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Abstract
We demonstrate that a large class of !rst-order quantum phase transitions,
namely, transitions in which the ground state energy per particle is continu-
ous but its !rst order derivative has a jump discontinuity, can be described
as a condensation in the space of states. Given a system having Hamiltonian
H = K + gV, where K and V are two non commuting operators acting on the
space of states F, we may always write F = Fcond ⊕ Fnorm where Fcond is the
subspace spanned by the eigenstates of V with minimal eigenvalue and Fnorm =
F⊥

cond. If, in the thermodynamic limit, Mcond/M → 0, where M and Mcond are,
respectively, the dimensions of F and Fcond, the above decomposition of F
becomes effective, in the sense that the ground state energy per particle of the
system, ε, coincides with the smaller between εcond and εnorm, the ground state
energies per particle of the system restricted to the subspaces Fcond and Fnorm,
respectively: ε = min{εcond, εnorm}. It may then happen that, as a function of
the parameter g, the energies εcond and εnorm cross at g = gc. In this case, a !rst-
order quantum phase transition takes place between a condensed phase (system
restricted to the small subspace Fcond) and a normal phase (system spread over
the large subspace Fnorm). Since, in the thermodynamic limit, Mcond/M → 0, the
con!nement into Fcond is actually a condensation in which the system falls into
a ground state orthogonal to that of the normal phase, something reminiscent
of Anderson’s orthogonality catastrophe (Anderson 1967 Phys. Rev. Lett. 18
1049). The outlined mechanism is tested on a variety of benchmark lattice mod-
els, including spin systems, free fermions with non uniform !elds, interacting
fermions and interacting hard-core bosons.
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1. Introduction

Unlike classical phase transitions, which are based on a competition between entropy max-
imization and energy minimization, tuned by varying the temperature, quantum phase tran-
sitions (QPT) are characterized by a competition between two qualitatively different ground
states (GSs) reachable by varying the Hamiltonian parameters at zero temperature [2–5]. Typ-
ically, one has to compare the effects of two non commuting operators. To be speci!c, let us
consider a lattice model with N sites and Np particles described by a Hamiltonian

H = K + gV , (1)

where K and V are Hermitian non commuting operators, and g a free dimensionless parameter.
One can represent H in the eigenbasis of V. In such a case, it is natural to call V a ‘potential’
operator, and K a ‘hopping’ operator. Let us suppose that both K and V scale linearly with
the number of particles Np. Since in the two opposite limits g → 0 and g →∞, the GS of the
system tends to the GS of K and V, respectively, one wonders if, in the thermodynamic limit,
a QPT takes place at some intermediate critical value of g: gc = O(1). In fact, an argument
based on the ‘avoided-crossing-levels’ [6] suggests that a possible abrupt bending of the GS
energy of H occurs. However, there is no exact way to apply this scheme and, by varying g,
three possibilities remain open: (i) there is no QPT; (ii) there exists a gc where a second-order
transition takes place; (iii) there exists a gc where the !rst derivative of the GS energy makes a
!nite jump. Let us discuss brie"y these scenarios.

(a) Here we mention only that, in principle, there could be no QPT at all, or even a QPT with
no singularity [5].

(b) Within some extent, Landau’s theory of classical critical phenomena offers a universal
approach also to second-order QPTs via the quantum–classical mapping, according to
which the original quantum model in d dimensions is replaced by an effective classical
system in d + z dimensions [2, 5, 7], z being the dynamical critical exponent. Hence, for
second-order QPTs, concepts and tools originally de!ned for classical critical phenomena
!nd a quantum counterpart and the main issue concerns the competition between classical
and quantum "uctuations.

(c) A different situation occurs for !rst-order QPTs for which a universal mechanism seems
lacking [8]. As for the classical case, !rst-order QPTs can result from the !nite jump
of the order parameter when crossing the coexistence line of two different phases that
originate from the same critical point of a second-order transition [9]. Notice that, for
such a scenario to occur at zero temperature, one needs that H (or the corresponding
Lagrangian) depends on at least two independent parameters (say g1 and g2). In these
!rst-order transitions, universality re"ects on !nite size scaling [10]. Some kind of uni-
versality of !rst-order QPTs is expected also in systems of vector spin models with a
suf!ciently large number of components, as in the 1D quantum Potts model [11]. In gen-
eral, however, for genuine !rst-order QPTs driven by a single parameter g, i.e., those
that do not originate from the critical point of a second-order transition (as, e.g., in the
case of frustrated [12], mean-!eld, and random spin systems [13–16]), or those for which
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there is no evident classical analog, it is not clear which universal mechanism, if any, is
at their basis. Lack of universality has been in fact observed in the gap ∆ (the differ-
ence between the two lowest energy levels) of certain systems [17]. In some cases ∆ does
not take the absolute minimum at gc (see appendix A.2). There are even systems where
∆ remains !nite, as in certain topological second-order [18, 19] and !rst-order [20, 21]
QPTs.

In this paper, we test a theory concerning a large class of !rst-order QPTs that lead to
many-body condensation thorough a counter-intuitive mechanism having no classical analog
and that can be interpreted as a many-body Anderson’s orthogonality catastrophe [1]. The
approach provides also an ef!cient criterion for localizing the critical point. We !rst formu-
late the theory in general terms, regardless of the details of K and V (where we allow for the
presence of also more than one parameter), then we test it on several speci!c models: spin
systems, free fermions in a heterogeneous external !eld, interacting fermions and interacting
hard-core bosons, with both open and periodic boundary conditions. A comparison with the
!delity method [22] is also discussed. The paper is equipped with appendices that illustrate
some immediate extensions of the theory and provide further critical checks. Here, we dis-
cuss our theory at zero temperature while its !nite temperature counterpart will be reported
elsewhere.

2. Main result

Consider a system with Hamiltonian as in equation (1), and let {|n〉} be a complete orthonormal
set of eigenstates of V: V|n〉 = Vn|n〉, n = 1, . . . , M. We assume ordered potential values V1 !
V2 ! · · · ! VM. Let Mcond be the degeneracy of the smallest potential Vmin = V1 = V2 = · · · =
VMcond . The Hilbert space of the system, F = span{|n〉}M

n=1, equipped with standard complex
scalar product 〈u|v〉, can be decomposed as the direct sum F = Fcond ⊕ Fnorm, where Fcond =
span{|n〉}Mcond

n=1 and Fnorm = span{|n〉}M
n=Mcond+1 = F⊥

cond. Any vector |u〉 ∈ F can be uniquely
written as |u〉 = |ucond〉 + |unorm〉, where |ucond〉 ∈ Fcond and |unorm〉 ∈ F⊥

cond. Finally, we de!ne

E = inf
|u〉∈F

〈u|H|u〉
〈u|u〉

Econd = inf
|u〉∈Fcond

〈u|H|u〉
〈u|u〉 ,

Enorm = inf
|u〉∈Fnorm

〈u|H|u〉
〈u|u〉 .

Clearly, E is the GS energy of the system and by construction E ! min{Econd, Enorm}. Less
trivial is to understand the relation among E, Econd and Enorm in the thermodynamic limit.

To properly analyze this limit, let us consider systems consisting of Np particles in a lattice
with N sites and assume that the lowest eigenvalues of K and V scale linearly with Np, at
least for Np large. The thermodynamic limit is de!ned as the limit N, Np →∞ with Np/N = "
constant. Because of the assumed scaling properties, the energies E(N, Np), Econd(N, Np) and
Enorm(N, Np) diverge linearly with the number of particles, therefore, if divided by Np, they
have !nite thermodynamic limits which depend on the chosen density ". We call these limits
ε("), εcond("), and εnorm(") [23].

We state that, under the above scaling conditions on K and V,

if lim
N,Np→∞,Np/N="

Mcond/M = 0, then ε(") = min{εcond("), εnorm(")}. (2)

3



J. Phys. A: Math. Theor. 54 (2021) 055005 M Ostilli and C Presilla

Equation (2) establishes the possibility of a QPT between a normal phase characterized by the
energy per particle εnorm, obtained by removing from F the in!nitely smaller sub-space Fcond,
and a condensed phase characterized by the energy per particle εcond obtained by restricting
the action of H onto Fcond. Note that the Hilbert space dimension M(N, Np) diverges, generally
in an exponential way, with N and Np. The dimension Mcond may or may not be a growing
function of N and Np. In any case, if Mcond/M → 0, in the space of the Hamiltonian parameters
the equation

εnorm(") = εcond("), (3)

provides the coexistence surface of two phases, crossing which a QPT takes place. If H depends
on a single parameter g, as in equation (1), the coexistence surface reduces to a critical point
gc, which is given as the minimal solution, if any, of equation (3) (in general, εnorm and εcond

can be equal also for g )= gc). In virtue of equation (3), the transition is !rst-order. In fact, εnorm

and εcond correspond to the lowest eigenvalues of two different matrix Hamiltonians so that, as
functions of the Hamiltonian parameters, they are different, except possibly for a !nite number
of crossing points solution of equation (3). Assuming that εnorm and εcond are both everywhere
analytic, implies that their !rst derivatives around any crossing point are, in general, also dif-
ferent. This is quite clear when there is only one Hamiltonian parameter: given two analytic
functions of one variable, either they coincide everywhere, or their !rst derivatives at the cross-
ing points (if any) are different. According to Ehrenfest classi!cation this means that the QPT
is of !rst-order.

Equations (2) and (3) are quite general. Whereas the paradigm of second-order QPTs looks
for changes of symmetries of the GS, the paradigm of the !rst-order QPTs determined by
equations (2) and (3) looks for condensations of the GS into Fcond (which may be accompanied
by a broken symmetry or not). The word ‘condensation’ here refers to the fact that, in the con-
densed phase, thanks to the condition Mcond/M → 0, the GS occupies an in!nitesimal portion
of the full space of states. Depending on the structure of the space Fcond, this abstract conden-
sation in the Hilbert space can have different physical manifestations. As we shall show by
speci!c examples, in certain cases the condensation can realize through a partial or total freez-
ing of the particles, and even as an actual localization of matter. Such condensations were !rst
demonstrated in [14] for two classes of models, the uniformly fully connected models and the
random potential systems. For general systems, a formal proof based on the concept of sojourn
times in the subspaces Fcond and Fnorm is given in [24]. Here, we provide a simple algebraic
argument which goes as follows. We start with the obvious inequality ε ! min{εcond, εnorm},
and demonstrate that the opposite inequality holds too. Let us evaluate ε as the thermodynamic
limit of

1
Np

inf
|u〉∈F

〈u|H|u〉
〈u|u〉 =

1
Np

inf
0!x!1

inf
|ucond〉∈Fcond

inf
|unorm〉∈Fnorm

(
〈ucond|H|ucond〉
〈ucond|ucond〉

x +
〈unorm|H|unorm〉
〈unorm|unorm〉

(1 − x)

+
Re〈ucond|K|unorm〉√

〈ucond|ucond〉〈unorm|unorm〉
2
√

x(1 − x)

)

, (4)

where |u〉 = |ucond〉 + |unorm〉 with 〈ucond|unorm〉 = 0 and x = 〈ucond|ucond〉/〈u|u〉. We !nd

ε " inf
0!x!1

(
εcondx + εnorm(1 − x) + β2

√
x(1 − x)

)
, (5)

where β is the thermodynamic limit of B/Np and

B = inf
|ucond〉∈Fcond

inf
|unorm〉∈Fnorm

Re〈ucond|K|unorm〉/
√
〈ucond|ucond〉〈unorm|unorm〉. (6)
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Let |ũcond〉 =
∑Mcond

n=1 cn|n〉 and |ũnorm〉 =
∑M

n=Mcond+1 dn|n〉 be the states of Fcond and Fnorm

which realize this double in!mum. We now prove that β = 0. Suppose, for simplicity, that
K is the sum of Np single-particle jump operators, i.e., 〈n|K|m〉 = −1 if m is one of the Np

con!gurational states !rst neighbor to n, and zero otherwise. We estimate

|B|
Np

! 1
Np

Mcond∑

n=1

M∑

m=Mcond+1

|cn| |dm| |〈n|K|m〉| ∼
√

Mcond

M

provided that, as we expect normalizing the states |ũcond〉 and |ũnorm〉 to 1, |cn| ∼ 1/
√

Mcond and
|dm| ∼ 1/

√
M − Mcond. If, in the thermodynamic limit, Mcond/M → 0, it follows thatβ = 0 and

equation (5) gives ε " min{εcond, εnorm}.
When min{Econd, Enorm} becomes, for N, Np !nite but increasing, closer and closer to E,

max{Econd, Enorm} provides, although only close to the critical point, a good approximation to
E′, the energy of the !rst excited state of H. Whereas E′ is dif!cult to evaluate numerically,
Econd and Enorm, which are both de!ned as GS energies of the system restricted to Fcond and
Fnorm, are a much easier target, specially in Monte Carlo simulations (MCSs). We therefore
de!ne [23]

∆0 = |Econd − Enorm| , (7)

whose minimum allow us to locate in a simple way the critical point when N, Np are large
enough. However, in the cases in which εnorm and ε overlap for all g in some interval (eventually
in!nite), rather than to cross just at gc, it is convenient to locate gc by analyzing

∆1 = |Econd − E|. (8)

When possible, we compare ∆0 and ∆1 with ∆ = E′ − E, the ordinary gap. Notice that, in
general, according to equation (2), only ∆0/Np and ∆1/Np vanish at g = gc. However, a plot
of ∆0 and ∆1 effectively allows for a precise localization of gc.

In the following, we test equations (2) and (3) on several models by means of numerical
diagonalizations (NDs) and MCSs [25]. The approach to the thermodynamic limit is studied
by increasing the size N with Np = "N and " !xed.

3. Grover model

Let us consider a set of N spins with Hamiltonian

H = −
N∑

i=1

σx
i − gN⊗N

i=1
1 − σz

i

2
, (9)

where σx
i and σz

i are the Pauli matrices acting on the ith spin. In this model, in which Np = N,
we have M = 2N and F = span{|s1〉 ⊗ · · · ⊗ |sN〉}, where |si〉, with si = ±1, are the eigen-
states of σz

i . Equation (9) is of interest as a benchmark model in quantum information theory,
and corresponds to the quantum version of the classical search problem [26, 27], where a single
target state must be found over a set of M unstructured states. Notice that no ef!cient MCSs
exist for this model, the form of the potential being the worst case scenario for any hypothet-
ical importance sampling [28]. The model is also of interest to quantum adiabatic algorithms
[29]. In [14] we solved a random version of (9), where the second term of H is built by ran-
domly assigning the value −gN to a single state of F and a quenched average over many

5



J. Phys. A: Math. Theor. 54 (2021) 055005 M Ostilli and C Presilla

Figure 1. (a) GS energies per particle obtained from NDs, as a function of g, for the
model described by equation (9). Circles: E/N for N = 1 to 12 (lowest to highest plot),
lines are guides for the eyes. Squares: Enorm/N for N = 1 to 12 (highest to lowest). The
thermodynamic limits, equation (10), are represented by straight lines, εnorm (thick hori-
zontal dashed line), and εcond (solid line), crossing at the critical point gc = 1. Left inset:
gap ∆ as a function of g, for N = 1 to 12 (highest to lowest). Right inset: the function
∆0, equation (7), for N = 1 to 12 (about leftest to rightest). (b) GS energies per particle
for the model of equation (12) with Np = N/2 and Nimp = N/4. Upper inset: gap ∆, for
N = 4, . . . , 512 via powers of 2 (highest to lowest). Lower inset: the function ∆1, for
N = 4, . . . , 512 via powers of 2 (lowest to highest). The curves Econd/Np are obtained
from equation (14) whereas Enorm/Np from MCSs. Here gc / 3. (c): GS energies per
particle for the model of equation (15) with Np = N/2 for N = 4, . . . , 128 via powers
of 2 (highest to lowest). Solid lines: Econd/Np from equation (16). Circles: E/Np from
MCSs. Inset: ∆1 for N = 4, . . . , 128 via powers of 2 (lowest to highest). Here gc / 2.0.
(d): GS energies per particle for the Ising model, equation (17): εcond = −g (continuous
line), ε (dashed line), Enorm/N (line with points) for N= 3 to 22 (top to bottom).

independent realizations is taken at the end. The present non-random model provides the
simplest paradigmatic example that illustrates the role and the validity of equations (2) and
(3).

Comparing equation (9) with equation (1), we see that K = −
∑

iσ
x
i and V = −N⊗N

i=1
(1 − σz

i )/2. The potential V has its minimal eigenvalue in correspondence with the state |1〉 ≡
|s1 = −1〉 ⊗ · · · ⊗ |sN = −1〉, namely, Vmin = V1 = −N, whereas Vn = 0 for n = 2, . . . , M.
We thus have Mcond = 1, Fcond = span{|1〉}, Econd = −gN and εcond = −g. Consider now the
GS of H in Fnorm = F⊥

cond. For N !nite, we are not able to analytically calculate Enorm. However,
we observe that, since |1〉 /∈ Fnorm, Enorm cannot depend on g. Hence, for Enorm there is no QPT
and we can apply equation (2) to obtain εnorm = limN→∞E(g = 0)/N = −1. In conclusion,

Mcond/M = 2−N , εcond = −g, εnorm = −1, (10)
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and applying equation (2) we !nd

ε =

{
−1, g < 1,

−g, g " 1.
(11)

Figure 1(a) shows the results from NDs. As N grows, the GS energy per spin tends to the
curve ε, predicted by equation (11), with a !nite discontinuity in its !rst derivative at gc = 1.
Figure 1(a) also shows that, as N increases, ∆(g) and ∆0(g) take their minima at g closer and
closer to gc.

4. Spinless fermions in 1D with a nonuniform external field

Let us consider Np spinless fermions in a 1D chain of N " Np sites with open boundary con-
ditions (OBC). The advantage of choosing OBC stems from the fact that, for fermions in 1D,
there is no sign-problem in MCSs [30]; in appendix B we discuss the case of periodic boundary
conditions (PBC). The Hamiltonian is

H = −
N−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
− g

Nimp∑

i=1

c†
i ci, (12)

where ci are fermionic annihilation operators and Nimp ! Np is the number of impurities, or
the number of sites where an external !eld applies. For simplicity, we choose to have these
impurities in the !rst Nimp sites of the chain. This choice is not restrictive but allows to calculate

εcond more easily. We consider the half-!lling case Np = N/2 with N even, so that M =
(

N
N/2

)
.

Since H is quadratic in the fermionic operators, the corresponding eigenvalue problem can
be exactly solved by diagonalizing the associated N × N Toeplix matrix A, whose non zero
elements are Ai+1,i = Ai,i+1 = −1, for i = 1, . . . , N − 1, and Ai,i = −g, for i = 1, . . . , Nimp.
The eigenvalues of A are single particles energies, which, summed up according to Pauli’s
principle, form the Np-particle eigenvalues of H. The matrix A can be numerically diagonalized
for quite large sizes N and we can evaluate the exact gap as a further benchmark of the theory.

For Nimp = Np, the minimal potential occurs in correspondence with the single state
|1〉 = c†

1c1 · · · c†
Np

cNp |0〉, where |0〉 is the vacuum state and Vmin = V1 = −Np. For Nimp < Np,
instead, Vmin is degenerate, and Fcond spans those states in which Nimp fermions occupy the !rst
Nimp sites. We have

Mcond =

(
N − Nimp

Np − Nimp

)
, (13)

Econd

Np
= −g

Nimp

Np
+

E(0)
(
N − Nimp, Np − Nimp

)

Np
, (14)

where E(0)(N − Nimp, Np − Nimp) is the GS energy of a system of Np − Nimp free spinless
fermions in a 1D lattice of N − Nimp sites with OBC, whose single-particle energies are
e(0)

l = −2 cos
(
πl/(N − Nimp + 1)

)
, with l = 1, . . . , N − Nimp. In the normal phase the situ-

ation is less simple, for Fnorm spans those states in which no more than Nimp − 1 fermions
occupy the impurity sites. This is equivalent to the action of a nonquadratic Hamiltonian and
we resort to MCSs to evaluate Enorm.

Using equation (13), it is easy to check that, in the thermodynamic limit, Mcond/M → 0
for any non zero fraction Nimp/Np. In this case, we expect a !rst-order QPT to take place if
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Figure 2. Pictorial view of the GS of the model given by equation (12) representing
Np free spinless electrons con!ned in a segment of length N and in the presence of a
non uniform external !eld. Here, the GS is the antisymmetrized product of Np suitable
single-particle states, each being eigenstate of a single-particle Hamiltonian with hop-
ping operator K and a step potential operator V(x) characterized by a well of depth g and
length Nimp. Top panel: For g < gc the GS is the antisymmetrized product of Np quasi
free electrons stationary waves con!ned in the range 0 ! x ! N, with some slightly more
localized than others in the range 0 ! x ! Nimp (sketched as light and dark yellow balls).
Bottom panel: for g > gc the GS is the antisymmetrized product of Np − Nimp free elec-
trons stationary waves con!ned in the range Nimp < x ! N (sketched as red balls) times
the antisymmetrized product of Nimp frozen position states over the range 0 ! x ! Nimp
(sketched as blue balls). Notice that using OBC or PBC does not affect the picture, see
appendix B for details.

equation (3) has solution. In !gure 1(b) we report the analysis of the case Nimp = Np/2, while
in appendix B we show the case Nimp = Np. In both cases, equation (2) is con!rmed and a
QPT takes place at the point gc solution of equation (3). Interestingly, unlike the previous
model, as N increases, εnorm approaches ε in both the normal and the condensed phases. For
visual convenience, !gure 1(b) shows the behavior of ε and εnorm only for one size value, the
thermodynamic limit being quickly approached in this model. The plot of ∆1 (lower inset)
shows that the study of this quantity allows for an excellent location of gc in perfect agreement
with the analysis from the ordinary gap ∆ (upper inset).

This example is quite interesting: The Hamiltonian H, in equation (12), does not contain
any interaction among the particles and, in particular, there is no symmetry breaking, however,
H is still in the form (1), i.e., H is the sum of two non commuting operators to which we
can apply equations (2) and (3) and look for condensations. Remarkably, in this example the
condensation corresponds to an actual localization of matter, as !gure 2 shows.

5. Spinless fermions in 1D with an attractive potential

Let us consider the following Hamiltonian of Np fermions in a 1D chain of N " Np sites with
OBC and an attractive potential (as before, g " 0)

8
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H = −
N−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
− g

N−1∑

i=1

c†
i cic

†
i+1ci+1. (15)

Now, Vmin corresponds to the closest packed con!gurations of Np fermions (one adjacent to
the other one), and for any !nite value of Np/N, Mcond grows linearly with N. Moreover, it is
easy to see that Econd has no kinetic contributions. In conclusion,

Mcond = N − Np,
Econd

Np
= −g

Np − 1
Np

. (16)

Figure 1(c) shows the case Np = N/2. We evaluate E/Np by MCSs, whereas Econd/Np is given
by equation (16). Also here, Mcond/M → 0 and a QPT takes place at gc = 2 in agreement with
equations (2) and (3). In appendix B we report the hard-core boson case with PBC. These
models could also be analyzed by mapping via the Jordan–Wigner transformations [31, 32] to
the 1D XXZ Heisenberg model which, in turn, can be exactly solved by Bethe ansatz [33]. In
fact, the GS of the case Np = N/2 corresponds to the GS of the XXZ model, which changes
character at the isotropic ferromagnetic point [33, 34] corresponding to gc = 2. More precisely,
in the case Np = N/2 the model (15) maps to the XXZ model in the sector of null magneti-
zation Mz = 0. Clearly, the constraint Mz = 0 implies that there is not the ordinary up–down
symmetry breaking, however, equations (2) and (3) allow to easily look for a condensation
consisting in the formation of a closest packed con!guration of fermions. It is however worth
to observe that another kind of symmetry breaking can occur as the GS of (15) is N − Np

degenerate.

6. 1D Ising model as a counter-example

Our theory detects only !rst-order QPTs, consistently, we have to check that no contradiction
emerges when applied to a system which is known to undergo a second-order QPT. Let us
consider the 1D Ising model (Np = N) with a transverse !eld of unitary amplitude and PBC:

H = −
N∑

i=1

σx
i − g

N∑

i=1

σz
i σ

z
i+1. (17)

Here, Vmin = −gN, Mcond = 2, and εcond = −g. On the other hand, the model is exactly solvable
[35] and for N →∞

ε(g) = − 1
2π

∫ π

−π
dq
[
1 + 2g cos(q) + g2] 1

2 , (18)

which has a singularity of the second order at g = 1 (i.e., ε′(g) is continuous, while ε′′(g) is
singular at g = 1). As apparent from !gure 1(d), see appendix C for a more quantitative survey,
while equation (2) is satis!ed, equation (3) has no solution for !nite g, as the system always
remains in the normal phase: ε = εnorm < εcond. In other words, when the QPT is second order,
equation (2) realizes only through the equality ε = εnorm being εnorm < εcond∀g.

7. On the fidelity approach and Anderson’s orthogonality catastrophe

Fidelity, i.e., the absolute value of the overlap between two GSs evaluated at two different val-
ues of the Hamiltonian parameters, F(g, g′) = |〈E(g)|E(g′)〉|, can be used to analyze a broad
spectra of QPTs, including !rst-order QPTs, as well as cases where, as in our theory, there is no
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a priori knowledge of the order parameter [22]. The Fidelity approach looks for the minimum
of F(g, g + δg) with δg small and !xed, In fact, the main idea is that near the critical point
gc, the overlap between the GSs at g < gc and at g + δg > gc, is minimal, and possibly zero,
because the symmetries (in a broad sense of the term ‘symmetry’) associated to the two GSs
are different. In this respect, our theory is perfectly compatible with the !delity approach. In
fact, since F = Fnorm ⊕ Fcond, by construction we have 〈Enorm|Econd〉 = 0 for any system size.
On the other hand, equation (2) tells us that, in the thermodynamic limit, the GS of the Hamil-
tonian is either |Enorm〉 or |Econd〉, for g < gc or g > gc, respectively, so that, if equation (3)
has a solution, we conclude that, in the thermodynamic limit, the !delity at the critical point
is zero. Quite interestingly, in our theory the orthogonality between the two GSs is guaranteed
to be exactly realized, i.e., F(g, g′) = 0, for any pair (g, g′) whenever g < gc and g′ > gc.
As it has also been pointed out in reference [22], this rigid many-body orthogonality that
takes place in the thermodynamic limit, has a famous phenomenology known as Anderson’s
orthogonality catastrophe [1]. It is also quite interesting to observe that, in the model originally
considered by Anderson, the rigid orthogonality is reached by replacing one single atom of the
lattice host by an impurity atom. In other words, in the thermodynamic limit the orthogonal-
ity is attained via an in!nite dilution of the impurity, which is in parallel with the condition
Mcond/M → 0 at the base of our theory.

When compared to the !delity approach, our theory offers a narrower spectra of applica-
tions, as it only applies to !rst-order QPTs. However, in detecting these latter, our method is
numerically much more ef!cient than the !delity approach. In fact, in our theory we analyze
the QPT via the knowledge of the GS energies, whereas for evaluating the !delity one needs
the GSs, which, computationally, represent a much more demanding target [22].

8. Conclusions

In conclusion, we have tested and veri!ed equations (2) and (3) on a variety of models where
a !rst-order QPT takes place. The mechanism at the basis of these QPTs is explained in
terms of an effective splitting of the Hilbert space F = Fnorm ⊕ Fcond triggered by the con-
dition Mcond/M → 0, with a normal, classically intuitive phase, where ε = εnorm < εcond, the
system being spread over Fnorm, and a many-body condensed, counter-intuitive phase, where
ε = εcond ! εnorm, the system being con!ned in Fcond.

In fact, the GS energy E, as the smallest eigenvalue of the Hamiltonian matrix in the con-
!gurational basis {|n〉}M

n=1 is, in general, highly sensitive to a change of the matrix elements
〈n′|H|n〉. It is therefore intuitive to expect that, only the restriction of this matrix to a subset of
con!gurations Fnorm that differ from F for an in!nitesimal relative number of con!gurations
can provide a smallest eigenvalue Enorm in good approximation to E. In the thermodynamic
limit this classical guess translates as ε = εnorm. However, such a naive intuition turns out to
be wrong, in general. In the thermodynamic limit, the restriction of H to an in!nitesimal por-
tion of the space, namely, Fcond, can actually determine completely the GS in a whole region
of the Hamiltonian parameters and provide ε = εcond < εnorm. This is a quite counter-intuitive
behavior as in the case of the many-body Anderson’s orthogonality catastrophe.

In the models considered here, εcond is found analytically, whereas ε or εnorm are evaluated
by NDs or MCSs. In any case, εnorm and εcond are de!ned as GS energies of the Hamiltonian
H of the system in the subspaces Fnorm and Fcond, and, as such, represent a much easier target
than !nding the !rst excited level of H in the whole space F. The class of QPTs that can be
understood in terms of !rst-order condensations via equations (2) and (3) is vast and the method
used here ef!cient. We envisage several generalizations and applications. In particular, the
space Fcond can be extended to include states corresponding to several low-energy eigenvalues

10
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of V, not only the lowest one, as considered in the present paper. In this way, one can study
systems with repulsive long-range interactions and discover that phenomena like the so called
Wigner crystallization are in fact phase transitions belonging to the present class of QPTs
[36].
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Appendix A. Specularity of equation (2) and counter-examples

According to equation (2), if, in the thermodynamic limit, Mcond/M → 0, we have a suf-
!cient condition to conclude that ε = min{εnorm, εcond}. However, even if Mcond/M!0,
it may still happen that ε is the minimum of two quantities. In fact, on switching the
roles of the operators K and V in H (for simplicity of notation, the parameter g is now
included in the de!nition of V), i.e., writing H = K′ + V ′, with K′ = V and V ′ = K, if
M′

cond/M → 0, where M′
cond is the dimension of the subspace where V ′ is minimum, we still

have ε = min{ε′norm, ε′cond}. Let us consider three illustrative examples of this specularity
phenomenon.

A.1. Modified Grover model—specularity with no QPT

Let us introduce a modi!ed version of the Grover model as follows (here, Np = N and M = 2N)

H = TN − gN
1 + σz

1

2
⊗N

i=2Ii, TN = −
N∑

i=1

σx
i . (A.1)

Let us indicate with |E(k)
TN
〉, for k = 0, . . . , N a generic eigenstate of TN with eigenvalue

E(k)
TN

= −(N − 2k) (the degeneracy of the levels for k )= 0, N is not relevant for our discussion).
Let us also indicate by | ↑h〉 and | ↓h〉 the eigenstates of σh with eigenvalues +1 and−1, respec-
tively, for h = x, y, z. If, from equation (A.1), we identify K = TN, and V = −gN|↑z〉〈↑z|⊗N

i=2Ii,
we have Vmin = −gN and Fcond = span{|↑z〉 ⊗ |u〉}, where |u〉 is an arbitrary state of N − 1
spins. Therefore, in this case we have Mcond = 2N−1 = M/2, Fnorm = span{|↓z〉 ⊗ |v〉}, with
|v〉 an arbitrary state of N − 1 spins and

|Econd〉 = |↑z〉 ⊗ |E(0)
TN−1

〉, Econd/N = −1 − g +
1
N

, (A.2)

|Enorm〉 = |↓z〉 ⊗ |E(0)
TN−1

〉, Enorm/N = −1 +
1
N

. (A.3)

Hence, min{εnorm, εcond} = −1 − g. However, we cannot conclude that ε = −1 − g since
Mcond/M → 1/2 and the condition of equation (2) does not apply. On the other hand, if we
exchange the role between K and V and choose H = K′ + V ′, with K′ = −gN|↑z〉〈↑z|⊗N

i=2Ii

and V ′ = TN , we have V ′
min = −N and F′

cond = span{|E(0)
TN
〉}. Therefore, in this case we have

M′
cond = 1, so that equation (2) is valid and ε = min{ε′norm, ε′cond}. Let us calculate the energies

ε′norm and ε′cond. Since |E(0)
TN
〉 = |↑x〉 ⊗ · · · ⊗ |↑x〉, we have

11
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Figure A1. GS energies per particle as a function of g for the model described by
equation (A.1), ‘modi!ed Grover’ (Np = N). Here, E′

norm/N = −1 − g + 3/N and E/N
is obtained by exact diagonalization. Upper inset: particular of the plot in the range
g ∈ [0, 0.5]. Lower inset: gap ∆ as a function of g, for N = 1 to N = 12 (highest to
lowest plot).

|E′
cond〉 = |E(0)

TN
〉, E′

cond/N = −1 − g
2

, (A.4)

|E′
norm〉 = |↑z〉 ⊗ |E(1)

TN−1
〉, E′

norm/N = −1 − g +
3
N

. (A.5)

We conclude that ε = min{ε′norm, ε′cond} = −1 − g. We have thus reached the same value for
min{εnorm, εcond} and min{ε′norm, ε′cond}, however, in the latter case we are able to identify this
value with ε. Clearly, in the present model, by varying g we !nd that ε′norm is always smaller
than ε′cond and no QPT takes place, see !gure A1.

A.2. Fermions in a heterogeneous external field—specularity with QPT

Let us consider Np fermions in a 1D chain of N " Np sites with open boundary condi-
tions (OBCs) governed by a Hamiltonian which is a simple modi!cation of equation (12),
namely,

H = −
N−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
− gNpc†

1c1. (A.6)

If K and V correspond to the !rst and second term of equation (A.6), respectively, we can
analyze this model as done above by setting Nimp = 1 and replacing g with gNp. In particular,
from equations (12) and (13) it now follows

Mcond =
Np

N
M, M =

(
N
Np

)
, (A.7)

Econd/Np =

{
E(0)(N − 1, Np)/Np, g < 0

−g + E(0)(N − 1, Np − 1)/Np, g > 0
(A.8)
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Figure A2. GS energies per particle as a function of g for the model described by
equation (A.6) (spinless fermions with an extensive non uniform external !eld) at half-
!lling. Here Econd is given by equation (A.8) and E is obtained by exact diagonalization.
Upper inset: gap ∆(N ) for N = 4 to N = 256 (highest to lowest plot). Lower inset: ∆1
as a function of g for N = 4 to N = 256 (highest to lowest plot). It turns out that, at
half-!lling, the common discontinuity of Econd and Enorm at g = 0 gets exactly canceled
(which explains why in the present case we have continuous plots).

Enorm/Np =

{
−g + E(0)(N − 1, Np − 1)/Np, g < 0,

E(0)(N − 1, Np)/Np, g > 0.
(A.9)

In !gure A2 we show the analysis of this model for g ∈ [−2, 1] in the half-!lling case
Np = N/2. Despite the fact that Mcond = M/2, we have ε = min{εcond, εnorm}. As in the previ-
ous case, this is explained by switching the role between K and V, and observing that M′

cond = 1.
Note that now we have a !rst-order QPT that takes place at gc = 0. Quite interestingly, in this
QPT the gap ∆ does not take any minimum in correspondence of the critical point, and, for
given N, remains constant (see the discussion in the introduction).

A.3. Counter example

From the previous examples, it turns out to be clear that, if we want to !nd a case where ε <
min{εnorm, εcond}, as well as ε < min{ε′norm, ε′cond}, we have to control that both Mcond/M!0
and M′

cond/M!0. A very simple model where this occurs, is a system of N spins in which only
one of them is not free and is subject to an extensive external !eld and an extensive hopping:

H = −N|↑x〉〈↑x|⊗N
i=2Ii − gN|↑z〉〈↑z|⊗N

i=2Ii. (A.10)

If we identify as K and V the !rst and second terms in equation (A.10), respectively, we
have Vmin = −gN and Fcond = span{|↑z〉 ⊗ |u〉}, where |u〉 is an arbitrary state of N − 1 spins.
Therefore, in this case we have Mcond = M/2 and

|Econd〉 = |↑z〉 ⊗ |u〉, Econd/N = −1
2
− g, (A.11)

|Enorm〉 = |↓z〉 ⊗ |v〉, Enorm/N = −1
2

, (A.12)
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where |u〉 and |v〉 are two arbitrary states of N − 1 spins. On the other hand, if we de!ne K′ = V
and V ′ = K, we have V ′

min = −N and F′
cond = span{|↑x〉 ⊗ |u〉}, where |u〉 is an arbitrary state

of N − 1 spins. It follows that M′
cond = M/2 and

|E′
cond〉 = |↑x〉 ⊗ |u〉, E′

cond/N = −1 − 1
2

g, (A.13)

|E′
norm〉 = |↓x〉 ⊗ |v〉, E′

norm/N = −1
2

g, (A.14)

|v〉 being an arbitrary state of N − 1 spins. Finally, we observe that the exact eigenvalues
E± of the Hamiltonian (A.10) are easily calculated, the corresponding values per particle being

E±/N = −1
2

(1 + g) ± 1
2

√
1 + g2. (A.15)

We conclude that, as expected, the ground state energy per particle E−/N is, for any value of
g > 0, strictly smaller than any of the energies given in equations (A.11)–(A.14), i.e., in the
thermodynamic limit, ε < min{εnorm, εcond, ε′norm, ε′cond}.

A.4. Final remark

It would be interesting to analyze more intermediate situations in which min{Mcond/M,
M′

cond/M} goes to zero slowly in the thermodynamic limit, and to analyze how fast the error
obtained by assuming E/Np = min{Econd/Np, Enorm/Np, E′

cond/Np, E′
norm/Np} goes to zero in

such limit. This will be the subject of future works.

Appendix B. Comparing OBC with PBC

Here, we elaborate on the model of equation (12) and compare the case with OBC, !gure B1,
with the case with PBC, !gure B2. We observe that only marginal differences emerge and
the critical point remains located in the same position of the OBC case, gc / 4. In section 4
we show a case with OBC to avoid the sign problem which affects the MCS of any fermionic
system, except those in 1D with OBC. In our case, this would affect the MCS of Enorm (whereas
E and Econd are evaluated via exact diagonalization and analytically) reported in support of the
general theory, even though, we actually locate the critical point by means of ∆1, which does
not make use of Enorm. Interestingly, as mentioned in section 4, we observe that the gap ∆
does not present a minimum in correspondence of gc. In fact, for g → 0, the GS energy of the
model with PBC becomes degenerate, causing a null gap in such a limit. However, as in all the
other cases, ∆ changes dramatically its character when passing from the normal phase, g < gc,
where it has a wildly oscillating behavior, to the condensed phase, g > gc, where it has a clear
smooth behavior.

Similar considerations hold in the case of spinless fermions with an attractive interaction,
equation (15), compare !gure 1(c) of section 5 with !gure B3.

Appendix C. A further non trivial example with a second-order QPT

We have pointed out that our theory encoded in equations (2) and (3), detects only !rst-order
QPTs. At the same time, we have stressed that our equation (2), provided that Mcond/M → 0,
is an identity that holds in any situation, regardless of any possible QPT and, in particular,
regardless of the existence of a solution of equation (3). This fact has been made concrete by
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Figure B1. GS energies per particle as a function of g for the model described by
equation (12) (spinless fermions) with Np = Nimp = N/2 in the case of OBC. Here,
εcond = −g and E is obtained by exact diagonalization. Upper inset: gap ∆ as a function
of g around the critical point gc / 4.0, for N = 4 to N = 512 via powers of 2 (highest
to lowest plot). Lowest inset: the function ∆1, for N = 4 to N = 512 via powers of 2
(lowest to highest).

Figure B2. As in !gure B1 for PBC.

showing the analysis of the 1D Ising model in the presence of a transverse !eld, equation (16)
and !gure 1(d). To further support our claim, we now consider a generalization of the 1D
Ising model that, besides the usual two-spin interaction, includes also a four-spin interaction
as follows

H = −
N∑

i=1

σx
i − g

N∑

i=1

σz
i σ

z
i+1 − g′

N∑

i=1

σz
i σ

z
i+1σ

z
i+2σ

z
i+3, N " 4, (C.1)
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Figure B3. GS energies per particle as a function of g for the model described by
equation (15) (hard-core bosons) with Np = N/2 in the case of PBC. Here, Econd/
Np = −g(Np − 1)/Np and E is obtained by MCSs. Note that, at g = 0, the lowest plot
corresponds to the case N = 4. Inset: the function ∆1, for N = 4 to N = 128 via powers
of 2 (lowest to highest). As in the case of !gure 1(c), we see also here that the rela-
tion E(N)/Np ! Econd(N )/Np is often violated for large N and g > gc due to the large
"uctuations occurring in the MCSs (see discussion in appendix D).

where g′ " 0 is, besides g, a second free dimensionless parameter and PBC are understood. The
aim of the present appendix is threefold: by making use of extensive NDs, we demonstrate that:
(i) equation (2) is satis!ed, (ii) equation (3) has no !nite solution, and (iii) the system undergoes
a second-order QPT.

Case g′ = 0. Before providing such demonstrations for the general Hamiltonian (C.1), it is
useful to consider again the Ising case g′ = 0. From !gure 1(d) it is evident that, for any g,
Enorm(N)/N → ε for N →∞. Since Mcond/M → 0, one may wonder that the result ε = εnorm

is a violation of equation (2). However, this is not the case, equation (2) holds true because
we also have εnorm < εcond for any g. This inequality can be numerically validated as follows.
At any !nite size N, the curves Enorm(N)/N and εcond cross, as a function of g, at the point
gcross(N), see !gure 1(d). From !gure C1, where we plot gcross(N) as a function of N, it is evident
that, after an initial transient, gcross(N) grows linearly with N. The inequality εnorm < εcond for
any g, allows also to conclude that equation (3) is not satis!ed at any !nite g. This excludes,
therefore, the possibility of a !rst-order QPT. It is well known, however, that the Ising model
has a second-order QPT at g = 1. Whereas there exist several methods to show up the second-
order nature of this QPT, in our framework, where we mainly work with the GS energy, it
is convenient to analyze the nature of the possible singularities of ε(g) with respect to g. We
remind that a QPT transition is classi!ed of !rst-order when the GS energy per particle ε(g)
has a jump discontinuity in its !rst derivative ε′(g) = dε(g)/dg, while it is classi!ed of second-
order when ε(k)(g) = dkε(g)/dgk has a discontinuity for some k " 2. Such a de!nition parallels
the de!nition of classical, !nite temperature, QPT in terms of the thermodynamic limit of the
free energy per particle. Figure C2 shows ε(g), ε′(g) and ε′′(g), where ε(g) is the exact GS
energy per particle of the 1D Ising model (g′ = 0) in the thermodynamic limit, as given by
equation (18). Clearly, we are facing the well known scenario of a second-order QPT, where
ε′(g) is continuous, while ε′′(g) has a singularity at the critical point gc = 1.
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Figure C1. Plot of gcross(N) versus N for the 1D Ising model (corresponding to the choice
g′ = 0 in equation (C.1)) for N = 5, 6, . . . , 22. The crossing point gcross(N ) is de!ned as
the value of g at which Enorm(N)/N = εcond, where εcond = −g and Enorm(N) is evaluated
by NDs.

Figure C2. From left to right: plots of ε(g), ε′(g), and ε′′(g) versus g, where ε(g) is the
exact GS energy per particle of the 1D Ising model (g′ = 0) in the thermodynamic limit,
as given by equation (18).

Case g′ > 0. For g′ )= 0 the Hamiltonian (C.1) is rather non trivial. Nevertheless, in the
ferromagnetic case g′ > 0, the scenario obtained in the Ising case (g′ = 0) remains essentially
unchanged. For simplicity, we set g′ = g. The analysis for different positive values of g′, not
reported here, leads to the same qualitative behavior. In !gures C3–C5, we see, respectively,
the analogous of !gures 1(d), C1, and C2 corresponding to the Ising case g′ = 0. It is evident
that, also for g′ > 0, we have: (i) equation (2) is satis!ed, (ii) equation (3) has no !nite solution
in terms of the parameter g′ = g, and (iii) the system undergoes a second-order QPT (in this
case the critical point being located near g = 0.44). It is worth to mention that the fact that the
observed QPT of this 1D model remains of second-order for any non negative value of g′, is
quite different from the mean-!eld case where, at least classically, as is known, for suitable
positive values of g and g′ one can have also !rst-order QPTs.

Appendix D. Monte Carlo simulations

The method used to perform our MCSs on lattice systems is based on an exact probabilis-
tic representation of the quantum dynamics via Poisson processes that, virtually, reproduce
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Figure C3. GS energies per particle for the model with Hamiltonian (C.1) in the case
g′ = g: εcond = −2g (continuous line), ε (dashed line), Enorm/N (line with points) for
N= 5 to 22 (top to bottom). Here ε has been obtained by using ε / E(N)/N for any
N large enough. In fact, as in the Ising case (g′ = 0), also in this case E(N)/N → ε very
quickly, the differences between N = 12 and N = 13, for example, being unrecognizable
at the shown scale. Here, we have evaluated ε / E(N)/N with N = 22.

Figure C4. Plot of gcross(N) versus N for the model with Hamiltonian (C.1) in the case
g′ = g for N = 5, 6, . . . , 22. The crossing point gcross(N) is de!ned as the value of g at
which Enorm(N)/N = εcond, where εcond = −2g and Enorm(N) is evaluated by NDs.

the trajectories determined by the hopping operator K [25, 37]. The corresponding Monte
Carlo sampling is exact in the sense that there are no systematic errors due to any !nite-time
approximations (there is no Trotter approximation, see, e.g., [28]). The GS energy of a sys-
tem governed by a Hamiltonian H can then be obtained from the evaluations of the matrix
elements of the evolution operator exp(−Ht) at imaginary times t in the limit t → +∞. As
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Figure C5. From left to right: plots of E(g)/N, E′(g)/N, and E′′(g)/N as a function of g
for N = 5 to 22 for the model with Hamiltonian (C.1) obtained by NDs. In the plot of
E(g)/N the curves obtained for different values of N are indistinguishable.

in any MCS, sampling the matrix elements of exp(−Ht) involves "uctuations that increase
exponentially with t. These "uctuations can be reduced by using a recon!guration technique
[38, 39]: instead of following many independent sample-trajectories that evolve during a long
time t, one follows the evolution of a set of M 5 1 simultaneous trajectories that evolve
along the shorter times ∆t = t/R, where R is an integer suf!ciently large to keep the "uc-
tuation along ∆t small. At the end of each time step ∆t, the !nal con!gurations with index
i = 1, . . . , M are given a suitable weight pi which is used to generate randomly the ini-
tial con!gurations of the subsequent time step. The procedure stops after R time steps. In
the limit M →∞ this procedure becomes exact (no bias is introduced) [25]. By a suitable
choice of M and R this technique allows us to handle the MCS of our models even close
to the critical points, where in principle we should let t 5 1/∆, where ∆ is the gap of the
model.

The above procedure cannot be applied for ∆t too small: below a certain threshold of
∆t, the system simply does not evolve. In fact, given the hopping operator K, one must take
into account that the mean number of jumps 〈N〉t of a virtual trajectory along a time t is,
up to a dimensional factor that we set to 1 in our models, 〈N〉t = E(0)t, where E(0) is the GS
energy of the system without potential, i.e., the case with g = 0. Therefore, it is necessary
to choose R such that ∆tE(0) " 1. In the absence of a QPT the optimal choice corresponds
to ∆t = 1/E(0) ∝ 1/Np which, in the absence of any sign problem, allows to perform ef!-
cient simulations for systems of large size [25]. However, if the model undergoes a QPT, such
a choice works only far from the critical point and larger values of ∆t must be considered.
Given the magnitude of the desired maximal simulation times to be performed on an ordi-
nary PC, ranging in our cases from a few ours to a few days, there is not a simple recipe to
select the optimal values of M and R, the best criterion being empirical with the constrain
∆tE(0) " 1. In tables D1 and D2 we show the statistical parameters chosen to perform our
MCSs. In all cases we have used a single set of M = 220 parallel trajectories. Table D1 refers
to !gures 1(b) and B1. In these cases the MCSs have been used only for evaluating Enorm(N),
which actually is not used to locate the critical point, but only to show (for a few system sizes
N) how the general theory takes effect. Table D2 refers to the cases of !gures 1(c) and B3. In all
cases, as we approach the region g " gc the statistics becomes more demanding, an issue which
becomes more pronounced in the presence of interaction (see the "uctuations in the inset of
!gure 1(c) and in the !gure B3 for g " gc). Indeed, a sign of the fact that, for g > gc, the MCSs
are affected by large "uctuations emerges by observing that the relation E(N) ! Econd(N) is
often violated for large N and g > gc. However, this problem does not prevent us to locate
well the critical point gc also in the presence of interaction. These large "uctuations could
be reduced by exploiting the partial information that we have about the GS for g > gc and
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Table D1. Statistical parameters used for the MCSs of 1D free fermions in a non-uniform
external !eld (!gures 1(b) and B1).

N Np ∆t R

4 2 16 64
8 4 16 128
16 8 16 256
32 16 32 512
64 32 32 1024

Table D2. Statistical parameters used for the MCSs of 1D interacting fermions and 1D
hard-core bosons (!gures 1(c) and B3).

N Np ∆t R

4 2 16 64
8 4 16 128
16 8 16 256
32 16 64 512
64 32 64 1024
128 64 64 2048

using importance sampling, as explained in [25]. Such a re!nement is however beyond the
aim of the present work.
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