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Abstract
We investigate the non-equilibrium steady state (NESS) in an open 
quantum XXZ chain attached at the ends to polarization baths with unequal 
polarizations. Using the general theory developed in Popkov (2017 Phys. Rev. 
A 95 052131), we show that in the critical XXZ |∆| < 1 easy plane case, the 
steady current in large systems under strong driving shows resonance-like 
behaviour, by an infinitesimal change of the spin chain anisotropy or other 
parameters. Alternatively, by fine tuning the system parameters and varying 
the boundary dissipation strength, we observe a change of the NESS current 
from diffusive (of order 1/N , for small dissipation strength) to ballistic regime 
(of order 1, for large dissipation strength). This drastic change results from an 
accompanying structural change of the NESS, which becomes a pure spin-
helix state characterized by a winding number which is proportional to the 
system size. We calculate the critical dissipation strength needed to observe 
this surprising effect.

Keywords: non-equilibrium quantum systems, Lindblad equation, 
Heisenberg spin chain, boundary driven open quantum systems,  
steady state magnetization current
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The XXZ Heisenberg spin chain is a paradigmatic model in statistical mechanics. Its remark-
able properties have long been known in the context of thermodynamic equilibrium [2, 3]. 
Recently, it was shown that the XXZ chain also retains many remarkable properties in a non-
equilibrium setting, under a non-coherent boundary driving. An interesting strongly non-equi-
librium instance of the problem occurs when a coherent evolution in the bulk is accompanied 
by a non-coherent local boundary driving, which tends to polarize the boundary spins along 
two different directions. If the boundary baths do not match, the system experiences a gradient 
of magnetization which leads to nonzero currents, even in the steady state. A schematic view 
of the model is shown in figure 1. Note that the alignment of the boundary spins to the respec-
tive baths cannot be made perfect, due to quantum fluctuations—except for the so-called Zeno 
limit, when the boundary dissipation is infinitely strong. An interplay between coherent bulk 
effects and incoherent boundary couplings results in the nontrivial scaling properties of the 
non-equilibrium steady state (NESS) characteristics (the currents, density profiles, many-
point correlations, etc), which can be distinguished as different phases of criticality of the 
XXZ model [4–6].

The precise structure of the NESS for large systems and arbitrary mismatch of boundary 
polarizations is out of reach, because the complexity of the problem grows exponentially 
with the system size N. From the general setup of the problem, one would naively expect the 
NESS magnetization profile to interpolate between the left and right boundary, as depicted in 
figure 1. A few solvable cases, for which the NESS can be found analytically, [7] suggest that 
the system properties essentially depend on the phases of criticality of the XXZ model, char-
acterized by the value of the spin exchange anisotropy Δ, while the NESS within each phase 
separately varies regularly and smoothly.

In the present communication we demonstrate that, contrary to expectations, the regular 
analytic behaviour of the NESS breaks down in a seemingly innocent and natural situation 
when the boundary driving is combined with an arbitrary spin-exchange anisotropy. We 
find that for a set of fine-tuned values of the anisotropy, various characteristics of the NESS, 
e.g. the magnetization current, may change dramatically, by orders of magnitude, and from 
monotonic behaviour to strongly non-monotonic, provided that the dissipative strength Γ 
becomes sufficiently large. For these special anisotropy values, and in their proximity as 
well, a structural transition in the NESS occurs, from a spatially smooth local magnetization 
profile interpolating between the boundary baths (small k in the Fourier space), to a rigid 
quasi-periodic structure of spins corresponding to large k values, arranged in a helix. Such a 
drastic structural transition naturally entails a singular behaviour of the NESS. Remarkably, 
the spin-helix state is a pure state, which is rather unusual for a many-body interacting 
quant um system dissipatively coupled to an external bath. Detuning the anisotropy or low-
ering the dissipation strength below a threshold value causes the spin-helix structure to relax 
back to a smooth profile. The set of critical anisotropies, at which the structural transitions 
to spin-helix state occur, becomes dense on the segment [−1, 1] in the limit of large system 
size N.

The plan of the paper is as follows. We introduce the model and various properties of inter-
est in section 1. In section 2 we review the conditions under which the pure NESS is achieved 
in the Zeno limit. In section  3 the convergence to an atypical NESS for finite dissipative 
strength is quantified, while in section 4 we characterize the points where this convergence 
fails. We discuss two possible experimental scenarios in section 5, and finally, in section 6, we 
draw our conclusions.
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1. Model

We consider an open XXZ chain coupled dissipatively to boundary reservoirs, described via 
the Lindblad master equation [8–10]

∂ρ

∂t
= − i

�
[H, ρ] +

∑
α

LαρL†
α − 1

2
(
L†
αLαρ+ ρL†

αLα

)
, (1)

where H is the spin 1/2 Heisenberg Hamiltonian with a partial anisotropy along the Z-axis

HXXZ =
N−1∑
j=1

hXXZ
j,j+1 =

N−1∑
j=1

J
(
σx

j σ
x
j+1 + σy

j σ
y
j+1 +∆

(
σz

jσ
z
j+1 − I

))
. (2)

The parameter Δ describes the Z-anisotropy. The Lindblad operators are chosen so as to target 
completely polarized states of the leftmost and rightmost spins (spins number 1 and number 
N, respectively). We parametrize the targeted boundary polarizations by polar and azimuthal 
angles θL,ϕL on the left end of the chain and θR,ϕR on its right end. We consider only two 
Lindblad operators, L1, L2, the first one being

L1 =

√
Γ

2
(
− sin θLσ

z
1 + (1 + cos θL)e−iϕLσ+

1 + (−1 + cos θL)eiϕLσ−
1

)
,

 (3)
where σα, α = x, y, z, are Pauli matrices, lower indices denote the embed-
dings in the physical space, and σ± = (σx ± iσy)/2. The second Lindblad opera-
tor, L2, is obtained from equation  (3) by the substitutions σα

1 → σα
N , θL → θR, 

ϕL → ϕR . It can be straightforwardly verified that the pure one-site state ρL = |ψ1〉 〈ψ1|, with 
〈ψ1| = 〈cos(θL/2)e−iϕL/2, sin(θL/2)eiϕL/2|, is a dark state of L1, i.e. L1 |ψ1〉 = 0. In the 
absence of the coherent evolution term in equation (1), the left boundary spin relaxes to a state 
ρL = |ψ1〉 〈ψ1| = 1

2
�lL�σ1, with �lL = (sin θL cosϕL, sin θL sinϕL, cos θL), with a characteristic time 

τ = Γ−1. An analogous statement holds for the rightmost spin, which (in the absence of the coher-
ent evolution) becomes polarized along the direction �lR = (sin θR cosϕR, sin θR sinϕR, cos θR). 
A possible experimental protocol of repeating interactions leading to the density matrix evo-
lution (1) and (3) is discussed in [11]. It is clear that any non-fully-matching boundary con-
ditions, (θL,ϕL) �= (θR,ϕR), introduce a boundary mismatch, and result in steady currents 

Figure 1. Schematic setup of a chain of spins attached to two fully polarizing boundary 
reservoirs. The chain has N = 20 spins and we have chosen boundary conditions 
θL = θR = 0.4, ϕL = 0, ϕR = 4.
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flowing through the chain. In particular, due to the spin-exchange anisotropy in XY-plane, the 
Z-component of the magnetization current jz is locally conserved.

In the following solvable cases, the NESS—specifically, the time-independent solution of 
equation (1), is known analytically:

Collinear boundary driving along the anisotropy axis ϕL = ϕR = 0, θL = 0, θR = π [6]. 
The steady magnetization current is ballistic in the critical regime |∆| < 1, is exponentially 
small in the Ising-like case |∆| > 1, and is subdiffusive in the isotropic case ∆ = 1. For large 
Γ, the Z-component of the magnetization current jz vanishes due to the quantum Zeno effect.

Non-collinear XY-plane boundary driving ϕL = 0,ϕR = Φ, θL = θR = π/2 and isotropic 
Heisenberg model ∆ = 1 [12, 13]. In the isotropic case, all components of the magnetization 
current are conserved. The components jx, jy are subdiffusive, and decrease for large Γ, due to 
the quantum Zeno effect, while jz increases monotonically with Γ. The NESS-dependence on 
Γ is regular and piecewise monotonic.

Non-collinear strong XY-plane boundary driving and fine-tuned anisotropy Δ. It was 
suggested in [14], that for sufficiently strong dissipative coupling, the NESS becomes arbi-
trarily close to a pure state, which we shall call the spin-helix state (SHS), in analogy to 
states appearing in two-dimensional electron systems with spin–orbit coupling [15–17], 
limΓ→∞ ρNESS(Γ) = |ΨSHS〉 〈ΨSHS|, where

|ΨSHS〉 = 2−
N
2

N⊗
k=1

(
e−

i
2 ϕ(k−1)

e
i
2 ϕ(k−1)

)
, (4)

provided the states of the boundary spins match the boundary driving, viz. θL = θR = π/2, 
ϕL = 0,ϕR ≡ (N − 1)ϕ = Φ, and the anisotropy Δ obeys

∆ = cosϕ. (5)

In the present situation, when the Lindblad operators (3) are targeting pure single-spin states, 
the SHSs (4) are obtained in an ideal Zeno regime Γ → ∞. Note, however, that it is also pos-
sible to generate the same SHSs for finite dissipative strengths Γ, if fine-tuned mixed single-
spin states at the boundaries are dissipatively targeted [18].

The SHSs (4) are quite remarkable in many respects. From the point of view of a dissipative 
dynamics, the creation of a pure quantum state via a dissipative action is a way to beat detrimen-
tal decoherence effects. From the point of view of spintronics, the state (4) carries an anoma-
lously high ballistic magnetization current of order 1, which is independent of the system size.

The existence of SHS in the Zeno limit at fine-tuned anisotropy (5) was guessed in [14] 
on the basis of a necessary criterion and explicit calculation of the NESS for small system 
sizes. Here we revisit and systematically treat the SHS on the basis of a general theory (which 
provides necessary and sufficient criteria for SHS existence, and also a convergence criterion) 
developed by us in [1]. We treat a more general SHS,

|ΨSHS〉 =
N⊗

k=1

(
cos( θ2 )e

− i
2 ϕ(k−1)

sin( θ2 )e
i
2 ϕ(k−1)

)
, (6)

which, as we shall see later, can be dissipatively generated in a boundary driven XXZ spin chain 
by tuning the boundary conditions and the anisotropy. The state (6) describes a precession, along 
the chain, of the local spin around the Z-axis, forming a frozen spin wave structure—see figure 1 
for an illustration—with constant twisting azimuthal angle difference ϕ between two neighbour-
ing spins. This is evident if we compute the expectation value of the local spin at site n

〈ΨSHS|�σn |ΨSHS〉 = (sin θ cosϕ(n − 1), sin θ sinϕ(n − 1), cos θ). (7)

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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The local spin orientations obtained in a chain with N = 20 spins and boundary conditions 
θL = θR = 0.4, ϕL = 0, ϕR = 4 are shown in figure 1.

Note that fixed boundary polarizations ϕL = 0,ϕR = Φ match not just one SHS (6) with 
ϕ(N − 1) = Φ, but also those with ϕ(N − 1) = Φ + 2π, ϕ(N − 1) = Φ + 4π etc, until 
ϕ(N − 1) = Φ + (N − 2)2π . Thus, we shall also characterize an SHS via a winding number 
m = �(N − 1)ϕ/(2π)�, �·� being the integer part.

We will see in the following that the SHSs (6) constitute the points of resonance-like behav-
iour of the NESS, which becomes visible at large dissipation. In doing so, we shall answer 
some basic questions. How large must the dissipation strength be to reach the limiting SHS 
with a predefined accuracy? To what extent are the characteristics of the SHS/states atypical 
for given boundary mismatch? Can the resonance-like behaviour be detected in other features 
of the NESS? What happens if the system gets larger and larger, and, eventually, we reach the 
thermodynamic limit of infinitely long chains? 

The characterization of several properties of the NESS prove to be useful for our later 
considerations.

 (a) A measure of the purity. In fact, in driven Heisenberg spin chains with polarization tar-
geting operators, a NESS can become pure, e.g. ρNESS = |ΨSHS〉 〈ΨSHS|, where |ΨSHS〉 
is the SHS (6), only in the Zeno limit. As a criterion for purity of a state ρ, we shall use 
both the von Neumann entropy, SVNE(ρ) = − tr(ρ log2 ρ), and the alternative measure 
ε(ρ) = 1 − tr(ρ2).

 (b) Steady currents of magnetization and of energy. Being a non-equilibrium steady state, 
the NESS is characterized by non-vanishing steady currents. The magnetization (spin) 
current operator in the Z-direction, ̂n,n+1, is defined via a lattice continuity equa-
tion  d

dtσ
z
n = ̂n−1,n − ̂n,n+1, where

̂n,m = J(σx
nσ

y
m − σy

nσ
x
m). (8)

  The energy current operator, ĴE
n , is defined analogously by d

dt hn,n+1 = ĴE
n − ĴE

n+1, where

ĴE
n = −σz

n̂n−1,n+1 +∆(̂n−1,nσ
z
n+1 + σz

n−1̂n,n+1). (9)

 (c) Finally, we need a cumulative function characterizing the density profile σα
n , which probes 

the helix structure of the spins. To this end, we introduce a generalized structure factor 
(or, alternatively, a generalized discrete Fourier transform (GFT)), via

f̂m(Φ) =
1
M

M−1∑
k=0

fke−iϕ(m)k, (10)

  where

ϕ(m) =
Φ + 2πm

M
, m = 0, 1, . . . , M − 1. (11)

  Here, M + 1 = N  is the chain length, 0 � Φ < 2π and m is the winding number. For 
Φ = 0, equation (10) turns into the usual discrete Fourier transform. The GFT shares similar 
properties with the usual Fourier transform, e.g. the Parseval identity has the usual form

M−1∑
m=0

| f̂m(Φ)|2 =
1
M

M−1∑
k=0

| fk|2. (12)

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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  A convenient quantity to look at is the GFT (10) of the one-point observables

fk−1 = tr((σx
k + iσy

k)ρ), k = 1, 2, . . . , N − 1, (13)

  which play the role of the usual Fourier harmonics. Indeed, for a SHS with winding 
number m0, we find fk = eiϕ(m0)k.

The above quantities (a)–(c) are easily calculated for the stationary SHS  
ρSHS = |ΨSHS〉 〈ΨSHS|, where |ΨSHS〉 is given by equation  (6) with ϕ = ϕ(m0) = 
(Φ + 2πm0)/(N − 1), yielding

SVNE(ρSHS) = ε(ρSHS) = 0, (14)

jz(ρSHS) = tr(̂n,n+1ρSHS) = J sin θ sinϕ(m0), (15)

JE(ρSHS) = tr(ĴE
n ρSHS) = 0, (16)

f̂m(Φ) = sin θδm,m0 , m = 0, 1, . . . , N − 2. (17)

We stress that the SHS is realized as a NESS of the system only in the ideal limit Γ → ∞. 
To see how the above quantities change in the physically more relevant situation of finite Γ, 
consider first a simple yet demonstrative example. Figures 3 and 4 show the von Neumann 
entropy of the actual ρNESS and the corresponding steady-state magnetization current jz as a 
function of the anisotropy Δ for fixed N, θ and Φ, for two—large and small—values of the 

Figure 2. SHSs as in figure  1 but with winding numbers m = 1 (top) and m = 2 
(bottom).

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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dissipation strength Γ (for a quantification of the notions ‘large’ and ‘small’ see section 3). 
The NESS is found by solving equation (1) numerically.

For large Γ, in figure 3 we see that for values of the anisotropy Δ given by

∆cr(m,Φ) = cos
Φ + 2πm

N − 1
, m = 0, 1, . . . , N − 2, (18)

ρNESS becomes a pure state—specifically, an SHS with winding number m. For the same value 
of Γ, the steady-state magnetization current abruptly changes sign and amplitude in the region 
∆ ∈ [−1, 1] depending on the value of sinϕ(m). For small Γ—see figure 4—the above pure-
state features fade away for both SVNE and jz.

If the polarizations of the boundary spins of the chain differ slightly, as in the example 
shown in figures 3 and 4, where the boundary angle mismatch is Φ = π/10, one would expect 
a steady magnetization current proportional to the bulk gradient Φ/(N − 1). In fact, naively, 
one may assume that neighbouring spins k, k + 1 are almost collinear in the steady state. This 
scenario indeed happens for small Γ, and, if Γ is large, for Δ away from the critical values 
(18), where the spins arrange in a helical structure with angle between neighbouring spins 
ϕ = (Φ + 2πm)/(N − 1), m = 0, 1, . . . , N − 2. On the other hand, at the critical values of Δ 
corresponding to winding numbers m > 0, a resonance takes place, with a drastic increase of 
the amplitude of the steady current jz. As the system size grows, the magnetization current and 
the von Neumann entropy peaks become narrower and steeper.

To verify the existence of the helical arrangement of the spins in the regions near the criti-
cal values of the anisotropy, it is instructive to look at the GFT coefficients f̂m of equation (10) 
as a function of the anisotropy. As shown in figures 5 and 6, the GFT coefficients f̂m reach 
their absolute maxima exactly at the points ∆cr(m,Φ), in agreement with the prediction of 
equation (17). This allows us to conclude that the pure states evidenced in figure 4 by the van-
ishing of SVNE are, in fact, the SHSs (6). Note that, for large Γ, i.e. in figure 5, the amplitudes 
of the maxima of the coefficients f̂m are independent of m, and coincide with the value sin θ 
predicted by equation (17).

Figure 3. von Neumann entropy (solid blue line,left vertical scale) of the NESS and 
steady-state magnetization current (dot-dashed red line, right vertical scale) versus the 
anisotropy Δ for Γ = 1000. The minima of SVNE correspond to almost pure SHSs with 
different winding numbers. The vertical dashed lines indicate the critical anisotropies 
of equation (18) obtained, from left to right, for m = 2, 3, 4, 1, 0. System parameters: 
N = 6, θ = π/2, Φ = π/10.

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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2. Boundary driven XXZ spin chain: criterion for NESS purity

In order for the NESS to be pure in the Zeno limit, we require an existence of a NESS expan-
sion in powers of 1/Γ,

ρNESS(Γ) =

∞∑
m=0

ρ(m)

Γm , (19)

where the zeroth order term is a pure state,

ρ(0) = |Ψ〉 〈Ψ| . (20)

Consistency of the expansion (19) with the purity assumption (20) leads to restrictions 
for the effective Hamiltonian H. The general theory [1] predicts that, for boundary driven 
systems, in the Zeno limit a pure steady state ρNESS = |Ψ〉 〈Ψ| can be targeted, where 
|Ψ〉 = |ψZeno〉 ⊗ |ψtarget〉, with |ψZeno〉 ∈ H0 and |ψtarget〉 ∈ H1, H0 being the Hilbert sub-
space where the dissipation (Lindblad operators) acts and H1 its complement with respect 

Figure 4. As in figure 3 for Γ = 10.

Figure 5. Generalized Fourier coefficients f̂m versus the anisotropy Δ for Γ = 1000. 
System parameters as in figure 3.

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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to the whole Hilbert space, H = H0 ⊗H1. A necessary condition for this NESS purity to be 
achieved is that

H|Ψ〉 = λ|Ψ〉+ κ
∣∣ψ⊥

Zeno

〉
⊗ |ψtarget〉, (21)

where 
∣∣ψ⊥

Zeno

〉
∈ H0 is a state orthogonal to |ψZeno〉, κ �= 0, and λ is an arbitrary real constant. 

The criterion (21) gives a necessary condition, while two extra conditions must be checked to 
guarantee the convergence of the NESS to the targeted pure state |Ψ〉 in the Zeno limit. These 
extra conditions will be discussed in section 4.

The validity of the purity criterion (21) for the Heisenberg Hamiltonian with the boundary 
spins 1 and N attached to polarizing reservoirs stems from the following property of the local 
Hamiltonian density hXXZ

j,j+1(∆), with ∆ = cosϕ,

hXXZ
j,j+1(cosϕ) |ψ(θ,α)〉j ⊗ |ψ(θ,α+ ϕ)〉j+1 = −iJ sin θ sinϕ

×
(∣∣ψ⊥(θ,α)

〉
j ⊗ |ψ(θ,α+ ϕ)〉j+1 − |ψ(θ,α)〉j ⊗

∣∣ψ⊥(θ,α+ ϕ)
〉

j+1

)
,

 

(22)

where the lower index in a state denotes the respective embedding and

|ψ(θ,α)〉 =
(
cos θ

2 e−iα/2

sin θ
2 eiα/2,

)
 (23)

∣∣ψ⊥(θ,α)
〉
=

(
sin θ

2 e−iα/2

− cos θ
2 eiα/2

)
. (24)

It is simple to verify that equation (21) is satisfied with λ = 0,κ = −iJ
√

2 sin θ sinϕ, and

|ψ〉Zeno = |ψ(θ, 0)〉1 ⊗ |ψ(θ,Φ)〉N , (25)

|ψ〉⊥Zeno =
1√
2

(∣∣ψ⊥(θ, 0)
〉

1 ⊗ |ψ(θ,Φ)〉N − |ψ(θ, 0)〉1 ⊗
∣∣ψ⊥(θ,Φ)

〉
N

)
,

 (26)

|ψtarget〉 =
N−1⊗
j=2

|ψ(θ, ( j − 1)ϕ)〉j . (27)

Figure 6. As in figure 5 for Γ = 10.

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302
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Note that in the above three states we have α = 0 and ϕ = (Φ + 2πm)/(N − 1), with m inte-
ger. We conclude that the stationary pure state approached in the Zeno limit (fully polarizing 
reservoirs), viz.

|Ψ〉 =
N⊗

j=1

|ψ(θ, ( j − 1)ϕ)〉j , (28)

is the SHS anticipated in equation (6). It describes a ‘homogeneous’ spin precession around the 
anisotropy axis Z along the chain, with a constant polar angle θ and a monotonically increas-
ing azimuthal angle ( j − 1)ϕ, j = 1, 2, . . . , N, matching the boundary values (sin θ, 0, cos θ) 
and (sin θ cosΦ, sin θ sinΦ, cos θ). Indeed, the expectation value of the spin projection at site 
j is

〈�σj〉 = tr (|ψ(θ, ( j − 1)ϕ)〉 〈ψ(θ, ( j − 1)ϕ)|�σ)
= (sin θ cos( j − 1)ϕ, sin θ sin( j − 1)ϕ, cos θ).

 
(29)

For θ = π/2, we have the simpler helix-state of equation (4), describing spins which locally 
rotate entirely in the XY plane.

Whereas the criterion (21) ensures that the NESS converges to the spin-helix pure state in 
the limit Γ → ∞, the general theory developed in [1] allows us to quantify the speed of this 
convergence by establishing a characteristic dissipation, as discussed in the next section.

3. Convergence to the SHS for finite dissipation strength

According to [1], we introduce an orthonormal basis 
∣∣e j

〉
 in the subspace H0 where dissipation 

acts and split the Hamiltonian H with respect to this basis. In our present case H0 is the direct 
product of the local spin spaces corresponding to the sites 1 and N,

H =

d0−1∑
j=0

d0−1∑
k=0

Hjk =

d0−1∑
j=0

d0−1∑
k=0

|e j〉〈ek| ⊗ h jk, (30)

where d0 = 4 is the dimension of H0. The first two basis vectors are chosen as 
∣∣e0

〉
≡ |ψZeno〉 

and 
∣∣e1

〉
≡

∣∣ψ⊥
Zeno

〉
, with |ψZeno〉 and 

∣∣ψ⊥
Zeno

〉
 defined as in equations (25) and (26) respectively. 

The other vectors of the basis are chosen as (subscript indices denote the embedding)

∣∣e2〉 =
1√
2

(∣∣ψ⊥(θ, 0)
〉

1 |ψ(θ,Φ)〉N + |ψ(θ, 0)〉1

∣∣ψ⊥(θ,Φ)
〉

N

)
, (31)

∣∣e3〉 =
∣∣ψ⊥(θ, 0)

〉
1

∣∣ψ⊥(θ,Φ)
〉

N . (32)

Having defined the basis in the H0, the coefficients h jk of the decomposition (30), which are 
operators in H1, are readily calculated as

h jk = tr1,N
((∣∣ek〉 〈e j

∣∣ I2,3,...,N−1
)

H
)

, (33)

where I2,3,...,N−1 is the identity operator in the space of spins 2, 3, . . . , N − 1, and

tr1,N(·) = trN(tr1(·)), (34)

trn(·) = (〈+| · |+〉)n + (〈−| · |−〉)n , n = 1, 2, . . . , N, (35)

where |±〉 are the eigenstates of σz.
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Of special importance is the term h00, which is the projection of the Hamiltonian H  
on the state 

∣∣e0
〉
 targeted by the dissipation. In fact, we have D1

∣∣e0
〉 〈

e0
∣∣ = DN

∣∣e0
〉 〈

e0
∣∣ = 0,  

where D1 and DN are the dissipators associated to the Lindblad operators L1 and LN, e.g. 
D1ρ = L1ρL†

1 −
1
2 (L

†
1L1ρ+ ρL†

1L1). From equation (33) and after some algebra, we obtain

h00 = H′ + C++(2, θ, 0) + C++(N − 1, θ,Φ), (36)

H′ =

N−2∑
j=2

hXXZ
j,j+1(∆), (37)

C++(m, θ,ϕ) = trm−1
(
(|ψ(ϕ)〉 〈ψ(ϕ)|)m−1 hXXZ

m−1,m

)

= J(sin θ(eiϕσ−
m + e−iϕσ+

m ) + ∆σz
m cos θ −∆I2,3,...,N−1),

 
(38)

where hXXZ
j,j+1 are the local energy densities of the XXZ Hamiltonian (2) and 

σα
m = I2,3,...,m−1 ⊗ σα ⊗ Im+1,...,N−1, with 1 � m � N and α = ±, z. Provided equation (21) 

is satisfied, the target state is an eigenstate of h00 with eigenvalue λ,

h00 |ψtarget〉 = λ |ψtarget〉 . (39)

Defining also

C−+(m, θ,ϕ) = trm−1

((∣∣ψ⊥(ϕ)
〉
〈ψ(ϕ)|

)
m−1 hXXZ

m−1,m

)

= J
(

2 sin2 θ

2
(
e−iϕσ+

m

)
− 2 cos2 θ

2
(
eiϕσ−

m

)
+∆σz

m sin θ

)
,

 

(40)

C+−(m, θ,ϕ) = trm−1

((
|ψ(ϕ)〉

〈
ψ⊥(ϕ)

∣∣)
m−1 hXXZ

m−1,m

)

= (C−+(m, θ,ϕ))†,
 (41)

C−−(m, θ,ϕ) = trm−1

((∣∣ψ⊥(ϕ)
〉 〈

ψ⊥(ϕ)
∣∣)

m−1 hXXZ
m−1,m

)

= J
(
− sin θ

(
eiϕσ−

m + e−iϕσ+
m

)
−∆cos θσz

m −∆I2,3,...,N−1
)

,
 

(42)

and denoting ϕL = 0 and ϕR = Φ, we obtain the following other components h jk:

h01 =
1√
2
(C−+(2, θ,ϕL)− C−+(N − 1, θ,ϕR)) , (43)

h02 =
1√
2
(C−+(2, θ,ϕL) + C−+(N − 1, θ,ϕR)) , (44)

h03 = 0, forN > 2, (45)

h21 =
1
2
(C++(N − 1, θ,ϕR)− C−−(N − 1, θ,ϕR)

+C−−(2, θ,ϕL)− C++(2, θ,ϕL)) ,
 

(46)
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h31 =
1√
2
(−C+−(2, θ,ϕL) + C+−(N − 1, θ,ϕR)) , (47)

h11 = H′ − 2∆I2,3,...,N−1, (48)

h jk = (hkj)†. (49)

The remaining h jk are obtained analogously.
On using equations  (36) and (43)–(47), we can compute the characteristic value of 

the dissipation Γ, beyond which the NESS differs from the pure SHS (28) for less than a 
chosen error. In fact, according to [1], if the criterion (21) is satisfied, then, not only 
limΓ→∞ ρNESS(Γ) = |Ψ〉 〈Ψ|, where |Ψ〉 is given by equation (28), but for finite Γ we have 
that the NESS is characterized by a purity index

ε(Γ) = 1 − tr ρNESS(Γ)
2 =

Γ2
ch

Γ2 + o
(

1
Γ2

)
, (50)

whose value is determined by the squared ratio between Γ and a characteristic dissipation. The 
latter is given by the formula

(Γch)
2
= 8|κ|2

d1−1∑
α=1

d1−1∑
β=1

(K−1)αβRβ , (51)

where K is the (d1 − 1)× (d1 − 1), d1 = 2N−2, matrix having elements

Kαβ =

d0−1∑
k=1

(∣∣〈α|hk0|β〉
∣∣2 − δαβ〈α|(hk0)†hk0|α〉

)
, α,β = 1, 2, . . . , d1 − 1,

 

(52)

and

Rα = 〈α|F |ψtarget〉 〈ψtarget|F† |α〉 , α = 1, 2, . . . , d1 − 1, (53)

with

F =

d0−1∑
k=1

(
hk1 +

[
Λh01, hk0]) , (54)

and

Λ =

d1−1∑
α=1

1
λα − λ

|α〉〈α|. (55)

The symbols λα indicate the eigenvalues of h00 for α = 1, . . . , d1 − 1, whereas λ ≡ λ0, also 
entering the condition (21), is the principal eigenvalue of h00—see equation (39).

In agreement with the results of the previous section, for ∆ = cosϕ and ϕ = 
(Φ + 2πp)/(N − 1), with p integer, we find

λ = 0, (56)
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which follows from the easily checkable identity

C++(m, θ,Φ) |ψ(θ,Φ+ ϕ)〉 = (cosϕ−∆) |ψ(θ,Φ+ ϕ)〉

+

(
i sinϕ sin θ − 1

2
sin 2θ (cosϕ−∆)

) ∣∣ψ⊥(θ,Φ+ ϕ)
〉

 (57)
and equations (39) and (36).

4. Divergences of the characteristic dissipation

If Λ and K−1 are nonsingular matrices, the characteristic value of the dissipation Γch is always 
finite, and the NESS converges to the SHS (6) for Γ � Γch. On the other hand, divergence of 
Γch signifies a breakdown of the purity assumption (20), and consequently the breakdown of 
the convergence to the SHS in the Zeno limit.

Points of divergence of Γch may happen when Λ or K−1 is singular. In our problem, we 
have three parameters: the twisting angle ϕ, the polar angle θ, and the size of the system 
N—the anisotropy being fixed by equation (21) to be ∆ = cosϕ. Investigating, with the help 
of Mathematica, the analytic expression (51) for N � 12 leads us to formulate the following 
ansatz.
Ansatz. For any finite size N � 3 and any fixed 0 < θ < π , Γch(ϕ) diverges at a set of  
isolated singular points ϕ∗

j ∈ ΩN , given by

ΩN =
{
ϕ∗

j : ϕ∗
j k = πd, k = 2, 3, . . . , N − 1, d ∈ Z

}
. (58)

Moreover, in the ε-vicinity of every point ϕ∗
j , we have Γch(ϕ

∗
j + ε) = A0(N, θ,ϕ∗

j )|ε|−aj, with 
aj = 1.

4.1. Effective number of Γch singularities

The condition (58) has a very simple geometrical interpretation: it marks all possible twisting 
angles ϕ for which the target SHS has two or more collinear spins including the boundary 
spins. It is enough to describe the points of ΩN  lying in the segment ]0,π[. In fact, inverting 
the sign of a ϕ∗

j  changes the sign of the helicity but conserves the collinearity of the spins. We 
also exclude the trivial points ϕ∗

j = 0,π . Let us denote Ω∗
N  the reduced set of different values 

ϕ∗
j ∈]0,π[ . For fixed N, this set consists of the angles

{ϕ∗
j } =

{
π

2
,
π

3
, . . . ,

π

N − 1

}
 (59)

and all multiples of these such that 0 < ϕ∗
j d < π. For instance, for N = 6 we explicitly 

have

Ω∗
6 =

{
π

2
,
π

3
,
π

4
,
π

5
,

2π
3

,
2π
5

,
3π
4

,
3π
5

,
4π
5

}
. (60)

In general,

Ω∗
N =

{
ϕ∗

j : ϕ∗
j k = πd, k = 1, 2, . . . , N − 1, d = 1, 2, . . . , k − 1

}
, (61)

with the condition that pairs d, k  having the same ratio d/k are counted only once.

V Popkov et alJ. Phys. A: Math. Theor. 50 (2017) 435302



14

For fixed N, the total number of the points where Γch diverges is given by

|Ω∗
N | =




N−1∑
k=2

k−1∑
d(k)=1

1




′

, (62)

where the prime means that different pairs d, k  with the same ratio d/k are taken into account 
one time only in the sum. For N = 3, 4, 5, 6, 7, 8, 9, 10, 100, 300 we find, respectively, 
|Ω∗

N | = 1, 3, 5, 9, 11, 17, 21, 27, 3003, 27 317, where the last two examples have been com-
puted numerically. Finding a recursive relation for |Ω∗

N | is not easy. Note that if N1 ≡ Npr is a 
prime number, then Ω∗

Npr+1 will contain Npr − 1 new elements with respect to Ω∗
Npr

, viz.

Ω∗
N1+1 \ Ω∗

N1
=

{
π

N1
,

2π
N1

, . . . ,
(N1 − 1)π

N1

}
, (63)

so that |Ω∗
Npr+1| = |Ω∗

Npr
|+ Npr − 1. If N1 is not a prime number, then |Ω∗

N1+1| − |Ω∗
N1
| < N1 − 1 

since some elements of the set (63) are already present in Ω∗
N1

. Therefore, to find an exact 
asymptotic behaviour of |Ω∗

N |, one needs at least to know the distribution of the prime num-
bers on an interval [1, N], which is a famous unresolved mathematical problem [19]. By using 
Mathematica, we find that for N � 2000, the cardinality of Ω∗

N  grows quadratically with the 
system size N: specifically, |Ω∗

N | ≈ 0.303 86N2.

4.2. NESS at Γch singularities

On varying the twisting angle ϕ (the anisotropy being fixed at the value ∆ = cosϕ), the NESS 
everywhere converges, in the Zeno limit, to the pure SHS (6), except for ϕ given by the singu-
lar points (58), where the limiting NESS is mixed. This is well illustrated by figure 7, where 
the von Neumann entropy SVNE(ϕ) tends to vanish everywhere except at the nine values of 
ϕ given by equation (60). For small polar angles θ, the convergence of the NESS to the SHS 
is faster—see figure 8—but the divergences of Γch, where the convergence fails, arise at the 
same points. For the particular value ϕ∗

j = π/2, and θ = π/2, the NESS can be shown to be 
a completely mixed state of the form

lim
Γ→∞

ρNESS =
1

2N−2 ρL ⊗ I2,3,...,N−1 ⊗ ρR, for ϕ = π/2, (64)

where ρL, ρR are the reservoir polarizations—see section 4.1 of [20] for details. For other ϕ∗
j , 

the NESS converges to some unknown mixed states.

4.3. Source of Γch singularities

All points of divergence of Γch must be either due to divergence of K−1, entering equa-
tion  (51) directly, or the divergence of Λ entering the expression (51) through the terms 
Qα,k = 〈α| [Λh01, hk0] |0〉, or both [1]. Using Mathematica, we checked that each of the 
points (58) correspond to a divergence of either K−1 or the Qα,k(Λ) terms. The partition of 
the singularities of Γch between K−1 and Λ depends quite crucially on the value of the polar 
angle θ.

For θ �= π/2, we have detK �= 0 for any ϕ and any N; therefore, K−1 always exists, and all 
the points of divergence of Γch are due to divergency of the terms Qα,k(Λ).
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For θ = π/2, K−1 is singular at the isolated points ϕ∗∗
j ∈ Ω

(K)
N ⊂ Ω∗

N, where

Ω
(K)
N =

{
ϕ∗∗

j : ϕ∗∗
j 2k = πd, k = 1, 2, . . . ,

⌊
N − 1

2

⌋
, d = 1, 2, . . . , 2k − 1

}
.

 

(65)

In this set, as in Ω∗
N , pairs d, k  with the same ratio d/(2k) are counted only once. The terms 

Qα,k(Λ) diverge at the points of the complementary subset

Ω
(Λ)
N = Ω∗

N \ Ω(K)
N . (66)

For example, in the case N = 6 we have

Ω
(K)
6 =

{
π

2
,
π

4
,

3π
4

}
, (67)

Figure 7. Von Neumann entropy of the NESS (solid blue line, left vertical scale) and 
steady-state magnetization current (dot-dashed red line, right vertical scale) as a function 
of the twisting angle ϕ. System parameters: N = 6, ∆ = cosϕ, θ = π/2, Γ = 500. 
There are nine singular points characterized by peaks of SVNE and nadirs of jz, where 
the convergence of the NESS to a pure spin-helix state fails. These points coincide with 
those predicted theoretically—see equation (60). Note the symmetry around ϕ = π/2.

Figure 8. As in figure 7 but for θ = π/8.
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Ω
(Λ)
6 =

{
π

3
,
π

5
,

2π
3

,
2π
5

,
3π
5

,
4π
5

}
. (68)

In figure 9 we show the minimum modulus of the eigenvalues of the matrix K as a function of 
the twisting angle ϕ for N = 6 and θ = π/2. Zeros are obtained exactly at the points of the 
set (67).

The number of points in Ω(Λ)
N  is smaller than the number of points where Λ, tout court, 

has a divergence—i.e. the points of degeneracy of h00. This is easily understood if, instead 
of directly studying the divergence of the terms Qα,k(Λ), we proceed as follows. Divergence 
of Γch governed by the Λ matrix stems from an inconsistency of the linear system of equa-

tions for the coefficients M(1)
α0  arising in the first order expansion of the NESS in powers of 

1/Γ [1]. In the basis in which h00 is diagonal, this system has the form (see equation (A24) 
of [1])

(λα − λ0)M
(1)
α0 = 2iκ 〈α| h01 |0〉 , α = 1, 2, . . . , d1 − 1. (69)

Since κ �= 0, the quantity M(1)
α0  diverges if two conditions are simultaneously satisfied: (a) the 

eigenvalue λ0 of h00 is degenerate, i.e. λα − λ0 = 0 for some α = 1, 2, . . . , d1 − 1, and (b) for 
the corresponding α it results 〈α| h01 |0〉 �= 0. Note that the sole degeneracy of λ0 may not 
lead to a divergence of Γch.

Inspecting, for various finite N, the angles ϕ where both (a) and (b) conditions are satisfied, 
we recover the subset Ω(Λ) given by equation (66). The case N = 6 with θ = π/2 is shown 
in figure 10. Conditions (a) and (b) simultaneously hold at the points ϕ/π = 1/5, 1/3, 2/5 as 
well as in the symmetric points ϕ/π = 3/5, 2/3, 4/5 not shown in the plot.

We conclude that the NESS reached in the Zeno limit becomes pure for all ϕ, except at 
the singular points of the set (58), where two or more spins in the target spin-helix configura-
tion become collinear. In figure 11 we plot Γch(ϕ) evaluated according to equation (51). The 
characteristic dissipation shows divergence exactly at the points predicted by (58). Note that 
in the thermodynamic limit N → ∞ the number of divergencies grows quadratically with the 
system size.

Figure 9. Minimum modulus of the eigenvalues of the matrix K as a function of the 
twisting angle ϕ for N = 6. The plot is symmetric with respect to ϕ = π/2 and ϕ = 0. 
Parameters: θ = π/2, ∆ = cosϕ.
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5. Experimental scenarios

Finally, we comment on two hypothetical experimental scenarios. Using single atom tech-
niques [21], it should be possible to realize systems with a fixed number N of spins 1/2 cou-
pled via Heisenberg exchange interaction, and to manipulate either the total twisting angle Φ 
(scenario A), or the anisotropy ∆ (scenario B). For both cases, we assume that the dissipative 
strength Γ can also be controlled. Note that quantum Zeno dynamics [22] is well within reach 
of contemporary experimental setups [23].

Figure 10. Gap of the h00 spectrum (solid blue line, left vertical scale) and corresponding 
matrix element 〈α| h01 |0〉 (dashed red line with filling to the horizontal axis, right 
vertical scale) as a function of the twisting angle ϕ for N = 6. Note that the gap 
vanishes, and simultaneously 〈α| h01 |0〉 �= 0 only at points ϕ/π = 1/5, 1/3, 2/5. The 
plot is symmetric with respect to ϕ = π/2 and ϕ = 0. Parameters: θ = π/2, ∆ = cosϕ.

Figure 11. Characteristic dissipation Γch, computed according to equation  (51), as 
a function of the twisting angle ϕ for N = 6. The plot is symmetric with respect to 
ϕ = π/2 and ϕ = 0. Parameters: θ = π/2, ∆ = cosϕ.
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5.1. Scenario A. Fixed anisotropy |∆| < 1, varying boundary twist Φ

It is clear from the previous discussion that an interesting case occurs if the anisotropy ∆ 
obeys −1 < ∆ < 1 and ∆ �= 0. For a quantum chain, the regime −1 < ∆ < 1 is referred to 
as critical, or an easy-plane regime, while the condition ∆ �= 0 rules out the so-called non-
interacting free-fermion case. The latter case corresponds to ϕ = π/2 and does not converge 
to a pure NESS for any N, see equation  (64). Measuring any one of the NESS properties 
(a)–(c) discussed in section 1, for different total boundary twisting angles Φ, we will find a 
resonance-like behaviour corresponding to the existence of a spin-helix pure NESS. This will 
happen at the value Φ = Φ0  given by

Φ0 = (N − 1) arccos∆. (70)

The value of the characteristic dissipation above which the above resonance will be measured 
can be computed analytically using equation (51). We have seen that the characteristic value 
Γch becomes large in proximity of the singular points ϕ∗

j , where a divergence of Γch takes 
place—see equation (58). The larger the size of the system, the smaller the distance between 
two consecutive singular points ϕ∗

j . Therefore, we expect Γch(∆), with Δ corresponding to 
some generic irrational value of ϕ = arccos∆, to increase with the system size N, and to 
diverge in the thermodynamic limit.

5.2. Scenario B. Fixed boundary twist Φ, varying anisotropy |∆| < 1

This scenario is more spectacular then the previous one. For every generic fixed twisting 
angle Φ, such that Φ/π is irrational, there will be N − 1 resonance values of the anisotropy, 
corresponding to the formation of SHSs in the Zeno limit. These resonance values are given 
by ∆(m) = cos((Φ + 2πm)/(N − 1)), m = 0, 1, . . . , N − 2. The characteristic dissipation, 
above which the phenomenon can be measured, will depend on m and on the closeness of the 
respective ϕ = arccos∆(m) to the nearest singular points ϕ∗

j  of equation (58). By increasing 
the size of the system we will have two competing effects. The number of resonances will 
grow linearly with the size N, but the majority of the SHSs will become more difficult to 
measure due to the overall growth of Γch. Note, however, that SHSs with the effective smallest 
winding numbers, namely, m = 0 and m = N − 2, become more accessible as the system size 
grows. In fact, we have observed in [14] that, for these winding numbers, Γch(ε), the charac-
teristic dissipation at a chosen purity ε of the NESS decreases with increasing N.

6. Conclusions

We have shown that a boundary-driven Heisenberg spin chain in the critical regime |∆| < 1 
exhibits, for large dissipation strength, a set of structural transitions in its non-equilibrium 
steady state between states with spatially smooth magnetization profile and spin-helix struc-
tures, where the local magnetization significantly changes from one site to another. Each 
spin-helix structure can be understood as a single generalized discrete Fourier harmonic, 
compatible with the boundary conditions imposed by the dissipation. Varying the anisotropy 
inside the critical easy-plane phase, −1 < ∆ < 1, and keeping sufficiently large dissipation 
strength, i.e. suppressing the boundary fluctuations, a complete set of these generalized dis-
crete Fourier harmonics can be generated, one by one.

Note that with the help of SHSs (6) one can prepare a single spin in an arbitrary pure 
state, regardless of the length of the chain and the position of the spin, for any value of the 
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aniso tropy. This requires manipulating boundary dissipation at the ends of the chain. For iso-
tropic spin exchange an arbitrary single spin state at a distance can be generated with just 
one boundary dissipator [24]. From the quantum transport point of view, existence of SHSs 
makes it possible to reach ballistic current in a situation where typical current is diffusive or 
subdiffusive.

Interestingly, a structural transition to an SHS fails whenever two or more spins in the 
helix become collinear. Such a situation arises when the twisting angle governing the helix is 
a rational multiple of π and the spin chain is sufficiently long. At a deeper level, these break-
ups of convergence of the NESS to a pure state are related to divergence of the characteristic 
dissipation—a threshold value of the dissipation, above which the structural transitions can 
be observed. We have provided an explicit formula for the characteristic dissipation, and a 
detailed classification of its points of divergence.

The method we propose can be straightforwardly generalized, and can be tested on other 
systems, e.g. on spin chains with higher spins—see [18]. It would be interesting to see if spin-
helix-like structures can be realized in 1D arrays of magnetic atoms [21].
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Appendix. Dependence of Γch on the polar angle θ. Solvable case N = 3

It is instructive to consider the simplest nontrivial chain with N = 3 spins. In this case, the 
Hilbert spaces H0 and H1 have dimensions d0 = 22 and d1 = 21 respectively. The matrix K is, 
therefore, a scalar, and—using equations (36), (52), (33), and (51)—we find

K = −2
(
2 cos(2ϕ) sin2(θ) + cos(2θ) + 3

)
. (A.1)

Note that K � 0 for all θ, ϕ and K = 0 only for θ = π/2, ϕ = π/2. For Γch we obtain the 
remarkably simple expression

Γ2
ch = 8 sin4(θ) sin2(ϕ) tan2(ϕ). (A.2)

We conclude that for N = 3 the dependence of Γch on θ is described by a multiplicative factor 
sin2(θ), which reaches its maximum at θ = π/2.

For N > 3, the θ-dependence of Γch is no longer multiplicative; however, it has the form

Γch(N,ϕ, θ)
Γch(N,ϕ,π/2)

= CN(ϕ, θ), (A.3)

CN(ϕ, θ) = CN(ϕ,π − θ), (A.4)

CN(ϕ, θ) � 1. (A.5)

We have seen that C3(ϕ, θ) = sin2(θ), independent of ϕ. For N > 3, the function CN(ϕ, θ) at 
fixed ϕ is always a symmetric function, CN(ϕ, θ) = CN(ϕ,π − θ), which has an extremum 
at θ = π/2. For most values of ϕ, CN(ϕ, θ) has, as a function of θ, an absolute maximum at 
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θ = π/2—see figure A1. For small θ � 1, CN(ϕ, θ) decreases as θ2, making the respective 
dissipative pure state (6) easier to reach (given purity attained at smaller dissipative strengths). 
This is in accordance with physical intuition, since for small θ the SHS (6) corresponds to 
small deviations of the local magnetization vector from the (0, 0, 1) direction, which are easier 
to sustain.
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