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Abstract
We formalize and prove the extension to finite temperature of a class of quantum
phase transitions, acting as condensations in the space of states, recently intro-
duced and discussed at zero temperature (Ostilli and Presilla 2021 J. Phys. A:
Math. Theor. 54 055005). In details, we find that if, for a quantum system at
canonical thermal equilibrium, one can find a partition of its Hilbert space H
into two subspaces, Hcond and Hnorm, such that, in the thermodynamic limit,
dimHcond/dimH→ 0 and the free energies of the system restricted to these
subspaces cross each other for some value of the Hamiltonian parameters,
then, the system undergoes a first-order quantum phase transition driven by
those parameters. The proof is based on an exact probabilistic representation
of quantum dynamics at an imaginary time identified with the inverse temper-
ature of the system.We also show that the critical surface has universal features
at high and low temperatures.
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1. Introduction

The expression ‘quantum phase transitions’ (QPTs) [1–6] usually refers to phase transitions
occurring at zero temperature (T = 0): in contrast to classical phase transitions, which are
driven by the temperature, QPTs are meant to be driven by varying some Hamiltonian para-
meter of the system. Such a definition, however, might be a bit misleading. In more precise
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terms, one should say that a QPT is characterized by the existence of a singularity taking place
at T = 0 in correspondence of some value of the Hamiltonian parameters, the quantum crit-
ical point (QCP). Here, the quantum nature of the singularity is implicit in the T = 0 limit,
however, this more precise definition of QPT does not prevent the phase transition, still purely
quantum, to exist also for T > 0 via the emergence of a critical line separating the two involved
phases. Actually, T = 0 represents just an ideal limit and understanding the finite temperature
counterpart of any QPT is crucially important. However, such a task, in general, represents a
quite challenging issue, from both the theoretical and experimental viewpoints since, above
zero temperature, quantum and thermal fluctuations compete in an intricate manner.

In this work, we present a comprehensive and rigorous approach to a large class of first-order
QPTs at finite temperature. An heuristic derivation of this approach as well as some relevant
applications, have been recently presented in [7] while, in the present work, we mainly focus
on the proof of the specific thermodynamic inequalities at the base of our general method. In
the resulting phase diagram of these first-order QPTs, the critical line emerging from the QCP
establishes a region at finite T, which we call ‘condensed’, where the order parameter remains
rigidly invariant. In other words, within the condensed region, the system behaves like if it
were frozen at T = 0; thermal fluctuations do not affect the system. This feature turns out to be
particularly appealing for applications to quantum computing protocols aimed at finding the
ground state (GS) by using low but finite temperatures, the GS of the condensed phase being
the solution of some combinatorial problem of interest, possibly hard [8–10].

The class of the first-order QPTs we are dealing with was first introduced and analyzed
at T = 0 in a previous work, where it was found that the mechanism of the phase transition
consists in a condensation in the space of states [11]. Let us consider a system described by
the Hamiltonian

H= ΓK+V, (1)

where K and V are two noncommuting Hermitian operators, K being dimensionless, and Γ a
parameter with energy dimensions. If we representH in the eigenbasis of V, it is natural to call
V ‘potential operator’,K ‘hopping operator’, and Γ hopping parameter. We stress however that
V is completely arbitrary and can involve any kind of particle-interactions.Wewill use Γ as the
control parameter of the supposed QPT. Since phase transitions occur in the thermodynamic
limit (TDL), we need a fair competition between K and V in this limit. IfH describes a system
of N particles, we assume that the eigenvalues of K and V both scale linearly with N, whereas
Γ = O(1). A relevant family of models to bear in mind concerns qubits based systems. For
these systems, the space of statesH can be identifiedwith the space spanned by the dimH= 2N

spin states indicated by |n⟩= |n1⟩|n2⟩ . . . |nN⟩, where |ni⟩= |±⟩ is an eigenstate of the Pauli
matrix σzi relative to the qubit i= 1, . . . ,N, N being the number of qubits. The potential V is
a diagonal operator in the states |n⟩, namely, V=

∑
nVn|n⟩⟨n|. The hopping operator K is

chosen as the sum of single-flip operators K=−
∑N

i=1σ
x
i . A paradigmatic example of this

family of systems is provided by the Grover Hamiltonian, which emulates a benchmark model
for quantum search [12–16], where Vn =−JNδn,n1 , with J= O(1)> 0, and n1 represents the
target of a totally unstructured (worst case scenario) search. In contrast, structured searches
correspond to potentials having a smooth minimum around the target and, therefore, benefit
from the application of gradient-descent based methods like, e.g. in the Ising model where,
however, the corresponding QPTs are second-order.

In [11] we have proven the following general result at T = 0. If we can find a partition of the
space of statesH of the system into two subspaces,H=Hcond ⊕Hnorm, such that, in the TDL,
dimHcond/dimH→ 0 and the GS energies of H restricted to these subspaces cross each other
at a finite value of Γ, then the system undergoes a first-order QPT driven by this parameter.
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Condensed and normal, the names attributed to the two subspaces, were motivated by the
vanishing of the dimension of Hcond relatively to that of H in the TDL with the consequence
that the QPT realizes as a condensation in the space of states4. Condensation QPTs seem
ubiquitous. Besides qubits based systems, they emerge also in fermionic systems: as we have
recently shown, the renowned Wigner crystallization belongs to this class of QPTs [17].

As mentioned, the extension of these quantum condensations to finite temperature has
already been presented in the [7], where the phase diagrams at finite T were obtained by simply
replacing the crossing between the GS energies restricted to the condensed and normal sub-
spaces, with the crossing of the corresponding restricted free energies. However, while this
generalization at finite T sounds completely natural and physically appealing, it remains an
heuristic argument. It is the aim of the present work to provide a rigorous proof. Whereas the
proof for the T = 0 case was obtained via an algebraic-functional approach [11], the present
proof for the finite temperature case, which includes the T = 0 as special limit, is based on
an exact probabilistic representation (EPR) of the quantum dynamics on lattices introduced
some years ago [18]. In contrast to the algebraic-functional approach, the probabilistic repres-
entation of the quantum dynamics has also the advantage to provide a clear physical picture.
As we will see in detail, linking the imaginary time to the inverse temperature, we are able to
analyze the Gibbs equilibrium at finite temperature by following trajectories of the system that
evolve for a corresponding finite time and see how the condensations in the space of states are
a consequence of the different crossing rates that exist for traversing the cond/norm boundary
in the two directions, one being extensive in the system size, O(N), the other being o(N). In
this work, we also show that the critical surface has universal features at high and low temper-
atures: in the former case it becomes proportional to the potential coupling, while in the latter
case it acquires an infinite slope at the QCP.

The paper is organized as follows. Sections 2–4 are devoted to the formal definition of the
condensed and normal subspaces and to a summary of the T = 0 formulas, while the main
result at finite T and its proof are provided in sections 5 and 8, respectively, sections 6 and 7
being devoted, in this order, to a proof of the above mentioned universal features and to an
application to the Grover model as an exactly solvable example. Finally, in section 9 we dis-
cuss the equivalence between the dimHcond/dimH→ 0 condition with the above mentioned
boundary crossing-rate difference.

2. Normal and condensed subspaces

We start by defining a proper partition of the space of states. Consider a system with Hamilto-
nian (1), and let {|nk⟩}dimH

k=1 be a complete orthonormal set of eigenstates of V, the config-
urations: V|nk⟩= Vk|nk⟩, k= 1, . . . ,dimH. We assume ordered potential values V1 ⩽ · · ·⩽
VdimH. For a system of N qubits, for instance, the set of the configurations may correspond to
the set of dimH= 2N product states ofN spins along some direction, as stated above. For other
physical systems composed by Np particles moving in a lattice of N sites, the filling Np/Nwill
be assumed to be fixed in the TDL, and the set of the configurations correspond to all possible
ways to accommodate the Np particles in the N sites according to the fermionic or bosonic
nature of the particles. In other words, a configuration |nk⟩ represents the collective positions

4 It is worth to emphasize that, although the condensation that we describe is reminiscent of the Bose–Einstein con-
densation, the latter is a condensation in the momentum space, which applies to ideal gases and in which the space of
states is made by the eigenstates of a single-particle Hamiltonian. On the other hand, we deal with interacting particles
and our space of states is made by many-particle states.
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of the Np indistinguishable particles in the case of fermions and bosons, or the collective ori-
entations of the Np = N distinguishable qubits thought fixed at N different spatial positions.
At any rate, there is no limitation in the definition of the set of the configurations defining
the space of states as H= span{|nk⟩}dimH

k=1 and our general result applies in each abstract or
physical case, without the need of considering separately the nature of the particles involved,
as done for other phase transitions [19].

Let dimHcond be an integer with 1⩽ dimHcond < dimH and let us consider a partition
of the set of the configurations as {|nk⟩}dimH

k=1 = {|nk⟩}dimHcond
k=1 ∪{|nk⟩}dimH

k=dimHcond+1. In the
Hilbert space of the system, H= span{|nk⟩}dimH

k=1 , which is equipped with standard complex
scalar product ⟨u|v⟩, the above partition induces a decomposition of H as the direct sum of
two mutually orthogonal subspaces, denoted condensed and normal:

H=Hcond ⊕Hnorm, (2)

where

Hcond = span{|nk⟩}dimHcond
k=1 , (3)

Hnorm = span{|nk⟩}dimH
k=dimHcond+1 =H⊥

cond. (4)

Correspondingly, we define

E= inf
|u⟩∈H

⟨u|H|u⟩
⟨u|u⟩

, (5)

Econd = inf
|u⟩∈Hcond

⟨u|H|u⟩
⟨u|u⟩

, (6)

Enorm = inf
|u⟩∈Hnorm

⟨u|H|u⟩
⟨u|u⟩

, (7)

which are the GS eigenvalues, respectively, of H and of H restricted to the condensed and
normal subspaces. According to the scaling properties assumed for K and V, we have that E,
Econd and Enorm increase linearly with N (at least in the TDL).

3. QPTs at T=0

The Hilbert space dimension dimH generally diverges exponentially with N, while the dimen-
sion dimHcond, may or may not be a growing function of N. In [11] we have shown that:

if lim
N→∞

dimHcond

dimH
= 0, (8)

then lim
N→∞

E
N

= lim
N→∞

min

{
Econd

N
,
Enorm

N

}
. (9)

For finite sizes, up to corrections O(1), equation (9) reads

E≃
{

Econd, if Econd < Enorm,
Enorm, if Enorm < Econd.

(10)

As a consequence of equation (9), by varying one or more parameters of the Hamiltonian
H, we obtain a QPT, necessarily of first order, whenever a crossing takes place between Econd

and Enorm. In the TDL, the space of states splits at the QCP (or, more generally, at the quantum
critical surface) defined by

lim
N→∞

Econd

N
= lim

N→∞

Enorm

N
, (11)
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and, in correspondence with equation (10), for the GS |E⟩ we have either |E⟩ ∈ Hcond or
|E⟩ ∈ Hnorm.

In order to have a QPT, apart from the necessary condition (8), dimHcond should also be
chosen in such a way that equation (11) admits a finite solution [17]. As a general criteria,
Hcond should be not too small and not too large so that neither of the two restrictions of H,
to Hcond and to Hnorm, have a QPT. In other words, we want that, in the TDL, Econd/N and
Enorm/N remain both analytic functions of the Hamiltonian parameters, whereas E/N becomes
non-analytic at the QCP [17].

4. Order parameter at T=0

The interpretation of the above class of QPTs in terms of a condensation in the space of states
holds in general, even when Hcond contains many eigenstates of V [17]. At zero temperature,
the probability for the condensed subspace to be occupied is

pcond =
∑

|nk⟩∈Hcond

|⟨nk|E⟩|2 . (12)

On the other hand, in the TDL, since it is either |E⟩ ∈ Hcond or |E⟩ ∈ Hnorm, we find either
p= 1 or p= 0, respectively (we assume |E⟩ normalized). In other words, pcond represents an
order parameter of these first-order QPTs.

We stress that condensation QPTs are intrinsically first-order, for they can be driven by
using even one single Hamiltonian parameter. In contrast, as for the classical case, jumps of
the order parameter can result when crossing the coexistence line of two different phases that
originate from the critical point of a second-order QPT. Notice that, for such a scenario to take
place at zero temperature, one needs that the Hamiltonian depends on at least two independent
parameters (think to the 1d Ising model in the presence of both a transverse and a longitudinal
magnetic field [20, 21]).

5. Finite temperature quantum condensations

Our aim is to extend the above class of condensation QPTs to finite temperature. We suppose
that the system, in contact with a heat bath, is at canonical equilibrium at temperature T=
1/(kBβ), i.e. it is in the state described by the Gibbs density matrix operator ρ= e−βH/tre−βH.

Analogously to the T = 0 case, we proceed by defining the Gibbs free energies associated
to the spaces H,Hcond,Hnorm,

e−βF = tre−βH =
∑

|n⟩∈H

⟨n|e−βH|n⟩, (13)

e−βFcond = trcond e
−βHcond =

∑
|n⟩∈Hcond

⟨n|e−βHcond |n⟩, (14)

e−βFnorm = trnorm e
−βHnorm =

∑
|n⟩∈Hnorm

⟨n|e−βHnorm |n⟩, (15)

where Hcond and Hnorm are the restrictions of H to the condensed and normal subspaces5. Note
that Hcond +Hnorm ̸= H. It is natural to investigate whether equation (9) can be generalized

5 In the representation of the eigenstates of V, Hcond corresponds to a null matrix except for the block
⟨nk|Hcond|nk ′ ⟩= ⟨nk|H|nk ′ ⟩, k,k ′ = 1, . . . ,Mcond. Analogously, Hnorm corresponds to a null matrix except for the
block ⟨nk|Hnorm|nk ′ ⟩= ⟨nk|H|nk ′ ⟩, k,k ′ =Mcond + 1, . . . ,M.
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to finite temperature just by substituting the energies E,Econd,Enorm with the free energies
F,Fcond,Fnorm, which scale linearly with N too.

For any partitionH=Hcond ⊕Hnorm, we will prove that (X stands for either cond or norm
and Y for its complement)

1⩽ ⟨n|e−βH|n⟩
⟨n|e−βHX |n⟩

⩽ eβΓmin{A(out)
X ,A(out)

Y }, |n⟩ ∈ HX, (16)

F⩽min{Fcond,Fnorm}, (17)

F⩾min{Fcond,Fnorm}−min{A(out)
cond ,A

(out)
norm}Γ, (18)

where A(out)
X = sup|n⟩∈HX

∑
|n ′⟩∈HY

|⟨n|K|n ′⟩| represents the maximum number of outgoing

links (nonzero matrix elements ofK) fromHX toHY. The product min{A(out)
X ,A(out)

Y }Γ determ-
ines approximately the rate of convergence to 1 of the probability for crossing the boundary
between HX and HY along the quantum dynamics at imaginary times (see section 8). In the
Grover model, e.g. A(out)

norm = 1 while A(out)
cond = N. As we show in section 9, the important point is

that, in most of the systems of interest, the conditions dimHcond/dimH→ 0 and A(out)
norm/N→ 0

are equivalent and, under any of these conditions, equations (17) and (18), up to a term o(N),
provide the natural generalization of equation (10)

F≃
{

Fcond, if Fcond < Fnorm,
Fnorm, if Fnorm < Fcond.

(19)

Equation (19) extends the T = 0 QPT to finite temperature. The crossing between Fcond and
Fnorm gives rise to a first order phase transition controlled by Hamiltonian parameters and
temperature, the equation for the critical surface being

lim
N→∞

Fcond

N
= lim

N→∞

Fnorm

N
. (20)

Hereafter, we assume min{A(out)
cond ,A

(out)
norm}= A(out)

norm .
The probability for the condensed subspace to be occupied represents an order parameter

also at finite temperature and the phase transition can be interpreted as a condensation in the
space of states. In fact, due to equation (16)

pcond =
∑

|n⟩∈Hcond

⟨n|ρ|n⟩ ≃ 1
1+ e−β(Fnorm−Fcond)

, (21)

where the equality holds in the TDL with pcond = 1 in the condensed phase Fcond < Fnorm and
pcond = 0 in the normal one Fnorm < Fcond. At the critical surface separating the two phases we
have pcond = 1/2.

Equations (17) and (18) are easily derived from equation (16). Before giving the proof of
equation (16), we illustrate some universal features of the finite temperature condensations
and the application of our findings to the Grover model.

6. Universal features of the critical surface

We recall that standard canonical thermodynamics relations such as F= U−TS, U being the
internal energy and S=−∂F/∂T the entropy, apply also to the quantum case. Suppose that
the potential V in the Hamiltonian (1) depends on a single parameter, say J, having energy
dimensions: V= JṼ, Ṽ being dimensionless. In this case, keeping fixed the kinetic parameter
Γ, the equation for the critical surface (20) determines the critical temperature as a function
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of J: T= T(J). The critical temperature T(J) is the N→∞ limit of the ‘finite size critical
temperature’ TN(J) determined by the finite size analogous of equation (20). Under the mild
assumption that TN(J) converges uniformly to T(J) we are allowed to exchange the order of
limits N→∞ with J→∞ and also to exchange the order of the limit N→∞ with the deriv-
ative d/dJ. In the following, we shall make use of these properties to establish two universal
features of the critical temperature: at large potential values, J→∞, and at the QCP, J→ Jc.
In both cases the starting point is equation (20) at finite size rewritten as

TN(J) =
Unorm −Ucond

Snorm − Scond
. (22)

Let us consider the limit J→∞. Here, all the eigenvalues ofH, as well as all the eigenvalues
of the restrictions of H to the normal and condensed subspaces, become proportional to J. As
a consequence, the internal energies Unorm and Ucond become also proportional to J. It follows
that Unorm −Ucond = αNJ, where α is a constant independent of J. On the other hand, for the
entropy (of the whole space and, similarly, of the restrictions), we have

S= kB log
(
tre−βN(J)H

)
+

U
TN(J)

. (23)

From equation (23) we see that, by assuming TN(J) = γJ, where γ is a finite positive constant,
in the limit J→∞, the entropy (of the whole space and, similarly, of the restrictions) becomes
independent of J. On combining this fact with equation (22) we see that, in the limit J→∞,
TN(J) = γJ is solution of equation (22). Finally, in the TDL, taking into account that Snorm
must be extensive (Scond could be extensive or not), we get the value of γ as follows

γ = lim
J→∞

T(J)
J

= lim
J→∞

lim
N→∞

Unorm −Ucond

J(Snorm − Scond)
. (24)

Let us now consider the limit J→ Jc. By using ∂F/∂T=−S, and, similarly, for the restric-
tions to the subspaces, we can evaluate the total derivative of equation (20) with respect to J
as

∂(Fnorm −Fcond)

∂J
− (Snorm − Scond)

∂TN(J)
∂J

= 0, (25)

which provides

∂TN(J)
∂J

=
∂(Fnorm −Fcond)

∂J
1

Snorm − Scond
. (26)

Again we observe that the free energies and, at any finite T, also the entropies, are extensive
quantities. This implies that, for any finite T, the TDL of equation (26) is finite. However,
since J→ Jc implies T→ 0, disregarding cases like spin-glass models, the entropy density of
the system as well as of its restrictions tend to zero in the TDL. Let us assume that, for J= Jc,
in the TDL we have ∂(Enorm/N−Econd/N)/∂J ̸= 0. From equation (26) we conclude that

lim
J→Jc

∂T(J)
∂J

= lim
J→Jc

lim
N→∞

∂TN(J)
∂J

=+∞. (27)

We can show that equation (27) holds true also when, for J= Jc, in the TDL we have
∂(Enorm/N−Econd/N)/∂J= 0 but ∂2(Enorm/N−Econd/N)/∂J2 ̸= 0 and possibly infinite.
The argument is based on the assumption that, in the limit T→ 0, the specific heat of the
two restrictionstend to 0 faster than T, or else that ∂2(Enorm/N−Econd/N)/∂J2 →∞ in the
TDL, as indeed occurs in many cases of interest.
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Clearly, what actually matters is the ratio J/Γ. In fact, by using the same arguments we
can equivalently rewrite equation (24) as γ = limJ/Γ→∞T(J)/J or else, if the potential para-
meter J is kept constant and Γ is varied, as γ = limΓ/J→0T(Γ)/J and, similarly, we can rewrite
equation (27) as limΓ→Γc ∂T(Γ)/∂Γ = +∞, where T(Γ) is the critical temperature in the limit
N→∞ and Γc provides the QCP. As we shall see in the next section, the constant γ can be
easily evaluated in the exactly solvable Grover model where γ = 1/(kB log2).

7. The Grover model as an exactly solvable paradigmatic example

7.1. The case T=0

Here V1 =−JN, with J> 0, and Vk = 0, for k= 2,3, . . . ,dimH= 2N. We can assume
dimHcond = 1 independent of N. We find |Econd⟩= |n1⟩ and Econd = V1. Up to a correction
O(N/dimH), we also have Enorm =−ΓN [11]. Therefore equation (10) becomes

E≃
{

−JN, if Γ< Γc,
−ΓN, if Γ> Γc,

(28)

where the QCP, Γc, is determined by equation (11), namely, Γc = J. For Γ> Γc the GS of the
model coincides with the GS of the hopping operator K, while for Γ< Γc the system stays
locked in the configuration |n1⟩. We thus have a QPT that corresponds to a condensation in
the space of states.

7.2. The general case T⩾ 0

Since dimHcond = 1, we have −βFcond =−βV1 with V1 =−JN. Up to corrections exponen-
tially small in N, the free energy of the normal subspace coincides with that of the hopping
operator K whose levels are −Γ(N− 2j), j= 0, . . . ,N, and have degeneracy N!/( j!(N− j)!),

e−βFnorm = tre−βK =
N∑
j=0

(
N
j

)
e−β(−Γ(N−2j)), (29)

which provides −βFnorm = N log(2cosh(βΓ)). The critical surface defined by equation (20)
is thus given by log(2cosh(βΓ)) = βJ (a result also found in [16] via approximate methods)
which can be solved to explicitly provide Γc = Γc(T)6,

Γc(T) = J+ kBT log

(
1
2
+

√
1
4
− e−2J/(kBT)

)
. (30)

Note that equation (30) is defined only for kBT⩽ J/ log2 and for T→ 0+ returns the already
analyzed T = 0 QPT. A parametric plot of (Γc(T),T) is shown in figure 1. The shaded area
is the condensed phase. No condensed phase is possible for Γ> Γc(0) = J (point of min-
imal entropy). For 0⩽ Γ⩽ Γc(0) the condensed phase extends to the finite temperature Tc(Γ)
obtained inverting equation (30). No condensed phase is possible for T> Tc(0) = J/(kB log2)
(point of maximal entropy).

Thermodynamics follows easily: internal energies Ucond =−JN and Unorm =−ΓN tanh
(βΓ); entropies Scond = 0 and Snorm = NkB[log(2cosh(βΓ))−βΓ tanh(βΓ)]; specific heats

6 On posing x= eβΓ, we are left with the reciprocal equation log(x+ x−1) = βJ that can, in turn, be transformed
into a quadratic equation for x having two real and positive roots: one with x> 1, which corresponds to a positive Γ
(equation (30)), and the other one with x< 1, which corresponds to a negative Γ.
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Figure 1. Phase diagram for the Grover model at thermal equilibrium, the solid line
separating the two phases is drawn according to equation (30).

ccond = 0 and cnorm = kB(βΓ/cosh(βΓ))2. Notice that, whereas the free energy F is always
continuous in T, the internal energyU, the entropy S, and the specific heat c, are all discontinu-
ous along any curve that crosses the critical surface, except for T→ 0. This in particular implies
a non-null latent heat proportional to the entropy of the normal phase: Unorm −Ucond|T=Tc =
kBTcSnorm|T=Tc . This latent heat represents the minimal amount of energy to be subtracted from
the system in order to bring it from the normal to the condensed phase.

8. Proof of equation (16)

In the following, we prove the lower and upper bounds of equation (16). The starting point
is the EPR of the quantum evolution introduced in [18]. According to this EPR, at imaginary
time t, to be identified here with the inverse temperature β, we have (ℏ= 1)

⟨n|e−Ht|n0⟩= E
(
M[0,t)

n0 δnNt ,n

)
, (31)

where E(·) is the probabilistic expectation over the continuous time Markov chain of config-
urations n0,ns1 , . . . ,nsNt (hereafter, named trajectory) defined by the transition matrix

Pn,n ′ =
|⟨n|K|n ′⟩|
A(n)

, A(n) =
∑
n ′

|⟨n|K|n ′⟩|, (32)

and the sequence of jumping times s1,s2, . . . ,sNt obtained from the Poissonian conditional
probability density

P(sk|sk−1) = e−ΓA(nsk−1 )(sk−sk−1)ΓA(nsk−1). (33)

N t being the number of jumps occurred along the trajectory before the time t. Note that here-
after with the term configuration we may indicate the eigenstate of V, |n⟩, or the set of indices
n which define such state. The integer A(n) is called the number of links, or degree, of n and
represents the number of non null off-diagonal matrix elements ⟨n|H|n ′⟩. Starting from the
configuration n0 at time s0 = 0, we draw a configuration ns1 with probability Pn0,ns1 at time
s1 drawn with probability density P(s1|s0), then we draw a configuration ns2 with probability

9



J. Phys. A: Math. Theor. 55 (2022) 505004 M Ostilli and C Presilla

Pns1 ,ns2 at time s2 drawn with probability density P(s2|s1), and so on until we reach the con-

figuration nNt at time sNt such that sNt+1 > t7. The stochastic functionalM[0,t)
n0 is then defined

as

M[0,t)
n0 = e

∑Nt−1
k=0 [ΓA(nsk )−V(nsk )](sk+1−sk) e[ΓA(nsNt )−V(nsNt )](t−sNt ). (34)

Whereas a more general formulation of the EPR is possible [18], that presented above holds
in the statistically manageable case in which no sign problem arises, e.g. when ⟨n|K|n ′⟩⩽
0 for any n,n ′. We assume to be in this class of ‘bosonic’ systems. In particular, for qubit
systems K is the sum of single flip operators, for which ⟨n|K|n ′⟩= 0,−1. If the whole set of
configurations is connected by K, as we assume, the Markov chain is ergodic with invariant
measure πn = A(n)/

∑
n ′ A(n ′). For example, in qubit systems as theGrovermodel, the degree

of the configurations is constant, A(n) = N, and πn = 1/dimH.
Let us indicate by Ĥ= {nk}dimHcond

k=1 (H̃= {nk}dimH
k=dimHcond+1) the set of configurations defin-

ing the states in Hcond (Hnorm). A generic configuration of Ĥ (H̃) will be indicated by n̂ (ñ).
For any configuration n= n̂ or n= ñ we can always split its degree as

A(n) = A(in)(n)+A(out)(n), (35)

where A(in)(n) and A(out)(n) represent the number of links connecting n with configurations
inside or outside its membership subset, Ĥ or H̃8.

Consider trajectories beginning and ending at a configuration ñ of H̃. Introducing the ran-
dom variable Kt = 0,1,2, . . . counting the number of times the Markov chain transits through-
out Ĥ in the interval [0, t), we decompose the expectation as a sum of two constrained expect-
ations as follows

⟨ñ|e−Ht|ñ⟩= E
(
M[0,t)

ñ δnNt ,ñ;Kt = 0
)
+E

(
M[0,t)

ñ δnNt ,ñ;Kt ⩾ 1
)
. (36)

Consider the term Kt = 0. Each trajectory contributing to this event is characterized by
a sequence of N t jumping times s1, s2, . . . ,sNt extracted along a sequence of configura-
tions ñ, ñ1, ñ2, . . . , ñNt . Hence, regardless of any other detail, such a trajectory is realized if
none of the associated out links jump, which occurs with probability exp{−Γ[A(out)(ñ)s1 +
A(out)(ñ1)(s2 − s1)+ · · ·+A(out)(ñNt−1)(sNt − sNt−1)+A(out)(ñNt)(t− sNt)]}. On the other
hand, equation (34) shows that along the same trajectory the hopping term provides the
weight exp{Γ[A(ñ)s1 +A(ñ1)(s2 − s1)+ · · ·+A(ñNt−1)(sNt − sNt−1)+A(ñNt)(t− sNt)]}. By
using A(ñ)−A(out)(ñ) = A(in)(ñ), we obtain

E
(
M[0,t)

ñ δnNt ,ñ;Kt = 0
)
= E

(
M̃[0,t)

ñ δnNt ,ñ

)
= ⟨ñ|e−Hnormt|ñ⟩, (37)

where M̃[0,t)
ñ is the stochastic functional defined in terms ofHnorm

9 and equation (31) has been
used again (now applied to the system governed by Hnorm) to get the second equality. Since
M[0,t)

ñ > 0, equations (36) and (37) give

⟨ñ|e−Ht|ñ⟩⩾ ⟨ñ|e−Hnormt|ñ⟩. (38)

7 Note that the Poisson processes associated to each jump are defined left continuous [18], as a consequence, the
configuration nNt is the one realized by the Markov chain just before the final time t.
8 Note that A(in)(n̂) and A(in)(ñ) represent the number of non-null off-diagonal matrix elements ⟨n̂|Hcond|n̂ ′⟩ and
⟨ñ|Hnorm|ñ ′⟩, respectively.
9 See footnote 8.
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Considering trajectories beginning and ending at a configuration n̂ of Ĥ, we get a similar
relation with ñ→ n̂ and Hnorm → Hcond. This completes the proof of the first inequality in
equation (16).

Proving the second inequality of (16) requires the analysis of the term Kt ⩾ 1 in
equation (36), which is quite more involved. We have

E
(
M[0,t)

ñ δnNt ,ñ;Kt ⩾ 1
)
=
∑
ξ

M[0,t)
ñ (ξ)Pt(ñ

ξ−→ ñ;Kt ⩾ 1), (39)

where the sum runs over the ‘space-time’ trajectories ξ, and Pt(ñ
ξ−→ ñ;Kt ⩾ 1) stands for the

probability that, starting from ñ, ξ ends in ñ by transiting throughout Ĥ at least once within
the time t. Apart from Kt, each ξ has a probability obtained via the sequence of jumping links
and jumping times according to equations (32) and (33). If A(n) = N is constant, which hap-
pens in many qubit systems, the trajectories have no preferential directions and, therefore, no
correlation with the random variable Kt (in particular, trajectories visiting the same number of
configurations and corresponding jumping times have the same probability). In more general
systems, due to the condition (8), the correlations with Kt become negligible in the TDL. We
then have

E
(
M[0,t)

ñ δnNt ,ñ;Kt ⩾ 1
)
≃
∑
ξ

M[0,t)
ñ (ξ)Pt(ñ

ξ−→ ñ)Pt(ñ;Kt ⩾ 1)

= ⟨ñ|e−Ht|ñ⟩Pt(ñ;Kt ⩾ 1), (40)

where Pt(ñ;Kt ⩾ 1) stands for the total probability that, within the time t and starting from
a given configuration ñ, the system transits through Ĥ at least once. It is clear that, given
N, Pt(ñ;Kt ⩾ 1)→ 1 for t→∞. However, we are interested in the other order of limits and,
actually, here t must be kept finite while extrapolating the TDL. In fact, we want a bound for
Pt(ñ;Kt ⩾ 1) in the TDL. We have

Pt(ñ;Kt ⩾ 1)⩽ 1−Pt(ñ;Kt = 0). (41)

Notice that Pt(ñ;Kt = 0) represents the probability to remain in H̃ during the time t and it does
not coincide with the complement of Pt(ñ;Kt ⩾ 1). In fact, by definition, if Kt ⩾ 1, Kt counts
how many times a trajectory that starts from H̃, transits through Ĥ, and eventually goes back
to H̃, while the complement of the event Kt ⩾ 1 contains also all the trajectories that, starting
from H̃, transit through Ĥ a certain number of times but eventually do not terminate in H̃. Let
∂̃ be the boundary set between H̃ and Ĥ belonging to H̃:

∂̃ =
{
ñ ∈ H̃ : ∃n̂ ∈ Ĥ such that ⟨ñ|K|n̂⟩ ̸= 0

}
. (42)

Clearly, ∂̃ represents the set of configurations having the smallest probability of remaining in
H̃ and such a probability corresponds to the event where no jump occurs through the outgo-
ing links of these boundary configurations. Therefore, according to equation (33) and to the
definition (35) we have

Pt(ñ;Kt = 0)⩾ inf
ñ∈∂̃

Pt(ñ;Kt = 0)

= inf
ñ∈∂̃

e−ΓA(out)(ñ)t

= e− supñ∈∂̃
ΓA(out)(ñ)t. (43)

11
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In conclusion, we have

sup
ñ

Pt(ñ;Kt ⩾ 1)⩽ 1− e− supñ∈∂̃
ΓA(out)(ñ)t. (44)

Equation (44) shows that the probability we are interested in has an upper bound that still goes
to 1 exponentially in the TDL, but with a rate that is not extensive in N, in fact, A(out)(ñ) is not
extensive in N. Typically, in qubit systems A(out)(ñ) is O(1), but for our aims it could be also
o(N), as it occurs in system of fermions or hard-core bosons. Combining equations (36), (37)
and (40), and then equation (44), we obtain

⟨ñ|e−Ht|ñ⟩⩽ ⟨ñ|e−Hnormt|ñ⟩+ ⟨ñ|e−Ht|ñ⟩
(
1− e− supñ∈∂̃

ΓA(out)(ñ)t
)
, (45)

or

⟨ñ|e−Ht|ñ⟩ ≤ ⟨ñ|e−Hnormt|ñ⟩esupñ∈∂̃
ΓA(out)(ñ)t, (46)

Since supñ∈∂̃ A
(out)(ñ) = A(out)

norm and we assumed A(out)
norm < A(out)

cond , the second inequality in
equation (16) is proven for X= norm.

To prove the second inequality in equation (16) for X= cond, we have to proceed in a
slightly different way. Notice, in fact, that the analogous of equation (44) for the set Ĥ also
holds, but it is of little use because, in general, whereas A(out)(ñ) is not extensive inN, A(out)(n̂)
can be extensive in N. In fact, this is just the case of the Grover model previously analyzed,
as well as the case of regular qubit systems. Therefore, we avoid using equation (44) for Ĥ
directly. The main idea here is that, due to the fact that Ĥ is a small portion of the whole set
of configurations, the probability for a trajectory starting from Ĥ to reach H̃, approaches 1
exponentially (in both t and N) with a large rate, but once it is in H̃, the probability that it
goes back to Ĥ approaches 1 with the same identical small rate of equation (44). Let us make
concrete this idea by explicitly taking into account just one jump into H̃ as follows

sup
n̂

Pt(n̂;Lt ⩾ 1) = sup
n̂∈∂̂

Pt(n̂;Lt ⩾ 1)

≃ sup
n̂∈∂̂

∑
ñ∈A(out)(n̂)

ˆ t

0
dsΓe−ΓA(n̂)sPt(ñ;Qt−s ⩾ 1) (47)

where Lt and ∂̂ are the analogous of Kt and ∂̃ for Ĥ, A(out)(n̂) is the set of configurations in
H̃ which are first neighbors of n̂ (whose number is A(out)(n̂)), s is a random time at which a
jump toward one configuration ñ ∈ A(out)(n̂)⊂ ∂̃ takes place, and Qt counts the number of
times the trajectory that starts from H̃ leaves H̃ by ending in Ĥ within the time interval [0, t).
Equation (47) holds approximately because we have neglected the trajectories that, starting
from ∂̃, reach for the first time Ĥ by using more than one jump within the time interval [0, t).
However, due to the condition (8), such extra contributions become negligible in the TDL.
Note that the analogous of equation (41) holds also for the random variable Qt, namely,

Pt(ñ;Qt ⩾ 1)⩽ 1−Pt(ñ;Kt = 0). (48)
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Therefore, we can now use equation (44) and get∑
ñ∈A(out)(n̂)

ˆ t

0
dsΓe−ΓA(n̂)s

(
1− e− supñ∈∂̃

ΓA(out)(ñ)(t−s)
)

=
A(out)(n̂)
A(n̂)

(
1− e−ΓA(n̂)t

)
−A(out)(n̂)e− supñ∈∂̃

ΓA(out)(ñ)t

(
1− e−Γ[A(n̂)−supñ∈∂̃

A(out)(ñ)]t
)

A(n̂)− supñ∈∂̃ A
(out)(ñ)

⩽ A(out)(n̂)
A(n̂)

− A(out)(n̂)e− supñ∈∂̃
ΓA(out)(ñ)t

A(n̂)− supñ∈∂̃ A
(out)(ñ)

⩽ 1− e− supñ∈∂̃
ΓA(out)(ñ)t, (49)

where, for the last inequality, we have used A(n̂)⩾ A(out)(n̂), valid for any configuration. In
conclusion, also for the configurations in Ĥ we have

sup
n̂

Pt(n̂;Lt ⩾ 1)⩽ 1− e− supñ∈∂̃
ΓA(out)(ñ)t. (50)

Equations (44) and (50) show that what matters is always the smallest border crossing-rate
determined by supñ∈∂̃ A

(out)(ñ). This concludes the proof of equation (16).

9. Equivalence of the conditions A(out)
norm/N→ 0 and dimHcond/dimH→ 0

We have stated that equation (19) are valid under the condition supñA
(out)(ñ)/N→ 0. On the

other hand, from [11] we know that equations (19) at T = 0 are valid under the condition
dimHcond/dimH→ 0. It is hence important to establish a relation between these two appar-
ently independent conditions.

We recall that the matrix elements of the hopping operator K induce in H a graph with
dimH nodes represented by the configurations, where the degree of a configuration n is given
by its number of links A(n). In the following, we shall focus only on regular qubit systems of
N qubits so that dimH= 2N, and ‘regular’ here means that the hopping operator K is made by
the usual sum of N single-flip operators, so that A(n)≡ N. Note that, since A(n)/dimH→ 0,
the graph associated toH is a regular sparse graph [22].

Let us first consider theGrovermodel. Thismodel is characterized by the fact that there exist
only two possible values of the potential, V=−JN e V = 0, and that the former is realized by
just one configuration (for example the one in which all the spins are up) so that dimHcond = 1.
For this model we have A(out)(ñ)⩽ 1 and also dimHcond/dimH= 1/2N → 0.We can general-
ize the Grover model by allowing the value V=−JN to be dimHcond > 1 degenerate provided
that we still have dimHcond/dimH→ 0. It is clear that, as far as the dimHcond configurations
associated to V=−JN are sufficiently separated, we keep having A(out)(ñ)⩽ 1. More pre-
cisely, it is easy to see that, as far as the dimHcond configurations associated to V=−JN differ
for the values of at least three spins (i.e. in the graph, the configurations of Ĥ are at least three
links far apart among each other), we still have A(out)(ñ)⩽ 1 for any ñ. This condition is illus-
trated in figure 2. However, it should be clear that the condition dimHcond/dimH→ 0 alone
in general does not imply the condition A(out)(ñ) = O(1). As a counter-example, if we define
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Figure 2. Left panel: an example of two configurations of Ĥ which differ by the status
of two spins. In this case there exists a configuration of H̃ connected to the two config-
urations of Ĥ. Right panel: an example of two configurations of Ĥ which differ by the
status of three spins. In this case there is no configuration of H̃ connected directly to
both the two configurations of Ĥ.

Ĥ as the set of the N configurations first neighbors of a given one, ñ, we see that by construc-
tion dimHcond/dimH→ 0 but now A(out)(ñ) = N (indeed, here the dimHcond configurations
associated to V=−JN differ for the direction of two spins).

The above counter example, however, is rather nonphysical as it does not take into account
how the structure of a physical potential operator V acts on the definition ofHcond. The defin-
ition of Hcond is in principle arbitrary but the most interesting cases are those in which Hcond

is defined directly from the structure of the operator V. The idea is to defineHcond through the
configurations n having potential levels V(n) = ⟨n|V|n⟩ not larger than some threshold value
maxVcond, namely, Ĥ= {n : V(n)⩽maxVcond}. For given N, if V has some physical origin,
dimHcond is expected to be a fast growing function of maxVcond, typically exponential. Notice,
however, that this assumption holds true for not too large values of maxVcond, being dimHcond

limited by dimH. In fact, it holds true as far as dimHcond/dimH≪ 1. As a consequence, if
dimHcond/dimH≪ 1, the subgraph induced by K on the set Ĥ, can effectively be treated as a
regular Cayley tree of size dimHcond and degree N, i.e. a finite graph without loops where each
node has degree N, except for its boundary, where the nodes have degree 1. This assumption
corresponds to the usual tree-like approximation that holds true locally in many sparse graphs.
By contrast, the subgraph induced byK on the set H̃ cannot be treated as a tree. If fact, we have
to take into account that the total graph induced by K inH, is a regular graph without an actual
boundary; it is not a tree. As a consequence, we see that the complement of any tree in the
total graph, and therefore also in the subgraph induced by K on the set H̃, cannot be treated as
a tree either, see figure 3 for an illustrative example. More precisely, in the graphs associated
to H and H̃ there are loops whose shortest length l is of the order l= log(dimH)/ log(N).

As is known, one peculiar feature of the Cayley tree is the fact that its boundary constitutes
a finite portion of its total number nodes, see for example [23]. Moreover, we have to take into
account the constraint that the total number of outgoing links from H̃ to Ĥmust be equal to the
total number of outgoing links from Ĥ to H̃. By making use of the mean numbers of outgoing

links A
(out)
cond and A

(out)
norm , along the boundaries ∂̂ and ∂̃, respectively, we have (see figure 4 for an

illustrative example)

A
(out)
cond |∂̂|= A

(out)
norm |∂̃|, (51)
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Figure 3. A regular graph of degreeA= 3 drawn from the perspective of the ‘central’ red
node. The subgraphs having a boundary at the distances l= 1 or l= 2 from the central
node, i.e. those obtained by removing all the nodes at distance larger than l as well as all
the links emanating from these removed nodes, are Cayley trees of degree A= 3 (except
for the boundary, where the nodes have degree 1). However, the complements of these
subgraphs are not trees. In particular, the complement of the case l= 2 is a regular graph
of degree 2.

Figure 4. A schematic example of a cond–norm partition where the nodes (configura-
tions) on the two boundaries, ∂̂ and ∂̃, are put in evidence near the two adjacent sides.
Also the links connecting the two boundaries are put in evidence. The |∂̂|= 3 nodes in
∂̂ have degrees 4, 4, 2, while the |∂̃|= 7 nodes in ∂̃ have degrees 1, 1, 2, 2, 2, 1, 1. We
can read the total number of links connecting the two boundaries from cond to norm as

4+ 4+ 2= 10= A
(out)
cond |∂̂|, or else from norm to cond as 1+ 1+ 2+ 2+ 2+ 1+ 1=

10= A
(out)
norm |∂̃|, where A

(out)
cond and A

(out)
norm are the mean numbers of the outgoing links of

the two partitions. In this example we have A
(out)
cond = 10/3 and A

(out)
norm = 10/7.
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which, if we call αcond the coefficient providing |∂̂|= αcond dimHcond and use|∂̃|⩽ dimH−
dimHcond, gives

A
(out)
cond αcond dimHcond ⩽ A

(out)
norm (dimH− dimHcond)⩽ A

(out)
norm dimH. (52)

For a regular Cayley tree of degree N it is easy to see that αcond → 1− so that equation (52)
gives

dimHcond

dimH
⩽ A

(out)
norm

A
(out)
cond

. (53)

Finally, since A
(out)
cond = O(N), equation (53) proves that the condition A

(out)
norm/N→ 0 implies the

condition dimHcond/dimH→ 0.
The above equation (53) is exact but it does not allow to prove the converse. Nevertheless, if

we take into account the exponential growth with N of dimH, holding for most of the systems
of interest, equation (53) leads us to make the following ansatz

A
(out)
norm

A
(out)
cond

∼−1/ log

(
dimHcond

dimH

)
, (54)

which in turn implies that dimHcond/dimH→ 0 if and only if A
(out)
norm/N→ 0.

The ansatz (54) is compatible with equation (53) and is clearly satisfied in the case of
the Grover model and its generalizations. To make concrete the ansatz with a more physical
example, let us consider the interaction potential of the one-dimensional Ising model with
periodic boundary conditions. If we represent the configurations by products of single spin
states along the z axis, |n⟩= |σz1⟩⊗ · · · ⊗ |σzN⟩, with σzi =±1, i= 1, . . . ,N, we have

⟨n|V|n⟩= V(n) =−J
N∑
i=1

σziσ
z
i+1. (55)

We assume J> 0. We are free to define Ĥ (and then Hcond = span{Ĥ}) in several ways, and

we want to see to what extent the conditions dimHcond/dimH→ 0 and A
(out)
norm/N→ 0 are equi-

valent. We can start by including in Ĥ the two lowest GSs with all parallel spins. Then we can
enlarge Ĥ by including all the states in which one spin is reversed with respect to all the other
N− 1 parallel ones and so on. Alternatively and more effectively, we can characterize any
configuration by the number of cuts q in it, where a cut is present if, reading the sequence of
the pointers σzi for example from left to right, we meet an inversion. In terms of q equation (55)
reads (we can have at most N− 1 number of cuts and we start by considering the two GSs in
which all the spins are parallel)

Vq =−JN+ 2Jq, D(q) = 2

(
N− 1
q

)
, q= 0, . . . ,N− 1, (56)

where D(q) is the number of configurations n having potential V(n) = Vq. We define Ĥ by
introducing a threshold maxVcond as the maximum allowed potential value of its configura-
tions. If we choose maxVcond = Vk, we have Ĥ= Ĥ(k) with

Ĥ(k) = {n : V(n)⩽ Vk} , dimHcond = 2
k∑

q=0

(
N− 1
q

)
. (57)
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By recalling that
(N
k

)
/2N tends, for N→∞, to a Dirac delta function centered at k= N/2, we

see that
dimHcond

dimH
→ 0 as soon as

k
N

<
1
2
. (58)

On the other hand, we can verify that the condition on A(out)
norm is satisfied whenever k/N< 1/2

as follows. Given k, let us consider the boundary of H̃

∂̃ = {n : V(n) = Vk+1} . (59)

Given ñ ∈ ∂̃, by inverting one of its spins located at a cut, the cut will be either shifted or
removed, leaving the potential unchanged or lowered by 2J (and then entering Ĥ), respectively.
It is instructive to consider the two opposite regimes: k very small, and k very large. The former
regime occurs when k≪ N as when a few isolated spins are antiparallel to the others. In this
case we have A(out)

norm(ñ) = O(k). The other regime occurs when there are nearly half spins up
and half spins down, i.e. when k∼ N/2, where dimHcond/dimH= O(1), and here we have
A(out)
norm(ñ) = O(N). In the intermediate regime we have A(out)

norm(ñ) = o(N), i.e. non-extensive.
This example shows that the conditions A(out)

norm/N→ 0 and (58) are essentially equivalent and
that the ansatz (54) is realized with dimHcond/dimH∼ exp(k−N). However, we warn that, as
we have shown in [11], in the case of the Ising model, equation (11) has no solution, whatever
k, so that our theory turns out to be not useful in such a case, as it always occurs when the QPT
is second-order. Yet, the above picture is very general and can be similarly applied to many
models, as in the particularly important case of interacting fermions [17] (where the QPT is
first-order). We have directly checked that in all these models the condition A(out)

norm(ñ)/N→ 0
turns out to be satisfied and that the ansatz (54) holds true.
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