5] that the reduced density matrix of
a system interacting with a chaotic bath of bosons, which is
well approximated by blackbody radiation, obeys a Lindblad
equation (see for example [1–3] and references therein). Here,
by using a Lindblad-based approach (LBA) [6,7], we analyze
the thermalization process of the LMG model embedded
in blackbody radiation. The analysis suggests that complete
thermal equilibrium can be reached only at high enough
density, while a partial thermalization takes place at low
density. In the latter case, along the thermalization process,
the total angular momentum remains a conserved quantum
number. We then specialize the analysis of the thermalization
in this low-density regime, where the total spin is conserved.
In the isotropic case, we provide a comprehensive picture of
the characteristic thermalization times, as functions of the

Hamiltonian parameters and of the system size N . Quite
importantly, we find that these characteristic times diverge
with N only at the critical point and in its ferromagnetic
phase, linearly at high temperatures, and quadratically at zero
temperature. The latter result is to be compared with the time
estimated for reaching the ground state of this model by a
quantum adiabatic algorithm, which is known to diverge with
N3 [8].

The LMG is a fully connected model of quantum spins
which, in the thermodynamic limit, is exactly solvable. It has
been the subject of many works, at equilibrium [9,10], along
dynamics after a fast quench [11,12], along adiabatic dynamics
[13], and in the microcanonical framework [14]. The LMG
model has also been used to represent an environment of
interacting spins in contact with a system made of a single
spin or two spins, by mean-field approximations [15,16],
and also by exact numerical analysis of the reduced density
matrix [17,18]. The LMG model can find an approximated
experimental realization in certain ferroelectrics, ferromagnets
[19,20], and magnetic molecules [21]. In more recent years, the
model has attracted renewed attention due to the possibility to
be simulated by trapped ions [22], as well as by Bose-Einstein
condensates of ultracold atoms [23]. Indeed it has been
studied experimentally on several platforms: with trapped
ions [24,25], with Bose-Einstein condensates via atom-atom
elastic collisions [26,27], and via off-resonance atom-light
interaction in an optical cavity [28,29]. LMG emerges also
as a fully blockaded limit of Rydberg dressed atoms [30]
in lattices [31–33], which could have interesting applications
to quantum metrology [34–36] as well as to simulation of
magnetic Hamiltonians [37,38]. As we discuss more in detail
below, LMG can also appear as a coarse-grained model for
electric or magnetic quantum dipoles [39].

In the present work, we assume that the components of
the LMG system in interaction with a blackbody radiation are
actual spins, like in the ferromagnetic compounds, whereas
trapped ions and ultracold condensates, even if they behave as
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effective spins, can interact with blackbody radiation via other
degrees of freedom.

The paper is organized as follows. In Sec. II, we briefly
describe our LBA approach to thermalization. The LBA
scheme is then specialized in Sec. III, where the environment
is chosen to be blackbody radiation. In Sec. IV, we recall
the definition of the LMG model. In Sec. V, we investigate
under which conditions a description via a LMG model of
spins interacting with a blackbody environment is correct, and
when the fully coherent limit is valid or not, via tuning of
the particle density. In Sec. VI, we derive a simple selection
rule that takes place when the fully coherent limit is realized.
In Sec. VII, we analyze the isotropic LMG model. Here, we
specialize to the fully coherent limit, where the total angular
momentum remains conserved, and derive analytically all
the elements necessary to evaluate the thermalization times.
For the latter, we first provide simple analytical evaluations
of both the decoherence and dissipation times, which are
then confirmed in Sec. VIII, where we provide a complete
numerical analysis, allowing also for a clear picture of the
finite-size effects, particularly strong near the critical point.
Finally, several crucial conclusions are drawn.

II. THERMALIZATION VIA LINDBLAD EQUATION

Let us consider a system described by a Hamiltonian
operator H acting on a Hilbert space H of dimension M . We
assume that the eigenproblem, H|m〉 = Em|m〉, has discrete
nondegenerate eigenvalues and that the eigenstates {|m〉} form
an orthonormal system in H . We arrange the eigenvalues in
ascending order E1 < E2 < · · · < EM .

In the following we briefly resume our recently proposed
LBA to the thermalization of many-body systems with nonde-
generate spectra, which allows for an unambiguous definition
of the thermalization times, also for compounds of, possibly
equal, noninteracting systems [6].

The Lindblad equation (LE) represents the most general
class of evolution equations of the reduced density matrix
operator ρ(t) of a system interacting with an environment
under the assumptions that this evolution is a semigroup and
preserves Hermiticity, positivity, and the trace of ρ(t) at all
times. The generic LE equation can be written as

dρ

dt
= − i

h̄
[H ′,ρ] +

∑
α

(
LαρL†

α − 1

2
{L†

α Lα,ρ}
)

. (1)

In this equation, the coherent part of the evolution is repre-
sented by the Hermitian operator H ′ which, in general, differs
from the isolated system Hamiltonian H . The Lindblad, or
quantum jump, operators Lα are, for the moment, completely
arbitrary operators. Even their number is arbitrary but can
always be reduced to M2 − 1. If H has a nondegenerate
spectrum, one can represent the most general set of these
operators by dyadic products of eigenstates of H , namely,
�m,n|m〉〈n|. The meaning of the coefficients �m,n is obtained
by further developing the theory. When it is imposed that the
stationary condition of the system coincides with the Gibbs
state, ρG ∝ exp(−β H), for a given inverse temperature β,
the Lindblad equation, projected onto the eigenstates of H ,
benefits from a decoupling between the M diagonal terms,

ρn,n, and the M(M − 1) off-diagonal terms, ρm,n, m �= n, and,
furthermore, the latter terms are decoupled.

Diagonal terms (Pauli equation). The diagonal terms obey
the following master equation:

dpm(t)

dt
=

∑
n

[pn(t)Wn→m − pm(t)Wm→n], (2)

where Wm→n = |�n,m|2 is the rate probability by which, due
to the interaction with the environment, a transition |m〉 →
|n〉 occurs. In the weak-coupling limit, these rates can be
calculated by using the time-dependent perturbation theory.
The above Pauli equation can be written in vectorial form as
follows:

d p(t)

dt
= −A p(t), (3)

where pn = ρn,n and

Am,n =
{

−Wn→m, m �= n,∑
k �=m Wm→k, m = n.

(4)

Off-diagonal terms (decoherences). The M(M − 1) ele-
ments ρm,n, m �= n, behave as normal modes which relax to
zero according to

|ρm,n(t)| = |ρm,n(0)|e−t/τm,n , (5)

where

τm,n =
[

1

2

∑
k

(Wm→k + Wn→k)

]−1

. (6)

The environment is supposed to remain in its own thermal
equilibrium at inverse temperature β. Mathematically, this
information is encoded in the fact that the matrix Wm→n is
similar to a symmetric matrix Cm,n having non-negative ele-
ments via the square root of the Boltzmann factors exp(−βEm)
and exp(−βEn), namely,

e− β

2 EmWm→ne
β

2 En = Cm,n. (7)

If the transition rates Wm→n satisfy Eq. (7) for some matrix
Cm,n with Cm,n = Cn,m � 0, then the stationary state of the LE
coincides with the Gibbs state ρG; i.e., the stationary solution
of the Pauli Eq. (2) is pm = e−βEm/Z, where Z = ∑

k e−βEk ,
and ρm,n = 0, m �= n.

The characteristic time τ by which the system reaches the
stationary state is thus due to two different processes:

τ = max{τ (P ),τ (Q)}, thermalization time, (8a)

τ (P ) = 1

μ2(A)
, dissipation time, (8b)

τ (Q) = max
m�=n

τm,n, decoherence time. (8c)

The matrix A associated with the Pauli Eq. (2) has a
unique zero eigenvalue and M − 1 positive eigenvalues [7].
In the above definition of τ (P ), μ2(A) is the smallest nonzero
eigenvalue of A. The natural interpretation of τ (P ) is that it
represents a characteristic time by which the system loses or
gains energy, whereas τ (Q) represents a characteristic time by
which the system loses quantum coherence.
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The above LBA satisfies a series of minimal physical
requirements, as evident when applied to the case in which the
environment is a blackbody radiation, which will be briefly
illustrated in the next section. We stress that the remarkable
simplicity of our equations is not due to some heuristic
approach: they originate uniquely from the Lindblad class
when the Gibbs stationary state is imposed. The LBA is
equivalent to the popular quantum optical master equation
(QOME) [1], only when there is no degeneracy in the energy
levels as well as in the energy gaps of H [6]. As we shall show
later, when we consider the subspace where the total angular
momenta J2 is fixed, in the LMG model the energy levels
as well as the energy gaps are nondegenerate [see Eq. (37)].
Therefore, in the subspace where J2 is fixed, all the results
that we obtain could be equally derived from the QOME.

III. BLACKBODY RADIATION

In the case in which the environment is blackbody radiation
at inverse temperature β, the time-dependent perturbation
theory combined with the Planck law yields (this result can
be reached by treating the electromagnetic field classically,
provided at the end the contribution due to the spontaneous
emission is added)

Am,m =
∑

k: Ek<Em

Dk,m

(Em − Ek)3

1 − e−β(Em−Ek )

+
∑

k: Ek>Em

Dk,m

(Ek − Em)3

eβ(Ek−Em) − 1
, (9)

whereas the off-diagonal terms m �= n of A are

Am,n =

⎧⎪⎨
⎪⎩

−Dm,n
(Em−En)3

eβ(Em−En)−1 , Em > En,

0, Em = En,

−Dm,n
(En−Em)3

1−e−β(En−Em) , Em < En.

(10)

The coefficients Dm,n are magnetic or electric dipole matrix
elements, whose value depends on the properties of the
system embedded in the blackbody radiation as follows. In the
following, we focus on the case in which the system interacts
with the electromagnetic (EM) field through magnetic dipole
operators μσ i = (μσx

i ,μσ
y

i ,μσ z
i ), where the index i labels the

individual elements of the system located at position r i . All
the dynamics is encoded in the internal degrees of freedom;
therefore all the particles are considered fixed in space.
Based on the analysis of [40] the thermalization dynamics
is characterized by three regimes:

Fully coherent regime. If the following condition holds,

|En − Em| � hc/�, � = max
i �=j

|r i − rj |, (11)

then the following formula applies,

Dn,m = γ
∑

h=x,y,z

∣∣∣∣∣〈n|
N∑

i=1

σh
i |m〉

∣∣∣∣∣
2

, (12)

where the coupling constant γ , in Gaussian units, can be
expressed in terms of the magnetic dipole operator and

fundamental constants as

γ = 4μ2

3h̄4c3
. (13)

For N = 1, Eq. (12) equals the standard textbook formula
based on the long-wavelength approximation [41].

Fully incoherent regime. If the following condition holds,

|En − Em| 	 hc/a, a = min
i �=j

|r i − rj |, (14)

then the following formula applies,

Dn,m = γ

N∑
i=1

∑
h=x,y,z

∣∣〈n|σh
i |m〉∣∣2

. (15)

Since hc = 1.23 eVμm, we have that for atomic or molecular
systems in which |En − Em| is typically of a few eV and � is
not larger than a few tens of Å, condition (11) is well satisfied.
Instead, for microscopic systems in which a is 1 μm and the
energy-level separations |En − Em| are much larger than the
atomic eV scale, condition (14) applies.

Concerning the incoherent limit, from Eqs. (9) and (10) we
see that, even if for some pairs of states |m〉,|n〉 the condition
(14) is not satisfied, the contribution corresponding to such
pairs can be neglected if β	E � 1, where 	E is the largest
of the values |En − Em| for which the condition (14) does not
hold. From Eq. (14) we see that a sufficient condition for this
to occur is

βhc/a � 1. (16)

Intermediate regime. When none of the above inequalities
(11), (14), and (16) hold, there is no simple formula to be
applied, and one should include contributions with mixed
dipole matrix elements. These contributions originate from the
general formula for the transition probabilities of a many-body
system perturbed by the presence of the blackbody radiation
[40]:

P ±
n,m = μ2

2πh̄c3

ω3
n,m

eh̄ωn,m/kBT − 1

N∑
i=1

N∑
j=1

3∑
h=1

3∑
l=1

Qi,j ;h,l
n,m

×〈En|σh
i |Em〉〈En|σ l

j |Em〉, (17)

where

ωn,m = |En − Em|/h̄ (18)

and

Qi,j ;h,l
n,m =

∫ π

0
sin θdθ

∫ 2π

0
dφ eiu·(r i−rj )ωn,m/c(δh,l − uhul),

(19)

with u = (sin θ cos φ, sin θ sin φ, cos θ ). Equation (17) inter-
polates between the fully coherent and fully incoherent limits.
Later on, we shall make use of Eq. (17) to show that, in the
LMG model, as soon as condition (11) is not satisfied, J2 is
not conserved.

IV. THE LIPKIN-MESHKOV-GLICK MODEL

Let us consider the Hilbert space H of N spins S = σh̄/2,
where σ = (σx,σ y,σ z) are the standard Pauli matrices. The
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dimension of H is M = 2N . The LMG model is defined in H
through the Hamiltonian

H = −Jh̄2

4N

N∑
i �=j

(
σx

i σ x
j + γyσ

y

i σ
y

j

) − �h̄

2

N∑
i=1

σ z
i , (20)

where J is the spin-spin coupling, � the strength of a
transverse field, and γy the so-called anisotropy parameter. The
model is known to provide an exactly solvable mean-field-like
behavior in the limit N → ∞ [4]. Let us introduce the
components h = x,y,z of the total spin operator J :

Jh = h̄

2

N∑
i=1

σh
i . (21)

Up to the additive constant Jh̄2(1 + γy)/4, we can rewrite the
Hamiltonian as

H = −J
N

(
J 2

x + γyJ
2
y

) − �Jz. (22)

It follows that [H,J2] = 0 and [H,
∏

i σ
z
i ] = 0. These two

relations imply, whenever the system of N spins is isolated, the
conservation of the total spin J2, and the conservation of the
parity along the z direction. As a consequence, the eigenstates
|m〉 of H can be chosen as (the label m here should not be
confused with the eigenvalues of Jz, for which we shall use
the symbol mz)

|m〉 = |j,p,α〉 ∈ Hj ∩ H(p), (23)

where j is the quantum number associated with J2, i.e.,
J2|j,p,α〉 = h̄2j (j + 1)|j,p,α〉, and p = ±1 is the parity,
i.e.,

∏
i σ

z
i |j,p,α〉 = p|j,p,α〉. The Greek symbol α stands for

a suitable set of quantum numbers that allow the state |j,p,α〉
to span the intersection between the 2j + 1 dimensional
Hilbert space Hj , where j is fixed, and the 2N/2 dimensional
Hilbert space H(p), known as the “half space” of H in which
p is fixed. According to the rules for the addition of angular
momenta, for N spins 1/2 we have

N odd ⇒ j ∈ {1/2,3/2, . . . ,N/2}, (24a)

N even ⇒ j ∈ {0,1, . . . ,N/2}. (24b)

In the symmetric case, γy = 1, we also have [H,Jz] = 0,
and the index pair (p,α) coincides with (p,mz), where mz is
the eigenvalue of Jz/h̄, taking the values −j, − j + 1, . . . ,j

restricted to either p = 1 or p = −1 (if two values mz and m′
z

have the same parity, then |m′
z − mz| can be either 0 or 2).

V. IMPLEMENTATIONS OF LMG WITH MAGNETIC
SYSTEMS IN A BLACKBODY ENVIRONMENT

In this section, we want to analyze which regime, fully
coherent, fully incoherent, or intermediate, takes place in re-
alistic models characterized by an effective LMG description.
We restrict ourselves to two magnetic systems with permanent
magnetic moment. A more general analysis devoted to the
study of atomic and molecular systems with electric dipole
moments will be done somewhere else.

In general, the conditions (11) or (14) must be checked for
all those pairs (m,n) of eigenstates contributing with nonzero

dipole elements (12) and (15). However, in the LMG model, as
well as in models characterized by a smooth energy landscape,
near states correspond to near energies and, moreover, since
the operators associated with the dipole matrix elements are
sums of Pauli matrices, the dipole matrix elements can connect
only states that differ by single spin flips. Therefore, the pairs
(m,n) for which we have to control the conditions (11) or
(14), with respect to possible dependencies on N , always have
|En − Em| ∼ Jh̄2.

The first realistic model of interest is provided by the
so-called high-spin molecules. These are large molecules
having a large total spin j (which defines the eigenvalues of J2),
well described by the LMG Hamiltonian (22). According to
Ref. [21], in the high-spin molecule Mn12, we have j = 10 and
hc/(Jh̄2) � 2 cm. Substituting the latter value in Eq. (11), we
see that the fully coherent condition becomes � � 2 cm, which
is certainly satisfied (the diameter of the molecule cannot
overcome a few tens of angstroms).

The other class of realistic models concerns magnetic ions
in a crystalline environment, such as Dy(C2H5SO4)39H2O
and DyPO4, among others [19,20], and ultracold atoms with
a permanent dipole moment [39]. Here, the dipole-dipole
interaction decays with the cube of the distance between two
neighboring ions and is anisotropic. As a consequence, unless
the temperature is sufficiently high, as prescribed by Eq. (16),
there is no way to stay in the fully incoherent regime. This
becomes clear by the following argument. Two neighboring
spins Si and Sj interact via the dipole-dipole Hamiltonian:

Hi,j = − μ0

4π |r|3
[

3(m1 · r)(m2 · r)
1

|r|2 − m1 · m2

]
, (25)

where μ0 is the vacuum permeability, m1 and m2 the magnetic
moments of the two spins, and |r| = a their distance. Equation
(25) allows us to estimate the coupling constant J in a
coarse-grained Ising-like Hamiltonian for spin-1/2 particles
H = −∑

(i,j ) J SiSj . In fact, if each magnetic moment has an
electronic origin, we have |mi | ∼ μB , where μB is the Bohr
magneton. By comparison between J SiSj and Hi,j , we can
rewrite the Ising coupling in terms of fundamental constants as

Jh̄2 ∼ α3a2
0
πh̄c

a3
, (26)

where α0 is the fine-structure constant, and a0 is the Bohr
radius. We can now apply Eq. (26) to condition (11) and find
that the fully coherent condition amounts to

α3a2
0 � a3

�
, (27)

while applying Eq. (26) to condition (14) we see that the fully
incoherent condition amounts to

α3a2
0 	 a2. (28)

Since a � a0 and α � 1/137, we see that Eq. (28) is never
satisfied. Equation (27) can be instead satisfied at sufficiently
low densities. In fact, since � ∼ aN1/d , where d is the
dimension (real or effective) of the system, we see that Eq. (27)
is satisfied if a grows with N at least as a ∼ a0N

1/(2d). Whereas
for finite d such a condition amounts, in the thermodynamic
limit, to infinitely small densities, for d = ∞, such as occurs
in a fully connected model, Eq. (27) is certainly satisfied for
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any finite density. However, the fully connected interaction
is a theoretical extrapolation, as the actual d will remain
finite. In this sense, we can consider the LMG model as
a mean-field approximation of the finite-dimensional case.
As a consequence, we expect that some trade-off will take
place, with the fully coherent limit being satisfied only for
densities lower than some threshold. The numerical value
of this threshold could be calculated on the basis of the
specific limiting procedure d → ∞ chosen for defining the
LMG model, which is beyond the aim of the present work.
In any case, a threshold exists, and for densities higher than
the threshold, neither Eq. (27) and nor Eq. (28) are satisfied,
and the general formula (17) should be applied instead. In
the next section, we will make use of the general formula
(17) to show that, along the thermalization, whenever the fully
coherent regime is not satisfied, as occurs at high densities,
the total angular momentum is not conserved, while, for the
rest of the paper, we will perform a comprehensive analysis of
the thermalization by assuming the fully coherent regime, as
is expected to take place at low densities.

VI. SELECTION RULES FOR THE THERMALIZATION OF
THE LMG MODEL

To determine the matrix elements of A from Eqs. (9) and
(10), one must evaluate the dipole matrix elements Dm,n. Let
us indicate by |m〉 = |j,p,α〉 and |n〉 = |j ′,p′α′〉 two generic
eigenstates of H . Since [ J2,Jh] = 0, for any h = x,y,z, we
clearly have

Jh|m〉 = Jh|j,p,α〉 ∈ Hj , (29)

so that, if we assume the fully coherent regime, from Eq. (12),
for dipole matrix element we have

Dm;n = Dj,p,α;j ′,p′,α′ = 0 if j �= j ′. (30)

Furthermore, whereas Jz conserves the parity, this is not true
for Jx and Jy , so that, in general, we also have

Dm;n = Dj,p,α;j,p′,α′ �= 0. (31)

Let us consider now the fully incoherent regime. Consider,
for example, the symmetric case γy = 1, where |j,p,α〉 =
|j,p,mz〉 and choose N = 2. The basis is spanned by the
singlet state j = 0, mz = 0 and the triplet states j = 1,
mz = −1,0, + 1. From Eq. (15), we see that the dipole matrix
elements contain, for example, contributions proportional to

∣∣〈j = 1,p,mz = 1|σ z
1 |j = 0,p′,mz = 0〉∣∣ = 0, (32)∣∣〈j = 1,p,mz = 1|σx

1 |j = 0,p′,mz = 0〉∣∣
= ∣∣〈j = 1,p,mz = 1|σy

1 |j = 0,p′,mz = 0〉∣∣ �= 0, (33)

(and similarly for σh
2 , h = x,y,z), which give

Dm;n = Dj,p,α;j ′,p′,α′ �= 0, even if j �= j ′. (34)

Finally, let us consider the intermediate regime, and for
simplicity let us again consider a system with N = 2. From
the right-hand side of the general formula (17), we see that, in
particular, the contributions corresponding to the case i = j

and h = l are proportional to the terms (32) and (33) and alike.

Equations (30), (31), and (34) show that whereas the
thermalization process is always able to connect states with
different parity, in the fully coherent regime the thermalization
process does not connect states with different total spin,
whereas it is able to do so outside of this regime.

In the following, we will disregard the description of the
states in terms of p and we shall use the notation |j,α〉 since,
regardless of the regime, the parity of the state does not provide
any useful selection rule.

VII. THERMALIZATION IN THE FULLY COHERENT
REGIME FOR ISOTROPIC LMG MODELS

In the fully coherent limit, if the system is initially
prepared in a mixture, ρj (t = 0), of eigenstates of J2, all with
eigenvalues j , it will remain in the subspaceHj for all times. In
other words, the system will undergo a partial thermalization,
reaching asymptotically the following thermal state:

lim
t→∞ ρj (t) = exp(−β H)Pj

Zj

, (35)

where P j is the projector onto Hj , and Zj =
tr[exp(−β H)Pj ].

We now briefly review the properties of the isotropic LMG
model and discuss in detail its thermalization properties. If
γy = 1, the Hamiltonian (22) simplifies as

H = −J
N

J 2 + J
N

J 2
z − �Jz, (36)

where, as long as we are confined in the subspace Hj , the first
term is a constant. Note that whereas in the full Hilbert space
H the Hamiltonian Eq. (36) leads to a ferromagnetic phase, in
Hj , ifJ > 0, as usually assumed in the LMG models, Eq. (36)
represents the classical Hamiltonian of a fully connected Ising
model with an antiferromagnetic coupling, a highly frustrated
system with no ordinary finite-temperature phase transition.
Therefore, a phase transition can occur in the LMG model
only at zero temperature, and the order parameter must be
properly defined [9]. In order to have some magnetization in
Hj with a finite-temperature phase transition, one must allow
γy to be different from 1. An explicit classical analysis of
the finite-temperature phase transition can be found in [11].
We stress that, even if, for γy = 1, the Hamiltonian (22) is
somehow classical, its thermalization is governed by genuine
quantum processes. More precisely, the interaction with the
surrounding EM field is not trivial since all three components
of the total spin participate.

Below we provide an exact analysis of the thermalization
of the LMG model for γy = 1. We first analyze the static and
equilibrium properties, and then calculate the dipole matrix
elements which, in turn, allow us to evaluate the thermalization
times by using the equations discussed in Secs. II and III.

A. Energy levels, gap, and critical point

In the following we will work in units where h̄ = 1. If
γy = 1, the eigenstates of the Hamiltonian H are simply given
by |m〉 = |j,mz〉, with eigenvalues

E(j,mz) = −J j (j + 1)

N
+ mz

(Jmz

N
− �

)
, (37)
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with mz ∈ {−j, − j + 1, . . . ,j}. We assume N � 2. Further-
more, we consider j > 0; otherwise there exists only one state
|j = 0,mz = 0〉. As a consequence, we have j � 1 integer if
N is even or semi-integer if N is odd.

From Eq. (37) we have [hereafter, since j is fixed, we use
the shorter notation Emz

= E(j,mz)]

Emz
− Emz−1 = (2mz − 1)J − �N

N
, mz � −j + 1, (38a)

Emz
− Emz+1 = �N − (2mz + 1)J

N
, mz � j − 1. (38b)

In the following, we indicate by m(1)
z the ground state (GS),

and by m(2)
z the first excited state (FES). Let us suppose for the

moment that �N/(2J ) is not a half integer for j even (is not
an integer for j odd) so that, even for N finite, the gaps do not

close. For the GS, we have

E
m

(1)
z

= min
mz

Emz
, m(1)

z = sgn(�) min

{[ |�|N
2J

]
j

,j

}
, (39)

where we have defined

[x]j =
{

integer closest to x, j even,

semi-integer closest to x, j odd.
(40)

It is convenient to introduce

δ =
[
�N

2J

]
j

− �N

2J . (41)

By using Eqs. (37) and (39), and the definition of δ, for the GS
and FES levels we obtain

E
m

(1)
z

=
{−J j (j+1)

N
− �2N

4J + J δ2

N
, �/J ∈ [− 2(j−δ)

N
,

2(j−δ)
N

]
,

−J j (j+1)
N

+ J j 2

N
− j |�|, �/J /∈ [− 2(j−δ)

N
,

2(j−δ)
N

]
,

(42)

E
m

(2)
z

= min
mz �=m

(1)
z

Emz
=

⎧⎪⎨
⎪⎩

E
m

(1)
z −sgn(δ),

∣∣m(1)
z − sgn(δ)

∣∣ � j,

E
m

(1)
z +sgn(δ),

∣∣m(1)
z − sgn(δ)

∣∣ > j and
∣∣m(1)

z + sgn(δ)
∣∣ � j,

Esgn(�)(j−1), m(1)
z = sgn(�)j.

(43)

From Eqs. (38)–(43) we evaluate the first gap 	:

	 = E
m

(2)
z

− E
m

(1)
z

=

⎧⎪⎪⎨
⎪⎪⎩

|�| − J 2j−1
N

, �
J /∈ [− 2(j−δ)

N
,

2(j−δ)
N

]
,

J 1+2|δ|
N

, �
J ∈ [− 2(j−δ)

N
, − 2[j−r(δ)−δ]

N

] ∪ [ 2[j−r(δ)−δ]
N

,
2(j−δ)

N

]
,

J 1−2|δ|
N

, �
J ∈ [− 2[j−r(δ)−δ]

N
,

2[j−r(δ)−δ]
N

]
,

(44)

where r(δ) = 1 if δ� < 0 and r(δ) = 0 otherwise. If r(δ) = 0,
the intermediate intervals in the second line of Eq. (44) are
empty sets. Equation (44) shows that, for N finite, we can
define two “exact critical points”, �+

c and �−
c , as solutions,

respectively, of the equations

�±
c

J = ±2
(j − δ)

N
. (45)

By using the definition of δ, it is easy to check that, for any N ,
Eqs. (45) are solved for � such that δ = 0, i.e.,

�±
c

J = ±�c

J = ±2j

N
. (46)

Notice that, for j even (odd), the function [x]j has two values
for x semi-integer (integer). For j even this reflects the fact
that, whenever �N/(2J ) = k/2, for some odd (even, if j is
odd) integer k such that |k/2 ± 1/2| < j , the GS level can
be twofold degenerate, with the states m(1a)

z = k/2 − 1/2 and
m(1b)

z = k/2 + 1/2. The general expression of the GS, as well
as of the FES, for the case in which �N/(2J ) is semi-integer
for j even (or integer for j odd) is cumbersome. It is however
clear that such a condition on the external field � is of no
physical interest, since one can approach an integer or a semi-
integer by an infinite sequence of real numbers that are neither
integer nor half integer.

Equation (44) shows that there is an inner region in � where
the gap closes to zero as 	 = (1 − 2|δ|)J /N , a paramagnetic

external region where 	 remains finite, and a transient region,
whose size tends to zero as 1/N and 	 = (1 + 2|δ|)J /N .

Finally, we point out that analogous formulas hold for the
successive gaps. For example, for the difference between the
third and the second energy level, 	′, there is an interval
in � where 	′ goes to zero as 1/N , and, for N large, such
interval and gap differ for negligible terms from, respectively,
the interval and gap between GS and FES.

B. Partition function

For later use, we also calculate the partition function Zj for
j large of the type j = αN , with α constant. From Eq. (37)
we have

Zj = e
βJ j (j+1)

N

∑
mz∈[−j,−(j−1),...,j ]

eβNmz( Jmz
N

−�)

= e
βJ j (j+1)

N

∑
x∈[−1,−(j−1)/j,...,1]

eβαxN(J αx−�). (47)

For large N , the above sum can be approximated by an integral
over the range (−1,1), and we get

Zj =
√

2πN

βJα2
e

βJ j (j+1)
N eβ� �N

2J

[
1 + O

(
1

N

)]
. (48)

Notice the absence of the constant α in the second exponential.
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C. Dipole matrix elements

In order to evaluate the dipole matrix elements, we shall
make use of the ladder operators J± = Jx ± iJy . Let us

consider two generic eigenstates |m〉 = |j,mz〉 and |n〉 =
|j,nz〉, with mz,nz ∈ {−j, − j + 1, . . . ,j}. From Eq. (12), by
using Dm,n = γ

∑
h |〈j,mz|2J h|j,nz〉|2, we have

Dmz,nz
= 2γ

[
(j − nz)(j + nz + 1)δmz,nz+1 + (j + nz)(j − nz + 1)δmz,nz−1

]
. (49)

By plugging Eq. (49) into Eqs. (9) and (10), with Am,n = Amz,nz
, we get

Amz,mz
= 2γ (j − mz + 1)(j + mz)f

(
Emz−1 − Emz

) + 2γ (j + mz + 1)(j − mz)f
(
Emz+1 − Emz

)
(50)

and

Amz,mz−1 = −2γ (j − mz + 1)(j + mz)f
(
Emz

− Emz−1
)
, (51a)

Amz,mz+1 = −2γ (j + mz + 1)(j − mz)f
(
Emz

− Emz+1
)
, (51b)

Amz,nz
= 0, nz �= mz,mz − 1,mz + 1, (51c)

where we have introduced the function f (Em):

f
(
Emz

− Enz

) =
(
Emz

− Enz

)3

eβ(Emz −Enz ) − 1
θ
(
Emz

− Enz

) +
(
Enz

− Emz

)3

1 − e−β(Enz −Emz ) θ
(
Enz

− Emz

)
, (52)

θ (x) being the Heaviside step function. Plugging Eqs. (50) into Eqs. (4) and (6), we calculate the decoherence times as

τmz,nz
= [

2γ (j − mz + 1)(j + mz)f
(
Emz−1 − Emz

) + 2γ (j + mz + 1)(j − mz)f
(
Emz+1 − Emz

)
+ 2γ (j − nz + 1)(j + nz)f

(
Enz−1 − Enz

) + 2γ (j + nz + 1)(j − nz)f
(
Enz+1 − Enz

)]−1
, mz �= nz. (53)

In this framework, j is fixed, but it can be chosen to be any
value in agreement with Eqs. (24). Notice that, since in Eq. (53)
mz �= nz, the values j = 0 (for N even) and j = 1/2 (for N

odd) are not allowed (obviously, for such fixed values of j

we have no dynamics at all). The decoherence times (53)
can be easily evaluated numerically for any choice of the
allowed j , mz, and nz. Depending on the particular value of �,
which determines the energy gap 	 via Eq. (44), we can have
different thermalization regimes. Below we provide analytical
evaluations corroborated by exact numerical results.

D. Decoherence for �/J /∈ [− 2( j−δ)
N ,

2( j−δ)
N ]

In this case, 	 is finite and, if β� = O(1), from Eqs. (38)
we have

f
(
Emz±1 − Emz

) ∼ O

(∣∣∣∣� − J 2mz ± 1

N

∣∣∣∣
3
)

. (54)

By using Eqs. (54) in Eqs. (53), we get the two following
possible scaling laws with respect to j :

τmz,nz
= O

(
1

γ |�|3j 2

)
, |mz|, or |nz| � j, (55a)

τmz,nz
= O

(
1

γ
∣∣� − J 2j

N

∣∣3
j

)
, mz ∼ nz ∼ j, (55b)

τmz,nz
= O

(
1

γ
∣∣|�| + J 2j

N

∣∣3
j

)
, mz ∼ j, nz ∼ −j,

mz ∼ −j, nz ∼ j, (55c)

τmz,nz
= O

(
1

γ
∣∣� + J 2j

N

∣∣3
j

)
, mz ∼ nz ∼ −j. (55d)

Equations (55) show that, for a given j , the states which
remain coherent for a longer time are those with mz ∼ nz ∼
sgn(�)j . Quite importantly, Eqs. (55) imply that, if j is fixed
and independent of N , the decoherence times do not scale
with N at all. Consider in particular the states with j = 0. For
N even, these states are the sum of all the N ! permutations
of spin flips with alternate signs, i.e., the N -particle analog
of the singlet 2-particle state, an intrinsically entangled state.
Equations (55) tell us, if one is able to initially prepare the
system with a small value of j , N -entangled states will show
a strong resilience to decoherence. From the point of view of
thermalization, this reflects on the overall thermalization time
τ (Q), which, from Eqs. (55), becomes

τ (Q) = max
mz �=nz

τmz,nz
= O

(
1

γ
∣∣|�| − J 2j

N

∣∣3
j

)
. (56)

In the limit of zero temperature β → ∞, we can exploit

lim
β→∞

f
(
Emz

− Enz

) =
{

0, Emz
> Enz

,(
Enz

− Emz

)3
, Emz

< Enz
.

(57)

By applying Eqs. (57) and (53), we achieve, roughly, the same
overall behavior as Eq. (56).

E. Decoherence for �/J ∈ [− 2( j−δ)
N ,

2( j−δ)
N ]

In this case, 	 ∼ 	′ ∼ 	′′ . . . ∼ 1/N . If βJ = O(1) and
β|�| = O(1), Eqs. (43) and (44) and their generalization for
the successive gaps (whose details are not important here)
show that

f
(
Emz±1 − Emz

) ∼ O

( |�|J 2

N2

)
. (58)
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The interval in � where Eq. (58) can be applied to the arbitrary
state mz is not trivial. However, observing that Eq. (58) can be
applied to the GS and to the FES is enough to claim that, for
�/J ∈ [− 2(j−δ)

N
,

2(j−δ)
N

],

τ (Q) = O

(
N2

γ |�|J 2
[
j 2 + j − (

�N
2J

)2 + |�|N
2J

]
)

, (59)

where we have used Eq. (39) for the explicit form of the GS.
From Eq. (59) it follows that, if j = O(N ), then

τ (Q)| |�|
J = 2j

N
= O

(
N

γ |�|2J
)

, (60)

whereas

τ (Q)| |�|
J � 2j

N
= O

(
1

γ |�|J 2

)
. (61)

Equations (60) and (61) show that, despite that the gap
closes to zero in all the interval [− 2j

N
,

2j

N
], the slowdown

dynamics takes place only in correspondence with the critical
points �±

c /J = ±2j/N , and the decoherence time scales only
linearly in N . On the other hand, we find it remarkable to
notice that, at the critical point, the decoherence time turns
out to be a growing function of N . This observation confirms
and strengthen the general idea that phase transitions could
be exploited to generate resilience to decoherence and large
entangled states [15,16].

Notice that Eq. (58) is valid also for β large, provided
N is sufficiently large too. However, in general, the limits
β → ∞ and N → ∞ cannot be switched. If we are interested
in limN→∞ limβ→∞ τmz,nz

we can simply use Eq. (57) applied
to Eq. (53). The special case at � = �c will be analyzed later.
If instead we are interested in limβ→∞ limN→∞ τmz,nz

we can
use Eqs. (58)–(61) by substituting everywhere one factor |�|
with 1/β. This shows that, in the thermodynamic limit, the
thermalization time diverges at least linearly in β.

F. Dissipation

In order to evaluate the dissipation time τ (P ), we must
find the eigenvalue μ2(A) of the 2j × 2j matrix A given
in Eqs. (50) and (51). In general, this can be done only
numerically. In the present case, this task is largely simplified
because A is a tridiagonal matrix.

From an analytical point of view, we can apply the general
rule that, for β finite, limN→∞ τ (P ) � limN→∞ τ (Q), with τ (Q)

given by Eqs. (56), (60), and (61). Equation (60), in particular,
implies that the thermalization time τ = max{τ (P ),τ (Q)}, at the
critical point, and β fixed diverges linearly in N . Actually, the
rule limN→∞ τ (P ) � limN→∞ τ (Q) applies, if [7]

lim
N→∞

e−βE(j,m(1)
z )

Zj

= 0. (62)

Comparing Eq. (42) with Eq. (48), we see that the condition
(62) is verified for any value of � (with a decreasing factor
that decays exponentially in N ). Notice that the inequality
limN→∞ τ (P ) � limN→∞ τ (Q) holds for any β, so that we have
also limβ→∞ limN→∞ τ (P ) � limβ→∞ limN→∞ τ (Q). How-
ever, limN→∞ limβ→∞ τ (Q) = 2 limN→∞ limβ→∞ τ (P ), since,
in general, limβ→∞ τ (Q) = 2 limβ→∞ τ (P ) [7].

G. Dissipation and decoherence at the critical point at zero
temperature

The critical point at vanishing temperatures is intriguing.
Indeed, if we choose N even and j = N/2, this setup coincides
with the one used to investigate the quantum adiabatic
algorithm [13]. From Eq. (44), for N large enough we have
�c = ±j and the GS is m(1)

z = sgn(�)j . By using Eq. (57),
from Eqs. (51) we see that, for any finite N , in the limit β → ∞
the matrix A becomes triangular and, as a consequence, from
Eq. (50) for its lowest nonzero eigenvalue μ2 we obtain

lim
β→∞

μ2(A) = 2γ (2j − 1)	3, (63)

where 	 is given by Eq. (44) evaluated at |�| � |�c| = j . For
N large enough, we thus have

lim
β→∞

τ (P ) = N2

2γJ 3
. (64)

Moreover, for the property limβ→∞ τ (Q) = 2 limβ→∞ τ (P ), we
have also

lim
β→∞

τ (Q) = N2

γJ 3
, (65)

and therefore

lim
β→∞

τ = N2

γJ 3
. (66)

The present thermalization time τ , which grows as N2,
is to be compared with the characteristic time to perform
the quantum adiabatic algorithm [8], which grows as τad ∼
N/	2 = O(N3). This difference must be attributed to the
spontaneous emission process, the only mechanism at T = 0
by which the system, when in contact with the blackbody
radiation, delivers its energy to the environment. Apparently,
this mechanism provides a convergence toward the GS more
efficient than that obtained in a slow transformation of the
Hamiltonian parameters without dissipative effects.

VIII. NUMERICAL ANALYSIS OF ISOTROPIC LMG
MODELS

We made an exact numerical analysis of Eq. (53) and of
the eigenvalues of the matrix A provided by Eqs. (50) and
(51). The numerical analysis confirms our analytical formulas
and, besides, makes evident the existence of finite-size effects,
which are a fingerprint of the phase transition.

Figure 1 provides 3D plots of τm,n, as a function of m and
n, calculated for a few choices of � and β. In agreement with
Eqs. (55), the maximum of τm,n occurs in correspondence with
m � n � j/2.

Figure 2 shows the behavior of τm=j,n=j−1 (i.e., one of the
components of the decoherence times τm,n close to τ (Q) =
maxm�=n τm,n) as a function of the system size N at different
temperatures and for several values of � approaching the
critical point �c in both the paramagnetic and ferromagnetic
regions. These plots confirm, in particular, that for β finite,
τm=j,n=j−1 diverges only at the critical point. More precisely,
the divergence is linear in N for β sufficiently small, i.e.,
for β ∼ O(1/�) ∼ O(1/J ), in agreement with Eq. (60).
A different situation occurs instead for β → ∞, where the
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FIG. 1. Log plots of the dimensionless quantities bτm,n, where b = 2γJ 3, as a function of m and n, with m �= n, obtained from Eq. (53)
with N = 100, j = N/2, and, from top to bottom, � = 2�c (paramagnetic), � = �c (critical point), and � = 0.5�c (ferromagnetic), each
evaluated at the dimensionless inverse temperatures βJ = 1 (left) and βJ = 10 (right). Notice that the left and right panels are different in
each case.

divergence is quadratic in N and takes place for any �

in the ferromagnetic region, in agreement with Eq. (65).
Figure 2 also provides clear evidence of finite-size effects
in proximity to the critical point, which are particularly
important in the ferromagnetic region and at low temperatures.
At some threshold Ns(β,�), these finite-size effects decay
approximately as power laws in N (notice that Fig. 2 is
in log-log scale). In general, Ns(β,�) turns out to be a

nongrowing function of β, whereas, for a given β, it grows
for � approaching �c.

Figure 3 shows τ (P ) as a function of the system size N .
Unlike τ (Q), we see that, whereas in the paramagnetic region,
� > �c, τ (P ) decays as a power law, in the ferromagnetic
region, � < �c, τ (P ) grows approximately as a power law even
for β finite. Actually, the behavior of τ (P ) in the ferromagnetic
region is not as smooth as shown in Fig. 3: by varying N
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FIG. 2. Log-log plots of the dimensionless quantities bτm=j,n=j−1, where b = 2γJ 3, obtained from Eq. (53), as a function of N even,
calculated for j = N/2, and several values of � > 0 approaching �c > 0, Eq. (46), from above, i.e., in the paramagnetic region (left panels), and
from below, i.e., in the ferromagnetic region (right panels). Different dimensionless inverse temperatures are considered, from top to bottom:
βJ = 1, βJ = 10, βJ = 100, and βJ = 1000. The function limβ→∞ τ (Q) is obtained from Eq. (65). Notice however that, by definition,
τ (Q) = maxm �=n τm,n � τj,j−1 (compare Fig. 1).
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FIG. 3. Log-log plots of the dimensionless quantity bτ (P ) = b/μ2(A), where b = 2γJ 3 and μ2(A) is the smallest nonzero eigenvalue of
A, the matrix given by Eqs. (50) and (51), as a function of N even, evaluated for j = N/2 and several values of β and �, above and below the
critical point �c. Top left panel βJ = 1; top right panel βJ = 10; bottom left panel βJ = 100; bottom right panel βJ = 1000. The function
limβ→∞ τ (P ) is given by Eq. (64) evaluated at 0 < � � �c (it provides the same limit in all the ferromagnetic region). For the present values
of β, limβ→∞ τ (P ) matches well with the data corresponding to � = �c and βJ = 1000 when N � 103. For larger values of β the agreement
extends to greater values of N and also to data obtained for � < �c.

we have periodic oscillations among three smooth curves
associated with different sequences of N even. The data shown
in Fig. 3 correspond to one of these sequences; for the other
ones we have a power-law growth with a similar exponent but
with a different prefactor.

Another fingerprint of the phase transition that takes place in
the LMG model can be seen in Fig. 3 observing the agreement
between Eq. (64) and τ (P ) when the latter is evaluated at larger
and larger values of β (see bottom panels). More precisely, it
turns out that, for N sufficiently large, τ (P )(�c) � τ (P )(�) for
any �, and that, for β sufficiently small, i.e., β ∼ O(1/�) ∼
O(1/J ), τ (P ) grows no more than linearly with N , while it
grows no more than quadratically in N for β large.

IX. CONCLUSIONS

We have addressed the thermalization of the LMG model
in contact with blackbody radiation. The analysis is done
within LBA, a general mathematical setup developed in [7]
which allows us to analyze the thermalization processes of
extensive many-body systems. When applied to the LMG

model embedded in blackbody radiation, the LBA equations
(which, in the fully coherent regime, coincide with the QOME)
are relatively simple and can be studied analytically in great
detail. A series of results emerge.

First, by analyzing the involved dipole-matrix elements,
we find that, according to the conditions (11) and (14), in
the general LMG model, i.e., independently of the anisotropy
parameter γy , a full thermalization can take place only if the
density is sufficiently high, while, in the limit of low density,
the system thermalizes partially, namely, within the Hilbert
subspaces Hj where the total spin has a fixed value.

Second, in the fully coherent regime, and for the isotropic
case γy = 1, we are able to perform a comprehensive analysis
of the thermalization. We evaluate the characteristic ther-
malization time τ almost analytically, as a function of the
Hamiltonian parameters and of the system size N .

Third, we show that, as a function of N , τ diverges only
at the critical point and in the ferromagnetic region. This
divergence is no more than linear in N for β small, and no
more than quadratic in N for β large. In particular, in the
ferromagnetic region and at zero temperature, we prove that
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τ diverges just quadratically with N , while quantum adiabatic
algorithms lead to an adiabatic time that diverges with the cube
of N .

The latter result sheds light on the problem of preparing a
quantum system in a target state. If the target state is the GS
of a subspace of the Hilbert space of the system, cooling the
system at sufficiently small temperatures and ensuring, at the
same time, that the system remains sufficiently confined in the
chosen subspace, may produce an arbitrarily accurate result.

This procedure, at least for the present LMG model coupled to
blackbody radiation, outperforms the procedure suggested by
quantum adiabatic algorithms, where counterproductive costly
efforts are spent to avoid dissipative effects. For more general
many-body systems, it could be appropriate to consider cooling
processes induced by different, possibly engineered, thermal
reservoirs. The no-go theorem for exact ground-state cooling
[42], which apparently prohibits the application of this idea,
can be effectively evaded as discussed in [43].
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Erratum: Thermalization of the Lipkin-Meshkov-Glick model in blackbody radiation
[Phys. Rev. A 95, 042107 (2017)]
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In our paper we have erroneously stated that the quantity,

Rj = e−βE(j,m(1)
z )

Zj

, (1)

appearing in Eq. (62), attains the limit,

lim
N→∞

Rj = 0, (2)

with an exponential decrease in N in both the paramagnetic and the ferromagnetic regions. However, a proper evaluation of the
partition function Zj shows that for N large Rj vanishes as 1/

√
N in the ferromagnetic region and approaches a constant value

in the paramagnetic one. The correct result does not affect the conclusions of our paper in any way. In fact, independent of the
vanishing speed, limN→∞ Rj = 0 implies limN→∞ τ (P ) � limN→∞ τ (Q), a condition effectively used only in the ferromagnetic
region.

We also observe that Eqs. (47) and (48) contain some typographical errors, the correct expressions, respectively, being

Zj = eβJ j (j+1)/N
∑

mz∈[−j,−(j−1),...,j ]

e−βmz(Jmz/N−�) = eβJ j (j+1)/N
∑

x∈[−1,−(j−1)/j,...,1]

e−βαxN(J αx−�), (3)

and

Zj =
√

πN

βJ eβJ j (j+1)/Neβ�2N/(4J ). (4)

More importantly, we notice that Eq. (4) (for simplicity we keep only the leading term in N ) holds only for |�|N/(2J ) < j , i.e.,
in the ferromagnetic region �−

c < � < �+
c , where �±

c = ±2jJ /N . Further details on the expression of Zj in the paramagnetic
regions � < �−

c and � > �+
c together with an analysis of the ground-state properties of the Lipkin-Meshkov-Glick model will

be given elsewhere.
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