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We consider an open quantum system with dissipation, described by a Lindblad Master equation (LME).
For dissipation locally acting and sufficiently strong, a separation of the relaxation timescales occurs,
which, in terms of the eigenvalues of the Liouvillian, implies a grouping of the latter in distinct vertical
stripes in the complex plane at positions determined by the eigenvalues of the dissipator. We derive
effective LME equations describing the modes within each stripe separately, and solve them perturbatively,
obtaining for the full set of eigenvalues and eigenstates of the Liouvillian explicit expressions correct at
order 1=Γ included, where Γ is the strength of the dissipation. As an example, we apply our general results
to quantum XYZ spin chains coupled, at one boundary, to a dissipative bath of polarization.
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Recently a great deal of analytic progress has been made
in the theory of open quantum systems and their steady-
state exact solutions. Much less is known about the full
spectrum of the Liouvillian [the Lindbladian, more pre-
cisely, if the open quantum system is described, as very
often happens, by a Lindblad master equation (LME)]. Just
to say, the knowledge of this spectrum is essential to predict
the finite-time evolution of dissipative systems, as of
interest in fields ranging from quantum computing [1] to
quantum biology [2]. The problem basically remains
intractable, except via hard computational methods [3–6].
The existing literature regarding the Liouvillian general

properties focuses on an analysis of asymptotic time regime
t → ∞, i.e., putting emphasis on the existence of a
decoherence-free subspace and the asymptotic leakage
out of it [7–9]. Within such an approach, however, a
substantial part of information about the Liouvillian spec-
trum is lost.
Exceptionally, under special conditions imposed on the

Lindblad operators and the Hamiltonian, the Liouvillian
spectrum can be related to the spectrum of auxiliary non-
Hermitian operators. However, even in this case, the
complete set of eigenstates is out of reach [10–13].
In the present communication, in contrast, we show how

to obtain the complete set of eigenvalues and eigenstates of
the Liouvillian, provided that the dissipation is sufficiently
strong with respect to the coherent part of the evolution, in
the so-called quantum Zeno regime [14–17]. For this setup
to be nontrivial, dissipation must act only on a part of the
degrees of freedom.
As wewill see, in the limit of strong dissipation acting on

a part of degrees of freedom, the behavior of an open
quantum system simplifies and the full Liouvillian can be
block diagonalized.

We provide a general procedure to obtain the full set of
eigenvalues and eigenstates by means of a perturbative
approach in terms of the solution of a linear problem for the
dissipation-projected Hamiltonian [18,19], and other
related Hamiltonians acting in a reduced Hilbert space.
As an example, we comprehensively discuss the case of
general open XYZ spin chains with arbitrary spin states
targeted at one of the boundaries by the strong interaction
with dissipative environments.
General theory.—We consider an open quantum sys-

tem with finite Hilbert space H and dissipation acting
only on a part of its degrees of freedom, namely, those
associated to the subspace H0 ⊂ H. Denoting by H1

the dissipation-free subspace, we have H ¼ H0 ⊗ H1

with dimH0 ¼ d0, dimH1 ¼ d1, and d0d1 ¼ d ¼ dimH.
The evolution of the reduced density matrix operator of
the systems, dρðτÞ=dτ ¼ L½ρðτÞ�, is determined by the
Liouvillian

L½·� ¼ −i½H; ·� þ ΓD½·�; ð1Þ

where H is the Hamiltonian of the system, D½·� a
Lindblad dissipator of standard form, and Γ the strength
of the dissipation. The use of a Markovian Lindblad
dynamics for large dissipation is justified for reservoirs
with very short correlation times [20]. Note that we work
in units of ℏ ¼ 1, i.e., τ ¼ tph=ℏ and Γ ¼ Γphℏ, where tph
and Γph are the physical time and dissipation strength.
In Ref. [18] it has been shown that in the Zeno

limit Γ → ∞ the dynamics (1) is still reduced to a new
Lindblad equation written in terms of a renormalized
Hamiltonian and an effective dissipator. More precisely,
for times τ ≫ 1=Γ and with an error Oð1=Γ2Þ we have
ρðτÞ ¼ ψ0 ⊗ R0ðτÞ, where ψ0 ∈ H0 is the dissipator
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kernel,D½ψ0� ¼ 0, (assumed to be unique) and R0ðτÞ ∈ H1

satisfies

dR0ðτÞ
dτ

¼ −i½hD þ H̃a=Γ; R0ðτÞ� þ
1

Γ
D̃½R0ðτÞ�: ð2Þ

The effective Hamiltonian H̃ ¼ hD þ H̃a=Γ is
the sum of the dissipation-projected Hamiltonian,
hD ¼ trH0

½ðψ0 ⊗ IH1
ÞH�, and a Lamb shift correction

H̃a.With trH0
we indicate the trace in the subspace H0.

Note that both H̃a and the effective dissipator D̃½·� act in
the sole subspaceH1. Explicit expressions of H̃a and D̃½·�
are given in [6] and, for convenience, reported in
Supplemental Material [21].
Equation (2) provides complete information about R0,

the dissipation-free component of the density matrix ρ. The
full density matrix has, however, an expansion of the form
ρðτÞ ¼ P

k ψk ⊗ RkðτÞ, where ψk are the eigenstates of the
original dissipator D (which we assume diagonalizable),

D½ψk� ¼ ckψk: ð3Þ

The complex eigenvalues ck always have a nonpositive real
part and one of them is 0, conventionally, c0 ¼ 0. When Γ
is large, all the components k > 0 of the density matrix
lying outside the dissipation-free subspace can be shown to
scale as 1=Γ, namely, jjRkðτÞjj ¼ Oð1=ΓÞ for τ > Oð1Þ,
see [19].
The spectrum of the effective Liouvillian L̃ associated to

Eq. (2) gives only a part of the full Liouvillian spectrum,
namely, d21 eigenvalues out of d

2 ¼ ðd0d1Þ2. The remaining
d2 − d21 eigenvalues of the Liouvillian L originate from the
components Rk with k > 0 in the expansion of the full
density matrix.
In [18] it has been shown how to obtain, in the Zeno

limit, the nonequilibrium steady state, i.e., the eigenstate of
L corresponding to the eigenvalue 0. Here, we derive
explicit formulas for all the eigenvalues and eigenstates of
L near the Zeno limit, up to order 1=Γ included. Explicitly,
wewill first obtain equations analogous to Eq. (2) for all the
components RkðτÞ of the density matrix, and then show
how to use these equations to derive eigenvalues and
eigenstates of L.
In order to formulate our main statement, note that the

dissipator eigenstates fψkg of Eq. (3) form a basis in H0.
Let fφkg be a biorthogonal basis in H0 satisfying
trðψkφnÞ ¼ δkn. The decompositions of the Hamiltonian
H and of the density matrix ρðτÞ in the bases fφkg and
fψkg are, respectively,

H ¼
X

m

ðφ†
m ⊗ g†mÞ ¼

X

m

ðφm ⊗ gmÞ; ð4Þ

gm ¼ trH0
½ðψm ⊗ IH1

ÞH�; ð5Þ

ρðτÞ ¼
X

k

ψk ⊗ RkðτÞ; ð6Þ

RkðτÞ ¼ trH0
½ðφk ⊗ IH1

ÞρðτÞ�: ð7Þ

Statement.—The component Rk corresponding to a non-
zero dissipator eigenvalue ck with degeneracy deg, near the
Zeno limit satisfy

dRk

dτ
¼ ΓckRk þ i

X

s∶cs¼ck

ðUk;sRs − RsWk;sÞ

þ 1

Γ

X

z>0

X

m>0

X

n∶cn≠ck

X

s∶cs¼ck

1

cn − ck

× ð−γn;s;km;z gmRsg
†
z þ εn;s;kz;m g†zgmRs þ δn;s;kz;m Rsg

†
zgmÞ

þOð1=Γ2Þ; ð8Þ

where Uk;s and Wk;s are operators in H1 given by

Uk;s ¼
X

n

Bn;s;kg
†
n; Wk;s ¼

X

n

An;s;kg
†
n; ð9Þ

and γn;s;km;z , εn;s;km;z , and δn;s;km;z are the coefficients

γn;s;km;z ¼ Cm;s;nAz;n;k þ Az;s;nCm;n;k; ð10Þ

ϵn;s;kz;m ¼ Cm;s;nBz;n;k; ð11Þ

δn;s;kz;m ¼ Az;s;nCk;n;m; ð12Þ

with

Am;k;n ¼ trðφnψkφ
†
mÞ; ð13Þ

Bm;k;n ¼ trðφnφ
†
mψkÞ; ð14Þ

Cm;k;n ¼ trðφnφmψkÞ: ð15Þ

Note that the above coefficients are related to the dissipator
via its eigenstates fψkg and the associated biorthogonal
basis fφkg. For a nondegenerate eigenvalue, deg ¼ 1, only
the simplified operators Uk;k ¼ Uk and Wk;k ¼ Wk appear
in Eq. (8), where

Uk ¼ g0 þ
X

n>0

Bn;k;kg
†
n; Wk ¼ g0 þ

X

n>0

An;k;kg
†
n: ð16Þ

Equation (8) applies also in the presence of more degen-
erate eigenvalues.
The above statement follows from a perturbative

Dyson expansion with respect to the small parameter
1=Γ of the Liouvillian equation for ρðtÞ, where t is
the rescaled time t ¼ Γτ. With this scaling, we have
dρðtÞ=dt ¼ L0½ρðtÞ� þ K½ρðtÞ�, where L0½·� ¼ D½·� and
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K½·� ¼ −ði=ΓÞ½H; ·�. The corresponding exact propagator,
namely, exp½ðL0 þ KÞt�, can be expanded in a Dyson series
with respect to the perturbation K. Keeping the expansion
terms up to order K2 included and coming back to the time
τ, after some algebra, we get Eq. (8). Full details of the
proof are given in Supplemental Material [21].
Eigenvalues and eigenvectors of L.—By finding the

normal modes of the linear problem (8) for each index
k > 0, as well as of the linear problem (2) for k ¼ 0, we
obtain all the eigenvalues of the Liouvillian L. Let λk;α;β be
the set of the eigenvalues of L corresponding to ck.
First consider a nondegenerate ck. In the limit Γ → ∞,
the Oð1=ΓÞ contributions in Eq. (8) can be neglected and,
expanding RkðτÞ ¼

P
α;β cαβðτÞjαihβ̃j, where jαi are the

right eigenvectors of Uk with eigenvalues uα and hβ̃j are
the left eigenvectors of Wk with eigenvalues wβ, we
find dcαβðτÞ=dτ¼ λk;α;βcαβðτÞ¼ ½ckΓþ iðuα−wβÞ�cαβðτÞ.
This implies

λk;α;β ¼ ckΓþ iðuα − wβÞ þOð1=ΓÞ; ð17Þ

with corresponding eigenvectors ψk;α;β ¼ ψk ⊗ jαihβ̃j.
Note that, even if not explicitly indicated, the eigenvalues
wα and uβ depend, as the corresponding eigenvectors do, on
the index k.
The 1=Γ corrections to the eigenvalues (17) are

then found by a standard perturbative formula, δλk;α;β ¼
hRαβjV̂kjRαβi, where V̂k is the vectorized form of the
Oð1=ΓÞ term in the superoperator of Eq. (8) and jRαβi
is an eigencomponent of the reduced density matrix
jRαβi ¼ jαi ⊗ jβ̃i�. Every perturbative term of type
QjxihyjP in (8) gives a contribution trðQjxihyjPjyihxjÞ ¼
hxjQjxihyjPjyi to the eigenvalue correction. Explicitly,
we obtain

δλk;α;β ¼
1

Γ

X

z>0

X

m>0

X

n∶cn≠ck

1

cn − ck
ð−γn;n;km;z hαjgmjαi

× hβ̃jg†z jβ̃i þ εn;n;kz;m hαjg†zgmjαi þ δn;n;kz;m hβ̃jg†zgmjβ̃iÞ:
ð18Þ

The Oð1=ΓÞ corrections to the respective eigenstates ψk ⊗
jαihβ̃j are also given by standard first-order perturbative
formulas [22].
Of course, the above 1=Γ correction is valid if the

eigenvalues (17) are nondegenerate. In the case of λk;α;β
degenerate, a different, although still standard, procedure
must be undertaken (diagonalization within the subspace
of degeneration) to obtain the 1=Γ corrections. Explicit
expressions will be given for the case study consid-
ered below.
The case of a degenerate dissipator eigenvalue ck can be

tackled in a similar way.

A case study: The XYZ spin chain.—We illustrate
the above results on a Heisenberg spin chain with
N þ 1 sites, the first one being in contact with a strongly
dissipative environment. The coherent part of the
evolution is given by the standard XYZ Hamiltonian
H ¼ P

N−1
j¼0

P
α¼x;y;z σ

α
j Jασ

α
jþ1, σαj being the αth Pauli

matrix acting at site j, whereas dissipation acts locally
on site 0 and targets an arbitrary, pure or mixed, single
spin state ρ0 at this site [23]. The evolution of the
density matrix ρðτÞ of the full chain is determined
by a LME with Liouvillian as in Eq. (1). The Lindblad
dissipator acting on spin 1 is the sum of two terms,
D ¼ ½ð1þ μÞ=2�D1 þ ½ð1 − μÞ=2�D2,

Dα½ρ� ¼ LαρL
†
α −

1

2
L†
αLαρ −

1

2
ρL†

αLα; α ¼ 1; 2; ð19Þ

where L1 ¼ jsðθ;φÞihs⊥ðθ;φÞj and L2 ¼ LT
1 , with

jsðθ; φÞi ¼ cosðθ=2Þe−iφ=2j↑i þ sinðθ=2Þeiφ=2j↓i and
hsðθ;φÞjs⊥ðθ;φÞi ¼ 0. This dissipator targets the polari-
zation μn⃗0 on site 0, where n⃗0 is the unit vector
n⃗0 ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. The uniqueness of
the nonequilibrium stationary state (NESS) can be proven
using Evans criterion [24].
Striped structure of spectrum.—The distribution of

the Liouvillian eigenvalues manifestly depends on the
strength of dissipation Γ in Eq. (1). For medium dissipation
strengths, comparable with the exchange integral in the
model, the eigenvalues are scattered seemingly randomly,
see Fig. 1 (top). For large Γ, they are arranged in distinct
stripes, see Fig. 1 (bottom). The stripelike structure stems
from the properties of the dissipator in the LME. In fact, the
eigenvalue problem (3) of the locally acting dissipator D
can be easily solved [18], yielding

c0 ¼ 0; ψ0 ¼
1þ μ

2
jsihsj þ 1 − μ

2
js⊥ihs⊥j;

c1 ¼ −
1

2
; ψ1 ¼ jsihs⊥j;

c2 ¼ −
1

2
; ψ2 ¼ js⊥ihsj;

c3 ¼ −1; ψ3 ¼ jsihsj − js⊥ihs⊥j; ð20Þ

where jsi≡ jsðθ;φÞi. The respective biorthogonal basis
fφkg is given by

φ0 ¼ IH; φ1 ¼ ψ2; φ2 ¼ ψ1;

φ3 ¼
1 − μ

2
jsihsj − 1þ μ

2
js⊥ihs⊥j: ð21Þ

Neglecting the coherent part provided by the Hamiltonian
H, the Liouvillian L of Eq. (1) would have the eigenvalues
Γck, k ¼ 0;…; 3, each eigenvalue having a degeneracy 22N

due to the inclusion of theN extra spins. AddingH acts as a
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perturbation (the small parameter being 1=Γ), which
results in lifting the degeneracies. The perturbation-affected
eigenvalues have, therefore, real part approximately given
by Γck.
Spectra of the stripes.—The stripe associated with

c0 ¼ 0 is described by the equation for R0 obtained in
[18,25]. We review this equation and evaluate the corre-
sponding spectrum in [21]. The other Zeno stripes are
associated with the nonzero eigenvalues of the dissipator
(20): c1 ¼ c2 ¼ −1=2 and c3 ¼ −1. In the following, we
consider the eigenvalue c3. The analysis of the degenerate
eigenvalue c1 ¼ c2 is similar and detailed in [21].
To evaluate the Oð1Þ terms of Eq. (8) for k ¼ 3, we need

the operatorsU3 andW3 (16). The only nonzero coefficients
An;3;3 and Bn;3;3 with n > 0 are A3;3;3 ¼ B3;3;3 ¼ −μ and we
find U3¼W3¼g0−μg†3¼

P
N−1
j¼1 hj;jþ1−μðJn⃗0Þ · σ⃗1, where

hj;jþ1 ¼ σ⃗j · ðJσ⃗jþ1Þ is the local density of the Hamiltonian
H. Comparing U3 and hD, we see that they differ just by
the sign of the local field acting on site 1. It can be shown
that hD and U3 are, therefore, isospectral [21]. According
to (17), the corresponding Liouvillian eigenvalues are

λ3;α;β ¼ −Γþ iðϵα − ϵβÞ þOð1=ΓÞ; ð22Þ

and the corresponding eigenvectors are ψ3;α;β ¼ jψ3i ⊗
jαihβj þOð1=ΓÞ, where jαi is an eigenvector of U3 with
eigenvalue ϵα. The corrections Oð1=ΓÞ are evaluated

according to Eq. (18) for β ≠ α. The case β ¼ α is similar
to the calculation done for c0 ¼ 0 and is detailed in [21].
Figure 2 shows, stripe by stripe, the standard deviation

of the error obtained by comparing the numerically
computed Liouvillian eigenvalues with our perturbative
eigenvalues, order Oð1=ΓÞ included. As expected, this
error behaves like ðΓc=ΓÞ2 for Γ sufficiently large, with Γc
possibly different for the various stripes depending on the
parameters chosen. The value of Γc can be used as an
indicator of an onset of the Zeno regime, characterized by
the appearance of stripes in Fig. 1. From Fig. 2 we also see
that the Zeno regime is reached easier for larger boundary
gradient jμj.
Our Zeno-limit expansion for an eigenvalue λ is appli-

cable if the dissipation Γ is much larger than the inverse
radius of convergence of the 1=Γk perturbative series for λ.
The global radius of convergence, valid for all Liouvillian
eigenvalues, is problem specific. In Fig. 3 we show, as a
function of Γ, the real part of all Liouvillian eigenvalues of
a Heisenberg chain with 2 spins, the first spin being
targeted by a z-polarizing dissipation. Depending on the
anisotropy, we find up to eight exceptional points, where
two or more eigenvalues coalesce [26–29]. Fully analytical
Zeno regime sets in beyond the rightmost branching point,
see Fig. 3.
Let us summarize our findings. The eigenvalues of a

Liouvillian with a locally acting dissipator at large dis-
sipation strength Γ are arranged in a set of stripes, see
Fig. 1, indicating the existence of a hierarchy of relaxation
timescales in the system [30]. The number of stripes
coincides with the number of different eigenvalues of
the Lindblad dissipator D in (1).
The width of the stripes scales as 1=Γ and the distance

between the stripes scales as Γ. The vertical extension of the

FIG. 1. Exact complex eigenvalues of the Liouvillian evaluated
numerically for Γ ¼ 0.5, 8, 20 (from top to bottom). Increasing Γ,
eigenvalues arrange in stripes whose number equals that of the
eigenvalues of the dissipator. For Γ large, the width of the
stripes scales as 1=Γ while their height remains constant; the
distance between the stripes scales as Γ. Parameters: N ¼ 4,
J⃗ ¼ ð1; 1;−0.6058Þ, φ ¼ 0, θ ¼ π=2, μ ¼ 1.

FIG. 2. Standard deviation of the modulus of the difference
between numerically obtained Liouvillian eigenvalues and our
perturbative prediction as a function of Γ, separately for each
stripe. The set of data corresponding to empty symbols is
obtained with parameters as in Fig. 1 (pure target state). The
set with filled symbols corresponds to a mixed target state with
parameters: N ¼ 4; J⃗ ¼ ð1; 1.7;−0.137Þ, φ ¼ 0, θ ¼ 2π=7,
μ ¼ −0.7. The straight lines are ðΓc=ΓÞ2 with, from top to
bottom, Γc ¼ 129, 51, 6.3, 5.6.
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stripes does not depend on Γ and is of the order of the
norm jjHjj of the coherent part of the Liouvillian (1).
The position of the stripes on the real axis is
Reλ ¼ ckΓþOð1=ΓÞ where ck are the eigenvalues of
the dissipator (3). Each stripe corresponding to a non-
degenerate ck contains d21 Liouvillian eigenvalues, where
d1 ¼ dimH1 is the dimension of that part of Hilbert
space which is not affected directly by the dissipation.
Emergence of stripes can be viewed as a hallmark of a
quantum Zeno regime.
We derived linear spectral problems for the dissipation-

projected Liouvillian, for each relaxation mode ck, and
outlined a complete solution of the eigenvalue problem
via a perturbative analysis. We demonstrated our general
results in the case of dissipation acting on a single boundary
qubit of an anisotropic Heisenberg spin chain. For this
case, we obtained explicit expressions for eigenvalues
and eigenvectors of the problem near the Zeno regime.
The solutions are given in terms of spectral data of a
dissipation-projected Hamiltonian and other similar
Hamiltonians, these being much simpler objects than the
original Liouvillian. Our method is straightforwardly
applicable to the XYZ model with dissipation acting on
both boundaries, thus creating boundary gradients [31,32],
which play a prominent role in studies of quantum transport
[33]. All the auxiliary Hamiltonians have the form of an
open XYZ spin chain with boundary fields and are
integrable [34].
To derive our results we used several assumptions:

(i) diagonalizability of the dissipator (3), (ii) uniqueness
of its kernel, (iii) absence of anomalous scaling of the
gaps in the spectrum of the Liouvillian, including the
Liouvillian gap. A generalization of our results is, in prin-
ciple, straightforward. We expect the emergence of striped
structure and scaling of the stripes in the Zeno limit to be
qualitatively correct also for degenerate kernels, e.g., for
those resulting from Hermitian Lindblad operators [35].

Our explicit results shed a light on the intrinsic properties
of an isolated system coupled strongly to the environment,
and make its study almost analytically affordable.
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