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• Formula for ground and first-excited state energies of Random Energy Models.
• First order quantum phase transition rigorously established.
• Ensemble averaged gap has finite values.
• Non-adiabtic annealing algorithm may have some chances.
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a b s t r a c t

By using a previously established exact characterization of the ground state of random
potential systems in the thermodynamic limit, we determine the ground and first excited
energy levels of quantum random energy models, discrete and continuous. We rigorously
establish the existence of a universal first order quantum phase transition, obeyed by
both the ground and the first excited states. The presence of an exponentially vanishing
minimal gap at the transition is general but, quite interestingly, the gap averaged over
the realizations of the random potential is finite. This fact leaves still open the chance for
some effective quantumannealing algorithm, not necessarily based on a quantumadiabatic
scheme.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The perspective to realize a physical device representing a quantum computer (QC) has motivated a fervent research
activity concerning the algorithms that could best exploit the intrinsic quantum properties of such a machine as opposed
to the classical ones of current computers. In particular, there has been a growing interest toward the possibility to use
quantum annealing (QAn) [1–3] as an alternative to simulated thermal annealing [4]. A pictorial viewpoint in fact suggests
that in order to get the ground state (GS) of a given classical Hamiltonian V , the thermal fluctuations, introduced to avoid
the system to be trapped in local minima, could be replaced by quantum fluctuations able to outperform the former due
to tunneling effects. Usually, QAn is associated with quantum adiabatic (QAd) algorithms [5–7]. The idea is to implement
an interpolating Hamiltonian H(Γ ) = V + Γ K , where K is an operator which does not commute with V . The adiabatic
theorem ensures that for sufficiently slow changes of the parameter Γ the interpolating system remains in its GS so that
the original GS of V can be recovered in the limit Γ → 0. However, for many interesting problems V , the interpolating
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Hamiltonian H(Γ ) is likely to undergo a first order quantum phase transition at some value Γ = Γc, where the energy gap
∆ between the first excited state (FES) and the GS becomes exponentially small in the system size N [8–10]. In this case, a
QAd decrease of Γ starting from some value Γ > Γc, where the GS of H(Γ ) is found with ease, requires an exponentially
long time. Otherwise, the system evolves into a combination of several instantaneous eigenstates ofH(Γ ) and when Γ → 0
there is a finite probability to attain a state of V different from its GS. For V with a glassy energy landscape, ‘‘quantum is
better’’ may be untrue [11].

The aim is this paper is threefold, we show that: (i) this phase transition scenario, characterized by a normal (param-
agnetic) phase, for Γ > Γc, and a condensed phase, for Γ < Γc, is in fact universal, being valid for any hopping operator
K and any potential operator V ; (ii) in the case of random potentials, where one must perform a quenched average over
the different realizations of V , or, instances, the average of the GS energy determines Γc (see Eq. (2)), the average of the gap
remains finite and,with respect toΓ , is constant in the condensed phase, and linear in the normal phase; (iii) for any instance
there exists a value Γmin where the gap is exponentially small with the system size N , and Γmin → Γc for N → ∞. All the
theoretical analysis is supported by unbiased numerical simulations. In the conclusions we shortly discuss the implications
of points (i)–(iii) which make impossible to realize an efficient quantum adiabatic algorithm, but still leave open the chance
for some effective more complicated quantum annealing scheme [12].

We analyze the case in which V is a generic random potential with a discrete or continuous distribution of the levels. For
any choice of K , provided that K has zero diagonal elements in the representation in which V is diagonal, H(Γ ) = V + Γ K
is a quantum random energy model (QREM) belonging to the class of systems studied in [13]. The term QREM refers to the
quantum counterpart of the classical random energy model (REM), the model defined without the ‘‘hopping’’ operator K ,
namely, H = V . In its original version, the REM was proposed with V having Gaussian distributed levels and represents a
well known toy model for spin glasses [14]. The corresponding QREM has been first studied perturbatively and numerically
in [8].

In Ref. [13]we have exactly characterized theGS and found a sufficient condition for the existence of a first order quantum
phase transition for systems in which V is an arbitrary random potential. Here, we extend these results to study in detail
both the GS and the FES energies of a generic QREM.

2. Ground state of random potential systems

In [13] we have determined the exact GS of a class of Hamiltonian models defined by an arbitrary hopping operator K ,
i.e., an off diagonal matrix of dimension M , and a random potential V , i.e., a diagonal matrix with M i.i.d. random values
V extracted according to an arbitrary probability distribution P(V ). As usual, we will denote the system corresponding to a
particular realization of the V values as an instance and E(·) =

∫
· P(V )dV will stand for the expectation over all possible

instances. For the mentioned class of models, in the thermodynamic limit the energy E0 of the GS is related to the lowest level
E(0)
0 of the hopping operator by∫

P(V )
E0 − V

dV =
1

E(0)
0

, E0 ≤ E(V(1)), (1)

where E(V(k)) is the expectation of the kth order statistic associated with the distribution P(V ), i.e., the expectation of the
kth smallest value among the M values of V drawn according to P(V ) [15]. Note that, whereas E(0)

0 is deterministic, E0 is
stochastic and Eq. (1) is actually an equation for the expectation E(E0). However, we assume that E0 is self-averaging and
this justifies the above notation.

The derivation of Eq. (1) follows from an exact probabilistic representation of the time evolution of a quantum system
in terms of a proper collection of independent Poisson processes [16–18]. In fact, by using this representation, the lowest
eigenvalue of H = V + Γ K can be expressed as the solution of a scalar equation written in terms of the asymptotic
probability density of the potential and hopping frequencies (frequencies of the values ofV andK realized in the probabilistic
representation of an infinitely long time evolution) [13]. It happens that, for the above mentioned class of systems with a
randompotential, aswell as for the uniformly fully connectedmodels, in the thermodynamic limit the asymptotic probability
density of the potential and hopping frequencies is exactly given by a multinomial. The equation for the ground-state level
of H then greatly simplifies and, in the thermodynamic limit, takes on the form of Eq. (1) [13]. We assume a non-trivial
thermodynamic limit, namely, a limit in which the lowest levels of H , V and K diverge with the same speed (the most
interesting case being the one in which such levels are all extensive in N). Apart from this, the distribution P(V ) remains
completely arbitrary.

Eq. (1) has a simple interpretation: the average of the inverse hopping energy, estimated as 1/(E0 − V ), must coincide
with the inverse of the actual hopping energy, namely, 1/E(0)

0 , with the constraint that E0 does not exceed the averaged
minimum potential. It may happen that the solution of the integral problem in Eq. (1) becomes incompatible with the
constraint E0 ≤ E(V(1)). This may occur, for instance, when some parameter of the model is changed below a threshold,
e.g., Γ < Γc for the Hamiltonian H(Γ ) = Γ K + V . Then, the GS of an instance condensates, for Γ < Γc, into the eigenstate
of V corresponding to the minimum value V realized in that instance. As a result, E0(Γ ) = E(V(1)) for any Γ < Γc and we
obtain a condensation in the space of states [19]. Note that each instance condensates into a different state, however, this
state corresponds, for all instances, to that of minimum potential. A sufficient condition for this first order quantum phase
transition to take place is that P(E(V(1))) → 0 in the thermodynamic limit [13].
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When the above results are applied to a quantum mechanical model, M stands for the dimension of the Fock space and,
in general, we have M ≫ N , where N is the size (number of particles) of the system. The phase transition is determined by
the condition E0 = E(V(1)), where E0 is the solution of the integral problem in Eq. (1), namely∫

P(V )
E(V(1)) − V

dV =
1

E(0)
0

. (2)

This is the equation which allows us to find the critical point of the phase transition in terms of the ‘‘hopping’’ parameter Γ
or, possibly, in terms of other parameters contained in the probability distribution P(V ).

3. Discrete and continuous QREMs

Let us consider the Hamiltonian H = Γ K + V acting on theM = 2N spin states

|n⟩ = |n1, n2, . . . , nN⟩ = |n1⟩ ⊗ |n2⟩ ⊗ · · · ⊗ |nN⟩, (3)

where |ni⟩, with ni = ±1, is the eigenstate of the Pauli matrix σ z
i acting on the ith spin and i = 1, . . . ,N , σ z

i |ni⟩ = ni|ni⟩. The
hopping operator K is chosen as the sum of single-flip operators

K = −

N∑
i=1

11 ⊗ · · · ⊗ 1i−1 ⊗ σ x
i ⊗ 1i+1 . . . ⊗ · · · 1N ,

σ x
i being the x Paulimatrix acting on the ith spin.More general forms forK can be considered and tackled in a similarway. The

potentialV is a diagonal operatorwith elementsVn = ⟨n|V |n⟩which are i.i.d. randomvariables drawnwithdistribution P(V ).
As an example of discreteQREMswewill consider the case inwhichV takes the valuesVk = −J(N−2k), k = 0, 1, . . . ,N , with
probability mass function P(Vk) = 2−N

(N
k

)
. We will refer to this model as the binomial QREM. As an example of continuous

models we will assume V ∈ (−∞, +∞) with probability density function P(V ) = (πNJ2)−1/2 exp(−V 2/(NJ2)). We will refer
to this model as the Gaussian QREM.

In the thermodynamic limit N → ∞, the distribution P(V ) concentrates around some value Vsp where P ′(Vsp) = 0 and
P ′′(Vsp) < 0. The integral in Eq. (1) can be then performed, exactly, by the saddle-point method, namely,∫

P(V )
E0 − V

dV =
1

E0 − Vsp
. (4)

For symmetric distributions, P(−V ) = P(V ), we have Vsp = 0 and Eq. (1) amounts to E0 = min(E(0)
0 , E(V(1))).

The spectrum of Γ K is trivial and, in particular, the GS level is E(0)
0 = −Γ N . Eq. (1) thus provides

E0 =

{
E(V(1)) Γ < Γc
−Γ N Γ ≥ Γc

, (5)

where, according to Eq. (2), Γc = limN→∞ −E(V(1))/N . Stated in this form, the result applies to any QREM. In the binomial
model E(V(1)) = −JN + O(1), whereas in the Gaussian model E(V(1)) = −JN

√
ln 2 + O(1). The critical hopping parameter

separating the condensed and the normal phases is then Γc = J and Γc = J
√
ln 2, respectively.

By introducing auxiliary Hamiltonians, we can use again Eq. (1) to evaluate the eigenvalues ofH corresponding to excited
states. Suppose, to begin with, that we are in the condensed phase Γ N < −E(V(1)). For a given realization of the random
potential V , the GS of H is |n1⟩, where n1 is the spin configuration associated with the smallest value of the potential,
i.e., Vn1 = minn Vn. For simplicity, we suppose that Vn1 is non-degenerate, a condition which is almost surely met in the
Gaussian QREM. For Vn1 degenerate a similar argument applies. We then introduce the Hamiltonian

H̃ = H − Vn1 |n1⟩⟨n1|, (6)

whose lowest eigenvalue Ẽ0 coincides with the level E1 of H . Note that H̃ describes a system with random potential Ṽ
having distribution P̃(Ṽ ) such that Ẽ(Ṽ(1)) = E(V(2)). Moreover, the operators H̃ and H have the same non-diagonal part,
i.e., Ẽ(0)

0 = E(0)
0 . From Eq. (1) applied to the Hamiltonian H̃ we thus find

Ẽ0 =

{
E(V(2)) Γ < −E(V(2))/N
−Γ N Γ ≥ −E(V(2))/N

. (7)

We proceed with a similar analysis in the normal phase. For Γ N ≫ −E(V(1)), the GS of H approaches the GS of K , namely
|0K ⟩ = 2−N/2 ∑

n|n⟩. Observing that E(⟨0K |H |0K ⟩) = −Γ N + E(V ) = −Γ N exactly for any Γ , we assume |0K ⟩ to represent
an effective GS in all the normal region. We then introduce the Hamiltonian

H̃ = H + Γ N|0K ⟩⟨0K |, (8)

which, we guess, in all the normal region, has the average lowest eigenvalue Ẽ0 coincident with the average level E1 of H .
We split H̃ as

H̃ = Ṽ + Γ K̃ , (9)
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where Ṽ = V + Γ N2−N is a random potential with distribution P̃(Ṽ ) = P(V ), and K̃ = K + N2−N (W − 1) a hopping
operator with W defined by matrix elements Wn,n′ = 1. Let |1(i)

K ⟩ = σ z
i |0K ⟩, i = 1, . . . ,N , be the N-degenerate FESs of

K , namely, K |1(i)
K ⟩ = −Γ (N − 2)|1(i)

K ⟩. Similarly, let |2(i,j)
K ⟩ = σ z

i σ z
j |0K ⟩, i, j = 1, . . . ,N , with i ̸= j, be the N(N − 1)/2-

degenerate second excited states of K , namely, K |2(i,j)
K ⟩ = −Γ (N − 4)|2(i,j)

K ⟩, and so on. By using W |0K ⟩ = 2N
|0K ⟩ and

W |1(i)
K ⟩ = W |2(i,j)

K ⟩ = · · · = 0, we find that any |1(i)
K ⟩ is a GS of K̃ with eigenvalue −(N − 2) − N2−N . By inserting

Ẽ(0)
0 = −Γ (N − 2 + N2−N ), and Ẽ(Ṽ(1)) = E(V(1)) + Γ N2−N into Eq. (1) for H̃ , we get

Ẽ0 =

⎧⎪⎨⎪⎩ E(V(1)) + Γ N2−N Γ <
−E(V(1))

N−2+N2−N

−Γ (N − 2) Γ ≥
−E(V(1))

N−2+N2−N

. (10)

Finally, we combine Eqs. (7) and (10) to obtain E1, see Fig. 1. Observing that limN→∞

(
E(V(2)) − E(V(1))

)
/N = 0, we

conclude that in the thermodynamic limit

E1 =

{
E(V(2)) Γ < Γc

−Γ (N − 2) Γ ≥ Γc

. (11)

Eq. (1) and hence E0 and E1 found above are exact up to terms O(1) [13]. However, the O(1) errors obtained for E0 and E1
match when N → ∞. It follows that for N → ∞ the average gap E(∆) = E1 − E0 is

E(∆) =

{
E(V(2)) − E(V(1)) Γ < Γc
2Γ Γ ≥ Γc

. (12)

In the condensed phase, the average gap is a constant which amounts to E(∆)/J = 2/e in the binomial QREM and
E(∆)/J ≃ 0.62 in the Gaussian QREM. These results immediately follow from the evaluation of the first two order statistics
associated with the chosen P(V ). In the case of the binomial distribution, we have

E(V(1)) = −JNProb(V(1) = −JN)
− J(N − 2)Prob(V(1) = −J(N − 2)) + · · ·

= −JN + J
2
e
, (13)

E(V(2)) = −JNProb(V(2) = −JN)
− J(N − 2)Prob(V(2) = −J(N − 2)) + · · ·

= −JN + J
4
e
, (14)

where the probabilities have been estimated in the limit N → ∞, namely,

Prob(V(1) = −JN) = 1 −
1
e
, (15)

Prob(V(1) = −J(N − 2)) =
1
e
, (16)

Prob(V(2) = −JN) = 1 −
2
e
, (17)

Prob(V(2) = −J(N − 2)) =
2
e
. (18)

Note that, in this limit, Prob(V(1) ≥ −J(N − 4)) and Prob(V(2) ≥ −J(N − 4)) vanish. In the case of the Gaussian distribution,
the O(1) contributions to E(V(1)) and E(V(2)) have been evaluated numerically, the difference being close to 0.62 J .

The results of Eqs. (5), (11) and (12) have been compared with those from exact numerical diagonalizations of H for
different values of the system size N . In Figs. 2 and 3 we show the behavior of the average gap in the binomial and Gaussian
QREMs, respectively. In both cases the data obtained for N from 8 to 22 exhibit a systematic convergence toward the
thermodynamic limit (12).

Our numerical data confirm that, as usually assumed, the extensive quantities E0 and E1 are self-averaging. For the gap,
on the other hand, we observe a different behavior. In the normal phase, ∆ is self-averaging whereas this property is lost
when the system condensates. In the insets of Figs. 2 and 3 we show the frequencies of the gap values at the critical point
Γ = Γc for the binomial and Gaussian QREMs, respectively. These frequencies, evaluated from a set of 1000 instances,
have been checked to be a good approximation of the exact distributions of ∆ at the chosen sizes N . It is evident that
limN→∞ var(∆)/E(∆)2 ̸= 0, i.e., ∆ is not self-averaging. The same conclusion is reached for both binomial and Gaussian
QREMs in the whole range 0 ≤ Γ ≤ Γc.

The gap distributions for the binomial and the Gaussian QREMs have well distinct shapes in the condensed phase. In the
discrete model, when Γ is decreased below Γc the gap values concentrate around ∆ = 0, 2J, 4J, . . . . Including only terms
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Fig. 1. Lowest two energy levels E0 and E1 (bottom and top edges of the shaded area, respectively) for a QREM in the thermodynamic limit as a function
of the hopping parameter Γ . The blue long-dashed line is the value of E0 given by Eq. (5), whereas the red medium-dashed and green short-dashed lines
represent the finite-N estimate for E1 given by Eqs. (7) and (10), respectively. As N → ∞ the critical points (corresponding to the dotted vertical lines)
concur at Γc = −E(V(1))/N where E1 develops a O(1) discontinuity.

Fig. 2. Average gap E(∆) in the binomial QREM as a function of Γ for different system sizes 8 ≤ N ≤ 22. The dashed line is the predicted value in the
thermodynamic limit whereas for each size N the symbols joined by straight lines are the averages from exact numerical diagonalization of 1000 instances.
Inset: histograms of the frequencies of the gap values evaluated at Γ = Γc (size 8 ≤ N ≤ 22 from top to bottom, curves shifted for the sake of clarity).

Fig. 3. As in Fig. 2 for the Gaussian QREM.

not vanishing in the limitN → ∞, at Γ = 0 the gap distribution becomes qN (∆) = rNδ(∆)+ (1− rN )δ(∆−2J), where rN can
be calculated analytically and for N large approaches 1− 1/e. This behavior is qualitatively not different from that shown in
the inset of Fig. 2 for Γ = Γc. In the continuous model, the gap values are evenly distributed in the range 0 ≤ ∆ ≤ 2Γc for
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Fig. 4. Gap ∆ of an instance as a function of Γ for a Gaussian QREMmodel with N = 20 spins. Similar results are obtained for a binomial QREM.

Γ ≲ Γc. The distribution smoothly deforms by decreasing Γ and at Γ = 0 is exactly described by the function

qN (∆) = θ (∆)
2N (2N

− 1)

π
√
NJ2

∫
+∞

−∞

e−t2−(t+∆/
√

NJ2)2

× [Erfc(t + ∆/
√
NJ2)/2]2

N
−2dt. (19)

The logarithmof (19) iswell approximated by the first two terms of its Taylor expansion at∆ = 0. By using the normalization
condition, we then have qN (∆) ≃ qN (0) exp[−qN (0)∆], where qN (0) quickly saturates for N → ∞ to a constant value near
1/E(∆) = 1/(0.62 J).

4. Minimal gap

It is interesting to understand how the flat trend of E(∆) observed in the whole condensed region, is attained from the
actual behavior of the gap of the single instances. In fact, at least for the Gaussian QREM, it has been shown by numerical
and theoretical arguments [8], as well as rigorously demonstrated [10], that, close to the critical point, the gap of each single
instance has a rather different behavior: it vanishes exponentially by increasing the size N . In fact, for any instance of size N ,
by varying Γ the gap ∆(Γ ) has a minimum at Γ = Γmin as shown in Fig. 4. Let us define ∆min = minΓ ≥0 ∆(Γ ). Theoretical
arguments, checked numerically for both Gaussian and binomial QREMs, show that (a) ∆min and Γmin are self-averaging
quantities, (b) E(∆min) ≃ 2ΓcN2−N/2 for N large and (c) limN→∞ E(Γmin) = Γc with var(Γmin) ≃ (Γc/N)2 for N large.

In principle, the shape of ∆(Γ ) for a given instance can be accurately reproduced by the variational Ritz method writing
the lowest eigenstates of H(Γ ), |En(Γ )⟩ with n = 0, 1, as a superposition of the lowest eigenstates of K and V . In the crudest
approximation, namely,

|En(Γ )⟩ = an(Γ )|0K ⟩ + bn(Γ )|n1⟩, (20)

by using ⟨0K |V |0K ⟩ = 0, valid whenever P(−V ) = P(V ), one obtains the analytical estimate

∆(Γ ) =

√
(NΓ + Vn1 )2 − 4NΓ Vn12−N , (21)

which gives

Γmin = −Vn1/N (22)

and

∆min = −2Vn12
−N/2. (23)

Properties (a), (b) and (c) follow straightaway from these two expressions observing that Vn1 = V(1) and, for N → ∞,
E(V(1)) = −ΓcN + O(1), whereas var(V(1)) approaches a constant value close to Γ 2

c .
We are now in a position to discuss how the results of Figs. 2 and 3 are recovered from the behavior of the gap of the

individual instances.
In the regionΓ < Γc, where the gap is not self-averaging, E(∆)must losememory of the instance-dependentminimumof

∆. Close to the critical point, this is quantitatively understood as follows. For N large and Γ ≃ Γmin = −E(V(1))/N , according
to Eq. (21), we have∆ ≃ |−E(V(1)) + V(1)|. We have to average this expression over all values of V(1). For the Gaussian QREM,
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neglecting large deviations, the probability distribution of V(1) is well approximated by a Gaussian centered at E(V(1)) with
variance var(V(1)). We thus have

E(∆) ≃

∫
+∞

−∞

|−E(V(1)) + V(1)|
e
−

(V(1)−E(V(1)))
2

2var(V(1))√
2πvar(V(1))

dV(1)

=

√
2
π
var(V(1)). (24)

We numerically find var(V(1)) ≃ 0.611J2, therefore, this result is in very good agreement with the value E(V(2)) − E(V(1)) of
Eq. (12), valid in the whole condensed region. For the binomial QREM, we can use the probabilities (15) and (16) to obtain
the exact result

E(∆) = |−E(V(1)) − JN|Prob(V(1) = −JN)
+ |−E(V(1)) − J(N − 2)|Prob(V(1) = −J(N − 2))

= J
2
e
. (25)

Note that the distribution functions of ∆ achievable from Eqs. (24) and (25) are in qualitative agreement, in particular, they
confirm the non self-averaging character of ∆, with the frequencies of the gap values at Γ = Γc shown in Figs. 2 and 3 for
finite sizes N .

Vice versa, the self-averaging property of the gap in force for Γ > Γc implies that, for almost any instance, ∆ ≃ E(∆)
changes smoothly, at finite N , between its value in the condensed region and the normal phase behavior ∆(Γ ) = 2Γ (exact
in the thermodynamic limit or for Γ ≫ Γc), see Figs. 2 and 3. According to Eq. (10) and in agreement with the numerical
simulations, this change takes place in the interval Γmin ≤ Γ ≤ Γmin + 2Γc/(N − 2). Eq. (21) clearly fails in describing this
behavior. We have to resort to a more consistent variational analysis including a superposition of the lowest eigenstates of
K , namely, |0K ⟩ and |1(i)

K ⟩, i = 1, . . . ,N , and of several lowest eigenstates of V , |nl⟩ with l = 1, 2, . . . . Numerical results, not
reported here, show that this analysis is able to capture the quantitative behavior of the gap of each single instance. A crucial
point, still to be understood, is how the effective number of lowest V eigenstates to be included in this analysis scales with
the size N .

5. Conclusions

All QREM models are characterized by a universal phase transition between a condensed phase and a normal one, the
critical point Γc being the solution of Eq. (2). The gap averaged over the V realizations is finite, and undergoes the same
phase transition, being constant for Γ < Γc, and growing linearly in Γ for Γ > Γc (more precisely, as 2Γ , the gap of the
system with V ≡ 0). The existence, for each V realization, of a minimal gap at Γ = Γc exponentially small in the system
size N , implies that, QAd algorithms (at real or imaginary times) aimed at finding the configuration of minimal potential,
would require a computational time t > ∆−1

min exponentially long with N for almost any instance. In principle, by exploiting
the fact that the average gap is finite, one can hope to elude this limitation by using an adiabatic path across the V ensemble
in which the transit through a gap minimum is avoided [12]. However, it is not clear how to realize this path for V of the
class considered here.

Another possibility is the realization of a partial QAd algorithm, which has the purpose of selecting not the actual lowest
eigenstate of V but a set of lowest eigenstates, from which the lowest one can be found by probabilistic methods. Of course,
the success of this approach depends on the scaling properties of the number of these eigenstates with respect to the size N
of the system.
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