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PERTURBATIVE CRITERIA FOR THE ERGODICITY OF

INTERACTING DISSIPATIVE QUANTUM LATTICE SYSTEMS

L. BERTINI, A. DE SOLE, G. POSTA, AND C. PRESILLA

Abstract. We introduce a class of quantum Markov semigroups describing

the evolution of interacting quantum lattice systems, specified either as generic

qudits or as fermions. The corresponding generators, which include both con-

servative and dissipative evolutions, are given by the superposition of local

generators in the Lindblad form. Under general conditions, we show that the

associated infinite volume dynamics is well defined and can be obtained as

the strong limit of the finite volume dynamics. By regarding the interact-

ing evolution as a perturbation of a non-interacting dissipative dynamics, we

further obtain a quantitative criterion that yields the ergodicity of the quan-

tum Markov semigroup together with the exponential convergence of local

observables. The analysis is based on suitable a priori bounds on the resolvent

equation which yield quantitive estimates on the evolution of local observables.

1. Introduction

A quantum Markov semigroup (QMS) is a strongly continuous contraction semi-
group (Pt)t≥0 of completely positive operators on a C∗-algebra A. It has become
the basic modelling tool to describe the non-unitary evolution of open quantum sys-
tems, the typical example being the interaction with thermal baths. The generator
of a QMS is commonly referred to as the Lindblad generator. Both from a concep-
tual and an applied viewpoint, the ergodicity properties of QMS are particularly
relevant. We refer to [2, 7] for a general overview.

Under general conditions, finite dissipative quantum systems admit a unique
stationary state π. As in the case of classical Markov semigroups, a most relevant
issue is to provide quantitative estimates on the speed of convergence to the sta-
tionary state. More precisely, given an initial state µ one would like to deduce the
exponential convergence of its evolution µPt to π; a natural distance to quantify
this convergence is the trace distance, the non-commutative counterpart of the total
variation distance. By the quantum Pinsker inequality, see e.g. [23, Thm.11.9.5],
the convergence in trace distance can be deduced from the decay of the quantum
relative entropy of µPt with respect to π. For reversible QMS, the latter issue has
been recently pursued with different perspectives [6, 8, 9, 13, 24]. In particular, in [8]
the exponential decay of entropy is deduced for both the Bose and Fermi Ornstein-
Uhlenbeck semigroups that describe the evolution of non-interacting bosons and
fermions. As discussed in [5], the exponential convergence in trace distance can
also be deduced by spectral methods.
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The present purpose is to investigate the ergodic properties of QMS correspond-
ing to infinite quantum lattice systems. We refer e.g. to [4, 20] for some physically
relevant examples. According to the standard framework, a quantum lattice sys-
tem is described by the so-called quasilocal C∗-algebra A. We consider here both
the cases in which A describes generic qudits and fermions. While the analysis
of Heisenberg evolutions on A has been widely investigated, we are not aware of
mathematical results concerning dissipative evolutions on A.

As in the Heisenberg case, the natural choice for the generator is given by the
superposition of translation covariant local generators. In other words we are led
to consider generators on A of the form

L =
∑

X⊂⊂Zd

LX , (1.1)

where the sum is carried over the finite subsets of Zd and the local Lindblad gener-
ator LX acts on AX , the subalgebra of the X-local operators. In the simplest and
most relevant case, the family {LX}X⊂⊂Zd is translation covariant and has finite
range. For each X ⊂⊂ Zd the C∗-algebra AX is finite dimensional and LX can
be prescribed according to the Lindblad-Gorini-Kossakowski-Sudarshan structure
theorem [11, 19]. On the other hand, the right-hand side of (1.1) defines an un-
bounded operator on the C∗-algebra A. A preliminary issue is thus to show that L
generates a QMS on A. This is the dissipative counterpart to the existence of the
Heisenberg flow for quantum lattice systems, see e.g. [22, Thm.7.6.2]. Defining L
on a suitable dense domain, we here deduce sufficient conditions on {LX}X⊂⊂Zd ,
holding in the translation covariant finite range case, which imply that the graph
norm closure of L generates a QMS (Pt)t≥0 on A.

We next turn to the discussion of the ergodic properties of the QMS (Pt)t≥0 gen-
erated by (1.1). By a soft compactness argument, (Pt)t≥0 has at least a stationary
state; on the other hand, for instance by considering classical stochastic Ising mod-
els as QMS, it is straightforward to exhibit examples for which the stationary state
is not unique. If the interaction is small, we expect uniqueness of the stationary
state and exponential convergence of local observables.

We deduce a perturbative criterion for the above conclusion. We write L =
L0 + L1 where L0 describes the evolution of non-interacting qudits, i.e. it has the
form

L0 =
∑

x∈Zd

L0
x,

for suitable translation covariant generators L0
x that act on A{x}. The operator L1,

that takes into account the interaction between the qudits, is then regarded as a
perturbation. As discussed in [8, 13, 24], a basic tool in the derivation of strong
ergodic properties for the QMS generated by L0 is the construction of operators
{Ex,h} on A satisfying the following intertwining relationship with L0

Ex,hL0 − L0Ex,h = −λhEx,h (1.2)

for suitable λh > 0. When A is the fermionic C∗-algebra and L0 is the generator
of the Fermi Ornstein-Uhlenbeck semigroup, the operators {Ex,h} have been intro-
duced in [12]. On the other hand, when A is a C∗-algebra describing generic qudits,
we do not specify an explicit form for L0

x but we assume that it is self-adjoint with
respect to the GNS inner product induced by its unique stationary state. We then
construct the operators Ex,h from the spectral decomposition of L0

x; accordingly
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{λh} are the eigenvalues of −L0
x. To achieve the perturbative criterion for ergodic-

ity of the QMS generated by L = L0 + L1, we follow the argument for interacting
classical lattice systems in [18, Ch.I]. The key step is the derivation of suitable a
priori bounds on the resolvent equation

λg = f + Lg, λ > 0, f, g ∈ A.

By exploiting the intertwining relation (1.2), we derive a quantitative bound on the
locality of g in terms of the locality of f . Under a suitable smallness assumption on
the commutatorEx,hL1−L1Ex,h, the a priori bound on the resolvent equation yields
the uniqueness of the stationary state together with the exponential convergence of
local observables. We emphasize that the perturbative criteria here obtained rely
neither on the explicit knowledge of stationary states nor on the self-adjointness of
the generator.

Whenever the perturbation criterion applies, we can deduce that for any state
µ on A the sequence µPt converges weakly* to the unique stationary state π as
t → +∞. As in the classical case, it does not appear however possible to obtain a
quantitative bound uniform in µ. Indeed, this fails even for non-interacting systems.
On the other hand, if we restrict to translation covariant interactions and trans-
lation invariant state µ, the above conclusion holds. More precisely, we equip the
set of translation invariant states on A with the specific quantum one-Wasserstein
distance w introduced in [15]. We then show that w(µPt, π) decays exponentially
uniformly in µ whenever the perturbative criterion holds. This statement appears
to be novel even in the context of interacting classical lattice systems.

2. Interacting qudits: results

Given a Banach space X , we denote by ‖ · ‖X the norm in X and by X ′ the dual
of X . The identity operator on X is denoted by 1IX and the operator norm on the
set of bounded linear operators on X by ‖ · ‖X→X . In the present setting, given
a unital C∗-algebra A, a Quantum Markov Semigroup (QMS) (P)t≥0 on A is a
strongly continuous contraction semigroup on A (as a Banach space) such that for
each t ∈ [0,∞) the linear operator Pt : A → A is completely positive and satisfies
Pt1 = 1, where 1 is the identity in A. If A is commutative, namely A is the space
of complex valued continuous functions on a compact set endowed with the complex
conjugation and the uniform norm, a QMS on A is a (classical) Markov semigroup.

2.1. One-qudit unperturbed dynamics. LetH be a (n+1)-dimensional Hilbert
space and A a (N + 1)-dimensional unital ∗-subalgebra of the C∗-algebra B(H) of
linear operators on H . Since H is finite dimensional, A endowed with the operator
norm is closed and therefore it is a C∗-algebra. Let ρ be a faithful state on A,
namely a continuous linear functional on A such that ρ(1IH) = 1 and ρ(aa∗) > 0
for all a ∈ A\{0}. Denote by 〈 · , · 〉ρ the GNS inner product on A induced by ρ, i.e.
〈a, b〉ρ = ρ(a∗b), a, b ∈ A. Let (P 0

t )t≥0, be a QMS on A which is self-adjoint with
respect to 〈 · , · 〉ρ and denote by L0 : A → A its generator. We assume that L0 has
the form

L0 =
∑

j∈I0

(
ℓ0j

∗
[ · , ℓ0j ] + [ℓ0j

∗
, · ]ℓ0j

)
(2.1)
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for some finite set I0 and
{
ℓ0j
}
j∈I0

⊂ A. We refer to [8, Thm.3.1], [1, Thm.3], and

[5, Lem. 2.2] for the conditions on
{
ℓ0j
}
j∈I0

corresponding to the self-adjointness

of L0 with respect to 〈 · , · 〉ρ.
Since ρ is a stationary state for (P 0

t )t≥0, the Kadison-Schwarz inequality implies
〈P 0

t a, P
0
t a〉ρ ≤ 〈a, a〉ρ. Therefore (P 0

t )t≥0 is a self-adjoint strongly continuous con-
traction semigroup on the Hilbert space (A, 〈 · , · 〉ρ). Hence −L0 is positive definite
with respect to 〈 · , · 〉ρ. Let 1IH = e0, e1, . . . , eN ∈ A be an orthonormal basis, with
respect to 〈 · , · 〉ρ, of eigenvectors of −L0, with eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λN .
In particular,

−L0 =

N∑

h=1

λh 〈eh, · 〉ρ eh . (2.2)

We observe that ‖e0‖H→H
= 1 and set η := maxh∈{1,...,N} ‖eh‖H→H

.

2.2. Unperturbed dynamics of qudits. We denote by Zd the standard d-dime-
nsional lattice and by P the countable family of its finite subsets, P :=

{
X ⊂

Z
d : |X | < ∞

}
. Referring to [16] for a detailed exposition, we briefly recall the

construction of the Hilbert space and the C∗-algebra describing infinitely many
qudits.

Fix an orthonormal basis {ωi}ni=0 of H , where ω0 represents the vacuum state.
Let Φ be the countable set of functions φ : Zd → {0, 1, . . . , n} such that φ(x) = 0 for
all but finitely many x ∈ Zd. We then let H be the Hilbert space with orthonormal
basis {Ωφ}φ∈Φ. For Λ ⊂ Zd we also consider the subspace HΛ ⊂ H spanned by
{Ωφ}φ∈ΦΛ

, where ΦΛ ⊂ Φ is the subset of functions φ ∈ Φ such that φ(x) = 0 if
x 6∈ Λ. For Λ ∈ P, we identify HΛ ≃ H⊗Λ via Ωφ 7→ ⊗x∈Λωφ(x), φ ∈ ΦΛ. Note that
the construction of H depends on the choice of the vacuum ω0.

Denote by B(H) the C∗-algebra of bounded operators on H and by ‖ · ‖ the
corresponding operator norm. For Λ ⊂ Zd we have the canonical identification Φ ≃
ΦΛ ×ΦΛc , which induces H ≃ HΛ ⊗HΛc . As a consequence we have the canonical
embedding B(HΛ) ⊂ B(H). For Λ ∈ P, we set AΛ := A⊗Λ ⊂ B(H⊗Λ), which
we identify with the ∗-subalgebra of B(HΛ) ⊂ B(H), via the above identification
H⊗Λ ≃ HΛ. Since AΛ is finite dimensional, it is a C∗-algebra when equipped with
the norm ‖ · ‖. Set A0 :=

⋃
Λ∈P

AΛ ⊂ B(H), and let A be the norm closure of A0.
In particular, A is a unital C∗-subalgebra of B(H). We emphasize that, even in
the case A = B(H), A is a proper subalgebra of B(H). For example, for x ∈ Zd,
consider the translation operator τx ∈ B(H), x ∈ Zd, defined by

τx(Ωφ) := Ωτxφ, where τxφ := φ( · − x), φ ∈ Φ. (2.3)

As simple to check, τx does not belong to A. On the other hand, it induces the
automorphism Adτx : A → A by Adτx(f) := τxfτ−x. In the terminology of [22,
§6.2.4], the triple (A,Zd,Adτ ) is the quasilocal algebra describing the qudits on Zd.
The set of the states on A is denoted by S. A state π ∈ S is translation invariant
if π

(
Adτx(f)

)
= π(f) for any x ∈ Zd and f ∈ A; the set of translation invariant

states is denoted by Sτ . A state π ∈ S is stationary for the QMS (Pt)t≥0 if πPt = π
for any t ∈ [0,+∞).

The unperturbed dynamics is next defined by letting each qudit evolve according
to the generator L0 in (2.2). For x ∈ Zd we set L0

x = L0 ⊗ 1IA{x}c
, that is regarded
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as an operator on A. The unperturbed generator is then informally given by

L0 =
∑

x∈Zd

L0
x =

∑

α∈I0

(
ℓ0α

∗
[ · , ℓ0α] + [ℓ0α

∗
, · ]ℓ0α

)
(2.4)

where, recalling (2.1), I0 := Zd×I0 and for α = (x, j) the operator ℓ0α corresponds to
ℓ0j via the identification A{x} ≃ A. For future purposes, we denote by χ0 : I0 → Zd

the projection χ0(x, j) = x. We will show that the right-hand side of (2.4) is well
defined on a suitable dense subset of A and its graph norm closure generates a QMS
on A.

Recalling the spectral decomposition (2.2), let Ex,h, x ∈ Zd, h ∈ {0, 1, . . . , N},
be the linear operators on A0 acting on monomials as

Ex,h

(
⊗y fy

)
= 〈eh, fx〉ρ1IH ⊗

(
⊗y 6=x fy

)
. (2.5)

As we prove in Lemma 3.1, Ex,h extends to a bounded operator on A. Let also
ex,h be the element of A{x} ≃ A corresponding to eh. Since {eh} is an orthonormal

basis of A, for each x ∈ Zd and f ∈ A

f =

N∑

h=0

(Ex,hf)ex,h. (2.6)

Introduce the seminorm ||| · ||| on A0 by setting

|||f ||| :=
∑

x∈Zd

N∑

h=1

‖Ex,hf‖, (2.7)

where we emphasize that Ex,0 does not appear on the right-hand side. We interpret∑N
h=1 ‖Ex,hf‖ as a measure of the dependence of f on the qudit at site x ∈ Zd. In

particular, |||f ||| = 0 if and only if f is a scalar multiple of the identity. Let A1 be
the closure of A0 with respect to the norm ‖ · ‖ + ||| · |||. Clearly, A0 ⊂ A1 ⊂ A.
Let ℓ1(Z

d) be the Banach space of summable real sequences indexed by Z
d. For

f ∈ A1, set

δ(f) =
(
δx(f)

)
x∈Zd :=

( N∑

h=1

‖Ex,hf‖
)

x∈Zd
∈ ℓ1(Z

d) , (2.8)

so that |||f ||| = ∑
x δx(f) = ‖δ(f)‖ℓ1(Zd).

2.3. Dynamics of interacting qudits. The dynamics of the qudits is defined by
an unbounded Lindblad generator on A given by the sum of local generators. More
precisely, we fix a countable set I and a map χ : I → P such that |χ−1(X)| < +∞
for any X ∈ P. We then consider the informal generator on A given by

L =
∑

α∈I

(
i[kα, · ] + ℓ∗α[ · , ℓα] + [ℓ∗α, · ]ℓα

)
(2.9)

for some self-adjoint kα ∈ Aχ(α) and ℓα ∈ Aχ(α). Note that, by setting KX =∑
α∈χ−1(X) kα and

LX = i[KX , · ] +
∑

α∈χ−1(X)

(
ℓ∗α[ · , ℓα] + [ℓ∗α, · ]ℓα

)
(2.10)
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then L has the form (1.1). If A = B(H) so that AX ≃ B(HX), by the Lindblad-
Gorini-Kossakowski-Sudarshan structure theorem [11, 19], the right-hand side of
(2.10) is the general form of a Lindblad generator on AX .

The family
{
kα, ℓα

}
α∈I

has finite range if there exists R ∈ [0,∞) such that kα =

ℓα = 0 whenever diam(χ(α)) > R. The family
{
kα, ℓα

}
α∈I

is translation covariant

if there exists an action of the abelian group Zd on I, denoted by (x, α) 7→ x+ α,
satisfying χ(x+ α) = x+ χ(α), such that Adτx(kα) = kx+α and Adτx(ℓα) = ℓx+α.
As we next state, under suitable conditions the operator L in (2.9) is well defined
on the dense subset A1 ⊂ A.

Lemma 2.1. If

C0 := 2η sup
x∈Zd

∑

α :χ(α)∋x

(‖kα‖+ 2‖ℓα‖2) < ∞ (2.11)

then for each f ∈ A1 the series defining Lf converges in A and ‖Lf‖ ≤ C0|||f |||.
2.4. Main results. The first result on interacting qudits establishes the existence
of the dynamics associated to the generator L introduced in (2.9). It will be con-
venient to write it as a perturbation of the dynamics of non-interacting qudits as
defined by (2.4). Namely, we let L = L0 + L1 where we recall that both L and L0

have been constructed from local Lindblad generators.
This decomposition is achieved by decomposing ℓα = ℓ0α0

+ ℓ1α0
for α0 ∈ I0 and

some α ∈ I. More precisely, fix an injective map ı : I0 → I such that χ0(α0) ∈
χ(ı(α0)), α0 ∈ I0. Setting ℓ1α0

= ℓı(α0) − ℓ0α0
, α0 ∈ I0, we have L1 =

∑
α∈I L1

α,
where

L1
α = i[kα, · ] +





ℓ0α0

∗
[ · , ℓ1α0

] + [ℓ0α0

∗
, · ]ℓ1α0

+ ℓ1α0

∗
[ · , ℓ0α0

] + [ℓ1α0

∗
, · ]ℓ0α0

+ ℓ1α0

∗
[ · , ℓ1α0

] + [ℓ1α0

∗
, · ]ℓ1α0

if α = ı(α0) ∈ ı(I0),

ℓ∗α[ · , ℓα] + [ℓ∗α, · ]ℓα if α 6∈ ı(I0).

(2.12)

The strength of the perturbation L1 is measured by

M := sup
y∈Zd

∑

x∈Zd

θx,y (2.13)

where θx,y := 2Nη(θ0x,y + θ1x,y), in which

θ0x,y :=
∑

α0∈I0

χ0(α0)=y

((
1 + η2δx,y

)
δx(kα0

) + 2
(
η2 + δx,y

)[
δx
(
ℓ0α0

∗) ∥∥ℓ1α0

∥∥+
∥∥ℓ0α0

∗∥∥ δx
(
ℓ1α0

)

+ δx
(
ℓ1α0

∗) ∥∥ℓ0α0

∥∥+
∥∥ℓ1α0

∗∥∥ δx
(
ℓ0α0

)
+ δx

(
ℓ1α0

∗) ∥∥ℓ1α0

∥∥+
∥∥ℓ1α0

∗∥∥ δx
(
ℓ1α0

)])

and

θ1x,y :=
∑

α∈I\ı(I0)
χ(α)∋y

((
1 + η2δx,y

)
δx(kα) + 2

(
η2 + δx,y

)[
δx(ℓ

∗
α) ‖ℓα‖+ ‖ℓ∗α‖ δx(ℓ∗α)

])
.

We observe that both C0 in (2.11) and M in (2.13) are finite whenever the family
{kα, ℓα}α∈I is translation covariant and has finite range. For Λ ∈ P we denote by
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LΛ the bounded Lindblad generator on A defined by

LΛ :=
∑

X⊂Λ

LX (2.14)

and by (PΛ
t )t≥0 the corresponding QMS. We finally recall that λ1 is the spectral

gap of the unperturbed one-qudit generator L0.

Theorem 2.2. Assume C0,M < ∞ and consider L as an operator on A with
domain A1. Then

(i) the graph norm closure L̄ of L generates a QMS (Pt)t≥0 on A;
(ii) A1 is a core for L̄;
(iii) for each t ≥ 0 the operator Pt is the strong limit of PΛ

t as Λ ↑ Zd;
(iv) |||Ptf ||| ≤ e(M−λ1)t|||f |||, for any f ∈ A1 and t ≥ 0;
(v) the QMS (Pt)t≥0 has at least one stationary state.

We emphasize that in the above statement we can take L0 = 0, letting for ex-
ample ρ be the normalized trace on H and {eh}Nh=0 be any orthonormal basis with
respect to the normalized Hilbert-Schmidt inner product. In general, Theorem 2.2
provides sufficient conditions for the existence of the dynamics corresponding to
a Lindblad generator with local jump operators. In the particular case in which
L = i[K, · ] is the Heisenberg operator associated with the (informal) infinite vol-
ume Hamiltonian K =

∑
X∈P

KX , with KX as defined below (2.9), we deduce the
existence of a one-parameter group of automorphisms (Ut)t∈R describing the Heisen-
berg evolution on A. In this case, the assumptions of Theorem 2.2 are analogous
to classical conditions in the literature, see e.g. [22, Thm. 7.6.2].

The next result, which provides a perturbative criterion for the ergodicity of the
QMS (Pt)t≥0, depends instead on the non-vanishing of L0 and more precisely on
the existence of a strictly positive spectral gap for the one-qudit dynamics, λ1 > 0.
If the family {kα, ℓα}α∈I has finite range the corresponding unique stationary state
has exponentially decaying correlations.

Theorem 2.3. Assume (2.11) and M < λ1. Then

(i) the QMS (Pt)t≥0 has a unique stationary state π;
(ii) for any f ∈ A1 and t ≥ 0

∥∥Ptf − π(f)1
∥∥ ≤ C0

λ1 −M
e−(λ1−M)t |||f |||;

(iii) if furthermore {kα, ℓα}α∈I has finite range then there exist C, ζ > 0 such that
for any Λ1,Λ2 ∈ P and any f1 ∈ AΛ1

, f2 ∈ AΛ2∣∣π(f1f2)− π(f1)π(f2)
∣∣ ≤ Ce−ζ dist(Λ1,Λ2)

(
‖f1‖+ |||f1|||

)(
‖f2‖+ |||f2|||

)
.

The condition M < λ1 can be explicitly checked for specific models, we refer to
the Sections 4.1 and 4.3 for the cases of quantum spin systems and of the XY Z-
model with site dissipation. In this respect, items (ii) and (iii) provide quantitative
bounds on the speed of convergence to the stationary state and on the spatial decay
of correlations for the stationary state.

By the density of A1 in A, Theorem 2.3(ii) implies that for each µ ∈ S the
sequence µPt converges weakly* to π. Even in the case in which L = L0, it does
not appear however possible to obtain a quantitative bound on this convergence
uniformly in µ ∈ S. On the other hand, as we next discuss, if we restrict to
translation covariant interactions and translation invariant µ ∈ S, there is a natural
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distance on the set of translation invariant states such that the distance between µPt

and π vanishes exponentially uniformly in µ. More precisely, the final topic that we
discuss is the exponential convergence of the QMS (Pt)t≥0 to the unique stationary
state π in term of the specific quantum one-Wasserstein distance introduced in [15],
which is the non-commutative counterpart of the Ornstein d̄ distance on the set of
translation invariant probabilities. Given Λ ∈ P let ‖ · ‖WΛ

be the norm on the
space O0

Λ of self-adjoint and traceless elements in AΛ defined by

‖∆‖WΛ
:=

1

2
inf

{∑

x∈Λ

‖∆(x)‖Λ,Tr : ∆
(x) ∈ O0

Λ, Tr{x} ∆
(x) = 0,

∑

x∈Λ

∆(x) = ∆
}
,

where ‖ ·‖Λ,Tr is the trace norm on AΛ, i.e. ‖f‖Λ,Tr = Tr(
√
ff∗), and Tr{x} : AΛ →

AΛ\{x} denotes the partial trace on H{x}. Denoting by SΛ the set of states on
AΛ, the quantum one-Wasserstein distance WΛ on SΛ is defined by WΛ(µ, ν) :=
‖µ− ν‖WΛ

. Here we have identified SΛ with the positive elements in AΛ with unit
trace. Recalling that Sτ is the set of translation invariant states on A, as proven in
[15, Prop. 4.1], the specific quantum one-Wasserstein distance is the distance on
Sτ defined by

w(µ, ν) := sup
Λ∈P

1

|Λ|WΛ(µΛ, νΛ) = lim
Λ↑Zd

1

|Λ|WΛ(µΛ, νΛ), (2.15)

where µΛ denotes the restriction of the state µ ∈ Sτ to a state on AΛ. Observe
that the topology on Sτ induced by w is finer than the weak* topology.

Theorem 2.4. Assume (2.11), M < λ1, and that {kα, ℓα}α∈I is translation co-
variant. Then the unique stationary state π of the QMS (Pt)t≥0 is translation
invariant and there exists a constant C > 0 such that for any µ ∈ Sτ and t ≥ 0

w(µPt, π) ≤ Ce−(λ1−M)t.

The proof of both Theorems 2.2 and 2.3 follows the strategy used in the con-
struction of the Markov semigroup describing the evolution of interacting classical
lattice systems [18, Ch. I]. The key ingredient is an a priori bound on the resolvent
equation (λ − L)g = f showing that g ∈ A1 whenever f ∈ A1. By approximating
L with the finite volume generator LΛ and using the Lumer-Phillips theorem, this
a priori bound implies the existence of the infinite volume dynamics. As in the
commutative case, when M < λ1, the a priori bound obtained on the resolvent
equation actually implies that the seminorm ||| · ||| is exponentially contracted by
the QMS (Pt)t≥0. By routine arguments, this yields the exponential convergence
to equilibrium stated in Theorem 2.3(ii). The exponential decay of spatial cor-
relation at equilibrium in Theorem 2.3(iii) follows from Theorem 2.3(ii) and the
“finite speed of propagation” of the QMS (Pt)t≥0, see [18, §I.4] for the correspond-
ing statement in the commutative case. While Theorem 2.4 is a straightforward
consequence of Theorem 2.3, its formulation appears novel also in the context of
interacting classical lattice systems.

From a technical viewpoint, in the commutative case discussed in [18, Ch. I]
the seminorm |||f ||| is defined in terms of the oscillations of f at the sites x ∈ Zd

while here it is adapted to the unperturbed dynamics. Correspondingly, while in
[18, Ch. I] the strength of the unperturbed dynamics is specified by a Doeblin
condition on the transition rates, here it is measured by the spectral gap λ1 of the
unperturbed one-qudit generator. Accordingly, a crucial input for the derivation of
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the a priori bound on the resolvent equation is the intertwining relationship (1.2)
for the unperturbed generator.

3. Interacting qudits: proofs

In this section we prove Theorems 2.2, 2.3, and 2.4.

3.1. Semigroup generation. Recalling the definition of η below (2.2) we first
show that ‖Ex,h‖A→A ≤ η.

Lemma 3.1. For each x ∈ Zd and h ∈ {0, 1, . . . , N}, the operator Ex,h defined
by (2.5) extends to a bounded operator on A. In fact, for each f ∈ A we have
‖Ex,0f‖ ≤ ‖f‖ and ‖Ex,hf‖ ≤ η ‖f‖, h ∈ {1, . . . , N}.
Proof. By the density of A0 in A, it suffices to prove the stated inequalities for
f ∈ AΛ with Λ ∈ P. We first observe that, by the very definition of Ex,h, we have
Ex,hf = Ex,0(e

∗
x,hf). On the other hand, for g ∈ AΛ we have Ex,0g = Tr{x}(ρg)⊗

1IH{x}
in which Tr{x} : AΛ → AΛ\{x} is the partial trace on H ≃ H{x}. Since

g 7→ Tr{x}(ρg) is completely positive and unital, the Kadison-Schwarz inequality
implies ‖Ex,0g‖ ≤ ‖g‖. As ex,0 = 1 and ‖ex,h‖ ≤ η, h ∈ {1, . . . , N}, this bound
yields the claim. �

Proof of Lemma 2.1. The statement is a direct consequence of the following bound.
For each X ∈ P, u ∈ AX , and f ∈ A1,

‖[u, f ]‖ ≤ 2η‖u‖
∑

x∈X

δx(f). (3.1)

To prove this inequality, given x ∈ Zd define the operator Fx : A → A by

Fxf =

N∑

h=1

(Ex,hf)ex,h, (3.2)

so that (2.6) can be recast as f = Ex,0f + Fxf . Enumerating the elements of
X = {x1, . . . , xm} and using recursively this identity,

f =
( m∏

j=1

Exj ,0

)
f +

m∑

j=1

(∏

i<j

Exi,0

)
Fxj

f. (3.3)

Since the first term on the right-hand side commutes with u ∈ AX , the bound (3.1)
follows by observing that ‖[f1, f2]‖ ≤ 2‖f1‖‖f2‖ and ‖Ex,0‖A→A = 1, ‖Fxf‖ ≤
ηδx(f), x ∈ Zd. �

In order to construct the QMS generated by the operator L defined in (2.9),
we shall use the terminology and the results of [21, §X.8]. In particular, a densely
defined operator T on a Banach space X with domainD is accretive if for each x ∈ D
there exists ℘ ∈ X ′ such that ‖℘‖X ′ = 1, ℘(x) = ‖x‖X , and Re(℘(Tx)) ≥ 0. By
the finite dimensional theory of quantum Markov semigroups, the bounded operator
LX , X ∈ P, as defined in (2.10), generates a QMS on the finite dimensional C∗-
algebra AX . The Lumer-Philips theorem [21, Thm. X.48] thus implies that −LX

is accretive and therefore also −L, with domain A1, is accretive. For the sake of
completeness, we however next provide a direct proof of the accretivity of −L.
Lemma 3.2. The operator −L with domain A1 is accretive.
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Proof. By the definition of A1, Lemma 2.1, and the Banach-Alaoglu theorem, it is
enough to show that for each f ∈ AΛ, with Λ ∈ P, there exists ℘ ∈ A′ such that

‖℘‖A′ = 1, ℘(f) = ‖f‖, Re(℘(Lf)) ≤ 0. (3.4)

Since AΛ is finite dimensional, there exists ξ ∈ H with ‖ξ‖H = 1, which is eigen-
vector of ff∗ with maximal eigenvalue: (ff∗)ξ = ‖f‖2ξ. Let ℘ ∈ A′ be defined
by

℘(g) =
(ξ, gf∗ξ)H

‖f‖
where (·, ·)H denotes the inner product in H. We claim that this functional fulfil
the three conditions in (3.4). The second condition holds trivially. The first one
follows from the second and the bound

|℘(g)| ≤ ‖gf∗ξ‖H
‖f‖ ≤ ‖gf∗‖

‖f‖ ≤ ‖g‖‖f∗‖
‖f‖ = ‖g‖.

Recalling (2.9), in order to prove the third condition in (3.4) it suffices to show that
for each self-adjoint k ∈ A and u ∈ A

Re℘
(
i[k, f ] + [u∗, f ]u+ u∗[f, u]

)
≤ 0. (3.5)

For the first term we have

Re℘(i[k, f ]) = − 1

‖f‖ Im(ξ, [k, f ]f∗ξ)H =
1

‖f‖ Im
(
(f∗ξ, kf∗ξ)H−‖f‖2(ξ, kξ)H

)
= 0

since k is self-adjoint. On the other hand,

Re℘([u∗, f ]u+ u∗[f, u]) = Re℘(2u∗fu− u∗uf − fu∗u)

=
1

‖f‖ Re
(
ξ, (2u∗fu− u∗uf − fu∗u)f∗ξ

)
H

=
1

‖f‖ Re
(
2(ξ, u∗fuf∗ξ)H − (ξ, u∗uff∗ξ)H − (ξ, fu∗uf∗ξ)H

)

=
1

‖f‖ Re
(
2(f∗uξ, uf∗ξ)H − ‖f‖2‖uξ‖2H − ‖uf∗ξ‖2H

)

≤ 1

‖f‖
(
‖f∗uξ‖2H − ‖f‖2‖uξ‖2H

)
≤ 0,

where we used Cauchy-Schwarz in the second last step. The proof of (3.5) is thus
completed. �

We next prove the intertwining relationship between the unperturbed generator
L0 and the operators Ex,h defined by (2.5).

Lemma 3.3. For each f ∈ A1, x ∈ Zd, and h ∈ {0, 1, . . . , N},

Ex,hL0f − L0Ex,hf = −λhEx,hf.

Proof. By linearity and density it is enough to prove the statement for a monomial,
f = ⊗yfy. Recalling (2.4), from the spectral decomposition (2.2) and the definition
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(2.5) of Ex,h we deduce

Ex,hL0f = −λh〈eh, fx〉ρ
(
⊗y 6=x fy

)

−
∑

z 6=x

N∑

k=1

λk〈ek, fz〉ρ〈eh, fx〉ρ
(
⊗y 6=x,z fy

)
⊗ ez,k,

L0Ex,hf = −
∑

z 6=x

N∑

k=1

λk〈ek, fz〉ρ〈eh, fx〉ρ
(
⊗y 6=x,z fy

)
⊗ ez,k.

The statement follows. �

The following lemma provides the key estimate in realizing the generator L as a
perturbation of L0. Recall that L1 =

∑
α∈I L1

α with L1
α defined in (2.12) and that

δ(f) ∈ ℓ1(Z
d) has been defined in (2.8).

Lemma 3.4. For each α ∈ I, f ∈ A1, x ∈ Zd, and h ∈ {1, . . . , N},
∥∥Ex,hL

1
αf − L1

αEx,hf
∥∥ ≤

∑

y∈Zd

θx,y(α)δy(f)

where

θx,y(α) := 2η(1 + η2δx,y)δx(kα)

+ 4η3(1 + η−2δx,y)×






δx
(
ℓ0α0

∗) ∥∥ℓ1α0

∥∥+
∥∥ℓ0α0

∗∥∥ δx
(
ℓ1α0

)

+ δx
(
ℓ1α0

∗) ∥∥ℓ0α0

∥∥+
∥∥ℓ1α0

∗∥∥ δx
(
ℓ0α0

)

+ δx
(
ℓ1α0

∗) ∥∥ℓ1α0

∥∥+
∥∥ℓ1α0

∗∥∥ δx
(
ℓ1α0

) if α = ı(α0) ∈ ı(I0).

δx(ℓ
∗
α) ‖ℓα‖+ ‖ℓ∗α‖ δx(ℓ∗α) if α 6∈ ı(I0)

Proof. The statement is a direct consequence of the bounds (3.6) and (3.7) below.
For each u ∈ A0, x ∈ Zd, h ∈ {1, . . . , N}, and f ∈ A1,

∥∥Ex,h[u, f ]− [u,Ex,hf ]
∥∥ ≤

∑

y∈Zd

γx,y(u)δy(f), (3.6)

where

γx,y(u) = 2η(1 + η2δx,y)δx(u).

For each u, v ∈ A0, x ∈ Z
d, h ∈ {1, . . . , N}, and f ∈ A1,

∥∥Ex,h

(
u[f, v] + [u, f ]v

)
− u[Ex,hf, v]− [u,Ex,hf ]v

∥∥ ≤
∑

y∈Zd

γx,y(u, v)δy(f), (3.7)

where

γx,y(u, v) = 4η3
(
1 + η−2δx,y

)(
δx(u)‖v‖+ ‖u‖δx(v)

)
.

To prove (3.6), let X = {x1, . . . , xm} ∈ P with x1 = x and u ∈ AX . By (2.6)
and (3.2)

Ex,h[u, f ]− [u,Ex,hf ] = Ex,h[u,Ex,0f ]

+

N∑

k=1

{
Ex,h(uex,k)(Ex,kf)− (Ex,kf)Ex,h(ex,ku)

}
−
[
u,Ex,hf

] (3.8)
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where we used that Ex,hex,k = δh,k. By (3.3) and recalling that e0 = 1IH , the first
term on the right-hand side above can be expanded as

Ex,h[u,Ex,0f ] =
[
Ex1,hu,Ex1,0f

]
=

m∑

i=2

[
Ex1,hu ,

(∏

j<i

Exj ,0

)
Fxi

f
]

whose operator norm is bounded above by

2‖Ex,hu‖
∑

y∈X\{x}

‖Fyf‖ ≤ 2η‖Ex,hu‖
∑

y∈X\{x}

N∑

k=1

‖Ey,kf‖.

On the other hand, by using again the identity (2.6) for u, the second term on the
right-hand side of (3.8) can be rewritten as

[
Ex,0u,Ex,hf

]
+

N∑

k,j=1

{
Ch

j,k

(
Ex,ju

)(
Ex,kf

)
− Ch

k,j

(
Ex,kf

)(
Ex,ju

)}
(3.9)

where Ch
j,k := Ex,h(ex,jex,k). Since C

h
j,k = chj,k1 with |chj,k| ≤ η3, the operator norm

of the second term in (3.9) is bounded above by

2η3
N∑

j=1

‖Ex,ju‖
N∑

k=1

‖Ex,kf‖.

Finally, again by the identity (2.6) for u, the sum of the third term on the right-hand
side of (3.8) and the first term of (3.9) gives

−
N∑

k=1

[
(Ex,ku)ex,k, Ex,hf

]

whose operator norm is bounded by

2η

N∑

k=1

‖Ex,ku‖ ‖Ex,hf‖.

Gathering the previous estimates we deduce (3.6).
To prove (3.7), let X ∈ P be such that X ∋ x and u, v ∈ AX . Enumerate as

before the elements in X ∈ P letting x1 = x so that X = {x1, . . . , xm}. By the
identity (2.6),

Ex,h

(
u[f, v] + [u, f ]v

)
− u[Ex,hf, v]− [u,Ex,hf ]v

)

= Ex,h

(
u[Ex,0f, v] + [u,Ex,0f ]v + 2u(Fxf)v − uv(Fxf)− (Fxf)uv

)

− 2u(Ex,hf)v + uv(Ex,hf) + (Ex,hf)uv.

(3.10)

By (3.3)

Ex,h

(
u[Ex,0f, v] + [u,Ex,0f ]v

)
=

m∑

i=2

Ex,h

{
2u

((∏

j<i

Exj ,0

)
Fxi

f
)
v

− uv
((∏

j<i

Exj ,0

)
Fxi

f
)
−
((∏

j<i

Exj ,0

)
Fxi

f
)
uv

}
.

(3.11)

We claim that for g ∈ A{x}c and u, v ∈ A
∥∥Ex,h

(
ugv

)∥∥ ≤ η2‖g‖
(
δx(u)‖v‖+ ‖u‖δx(v)

)
. (3.12)
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Indeed, by using the identity (2.6) for u,

Ex,h

(
ugv

)
= (Ex,0u)g(Ex,hv) +

N∑

j=1

(Ex,ju)Ex,h(ex,jgv)

so that

∥∥Ex,h

(
ugv

)∥∥ ≤ ‖g‖
(
‖u‖‖Ex,hv‖+ η2

N∑

j=1

‖Ex,ju‖‖v‖
)

which implies (3.12). By using (3.12) we then bound the operator norm of the
right-hand side of (3.11) by

4η3
N∑

j=1

(
‖Ex,ju‖‖v‖+ ‖u‖‖Ex,jv‖

) ∑

y∈X\{x}

N∑

k=1

∥∥Ey,kf
∥∥.

By using (2.6) and (3.3) first for u and then for v, noticing that Ex,hFx = Ex,h,

Ex,h

(
2u(Fxf)v − uv(Fxf)− (Fxf)uv

)
= 2(Ex,0u)(Ex,hf)(Ex,0v)

− (Ex,0u)(Ex,0v)(Ex,hf)− (Ex,hf)(Ex,0u)(Ex,0v)

+
N∑

k,j=1

(
2Ch

k,j(Ex,0u)(Ex,kf)(Ex,jv)− Ch
j,k(Ex,0u)(Ex,jv)(Ex,kf)

− Ch
k,j(Ex,kf)(Ex,0u)(Ex,jv)

)

+ Ex,h

(
2(Fxu)(Fxf)v − (Fxu)v(Fxf)− (Fxf)(Fxu)v

)
,

(3.13)

where Ch
k,j is defined below (3.9). Using that ‖Ch

k,j‖ ≤ η3, the operator norm of

the third and fourth lines on (3.13) is bounded by

4η3 ‖u‖
N∑

j=1

‖Ex,jv‖
N∑

k=1

‖Ex,kf‖.

By using Lemma 3.1, the operator norm of the fifth line on (3.13) can be bounded
by

4η3 ‖v‖
N∑

j=1

‖Ex,ju‖
N∑

k=1

‖Ex,kf‖.

Finally, again by the identity (2.6) for u and v, the sum of the last line on the
right-hand side of (3.10) and the first three terms on the right-hand side of (3.13)
gives

− 2(Ex,0u)(Ex,hf)(Fxv) + (Ex,0u)(Fxv)(Ex,hf) + (Ex,hf)(Ex,0u)(Fxv)

− 2(Fxu)(Ex,hf)v + (Fxu)v(Ex,hf) + (Ex,hf)(Fxu)v

whose operator norm is bounded by

4η
N∑

j=1

(
‖Ex,ju‖‖v‖+ ‖u‖‖Ex,jv‖

)
‖Ex,hf‖.

Gathering the previous estimates we deduce (3.7). �
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Recalling θx,y has been defined below (2.13), let Θ be the operator on ℓ1(Z
d)

with kernel
(
θx,y

)
x,y∈Zd. Namely,

(Θβ)x =
∑

y∈Zd

θx,yβy, x ∈ Z
d, β ∈ ℓ1(Z

d). (3.14)

Recalling that λ1 is the spectral gap of the unperturbed single site Lindblad gen-
erator, the following lemma provides an a priori bound on the resolvent equation.

Lemma 3.5. Assume (2.11) and M < +∞. The operator Θ on ℓ1(Z
d) satisfies

‖Θ‖ℓ1→ℓ1 ≤ M . Furthermore, if f, g ∈ A1 satisfy

(λ− L)g = f (3.15)

for some λ > 0 such that λ+ λ1 > M , then

δ(g) ≤
(
λ+ λ1 −Θ

)−1
δ(f) pointwise. (3.16)

In particular,
|||g||| ≤ (λ+ λ1 −M)−1|||f ||| . (3.17)

Proof. Definition (2.13) readily implies the bound ‖Θ‖ℓ1→ℓ1 ≤ M . Assuming
(3.15), for x ∈ Zd and h ∈ {1, . . . , N} we have

λEx,hg = Ex,hf + Ex,hLg
= Ex,hf + LEx,hg + Ex,hL0g − L0Ex,hg + Ex,hL1g − L1Ex,hg.

Applying Lemma 3.3, we thus get

(λ+ λh)Ex,hg = Ex,hf + LEx,hg + Ex,hL1g − L1Ex,hg . (3.18)

Since, as proven in Lemma 3.2, −L is accretive, for each x ∈ Zd and h = 1, . . . , N ,
there exists ℘ ∈ A′ such that ‖℘‖A′ = 1, ℘(Ex,hg) = ‖Ex,hg‖, and Re℘(LEx,hg) ≤
0. Pairing both sides of (3.18) with ℘ and taking real parts we deduce

(λ+ λh)‖Ex,hg‖ ≤ Re℘(Ex,hf) + Re℘(Ex,hL1g − L1Ex,hg)

≤ ‖Ex,hf‖+ ‖Ex,hL1g − L1Ex,hg‖.
(3.19)

Lemma 3.4 and the definition of θx,y below (2.13) imply that for each h ∈
{1, . . . , N}

‖Ex,hL1g − L1Ex,hg‖ ≤ 1

N

∑

y∈Zd

θx,yδy(g).

Since λh ≥ λ1, summing over h ∈ {1, . . . , N} the bound (3.19) we get

(λ+ λ1)δ(g) ≤ δ(f) + Θδ(g) pointwise.

Equivalently,

δ(g) ≤ 1

λ+ λ1
δ(f) +

1

λ+ λ1
Θδ(g) pointwise.

Since Θ is positive operator and δ(f), δ(g) ∈ ℓ1(Z
d), this inequality can be iterated

to obtain

δ(g) ≤
n−1∑

k=0

Θk

(λ+ λ1)k+1
δ(f) +

Θn

(λ+ λ1)n
δ(g) pointwise.

By assumption λ+λ1 > M , hence the last term in the right-hand side above vanishes
as n → ∞. The bound (3.16) follows. Since ‖(λ+λ1−Θ)−1‖ℓ1→ℓ1 ≤ (λ+λ1−M)−1,
the bound (3.17) is obtained by taking the ℓ1(Z

d)-norm of both sides in (3.16). �
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Proof of Theorem 2.2. By Lemma 3.2 −L is accretive thus closable, see e.g. [21,
Ex. X.52]. The proof that its closure L̄ generates a QMS on A is achieved by the
following steps.

Step 1. The operator L̄ generates a strongly continuous contraction semigroup
(Pt)t≥0 on the Banach space A.

In view of the accretivity of −L and the Lumer-Phillips theorem, see e.g. [21,
Thm. X.48], it is enough to show Ran(λ − L̄) = A for some λ > 0, where Ran(T )
denotes the image of the linear operator T . To this end it suffices to show that
Ran(λ−L) is dense in A. Pick a sequence Λn ∈ P, n ∈ N, such that Λn ⊂ Λn+1 and⋃

n Λn = Zd. Let also L(n) be the finite volume generator defined in (2.14) with

Λ replaced by Λn and observe that −L(n) is an accretive bounded operator on A.
Hence, L(n) generates a strongly continuous contraction semigroup on A denoted

by
(
P(n)
t

)
t≥0

. By the Lumer-Phillips theorem we then deduce Ran(λ− L(n)) = A
for any n ≥ 1 and λ > 0. Fix f ∈ A1, choose λ > 0 such that λ+ λ1 > M , and set
gn = (λ− L(n))−1f , fn = (λ− L)gn. We claim that

‖fn − f‖ → 0 as n → ∞ . (3.20)

Since A1 is dense in A, this yields the density of Ran(λ − L) in A.

To prove (3.20) we decompose L(n) = L(n)
0 + L(n)

1 where L(n)
0 =

∑
x∈Λn

L0
x and

L(n)
1 =

∑
α : χ(α)⊂Λn

L1
α. Set θ

(n)
x,y = θx,y if x, y ∈ Λn and θ

(n)
x,y = 0 otherwise and let

Θ(n) be the operator on ℓ1(Z
d) with kernel θ

(n)
x,y . We the claim that

δ(gn) ≤
(
λ+ λ1 −Θ(n)

)−1
δ(fn), pointwise.

This follows indeed from Lemma 3.4 and the argument in the proof of Lemma 3.5

to deduce (3.16). Since θ
(n)
x,y ≤ θx,y, the previous bound implies

δ(gn) ≤ (λ+ λ1 −Θ)−1δ(f), pointwise. (3.21)

The argument in proof of Lemma 2.1 and more precisely the bound (3.1) implies

‖fn − f‖ =
∥∥(L(n) − L)gn

∥∥ ≤
∑

x∈Zd

C
(n)
0 (x)δx(gn)

where
C

(n)
0 (x) = 2η

∑

α∈χ−1({x})
χ(α)∩Λn 6=∅

(‖kα‖+ 2‖ℓα‖2).

Recalling (2.11) we now observe that C
(n)
0 (x) ≤ C0 and C

(n)
0 vanishes pointwise as

n → ∞. Hence, by the bound (3.21) and dominated convergence we conclude the
proof of (3.20).

Step 2. Pt(A1) ⊂ A1 and |||Ptf ||| ≤ e(M−λ1)t|||f |||, t ≥ 0 and f ∈ A1.
We first observe that, by the relationship between the semigroup Pt and the

resolvent (λ− L̄)−1, for each u ∈ A and t > 0 we have

Ptu = lim
n→∞

(n
t

)n(n
t
− L̄

)−n

u. (3.22)

For f as in the statement, let gn and fn be defined as in Step 1, where we recall
that λ + λ1 > M . Since, as proven in Step 1, fn → f , and (λ − L)−1 is bounded,
gn = (λ−L)−1fn is a Cauchy sequence, whose limit is denoted by g ∈ A. We deduce
that the sequence Lgn = λgn − fn has a limit. Hence, f belongs to the domain
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of L̄ and f = (λ − L̄)g. By taking the limit n → ∞ in (3.21), we deduce that
δ(g) ≤ (λ+ λ1 −Θ)δ(f) pointwise, in particular g ∈ A1. Thus (λ− L̄)−1A1 ⊂ A1,
which, by (3.22), proves that PtA1 ⊂ A1, t ≥ 0.

As just proven, if λ+ λ1 > M ,

δ((λ − L̄)−1f) ≤ (λ+ λ1 −Θ)−1δ(f) pointwise.

Since Θ is a positive operator, by iterating this bound we deduce that for every
n ∈ N

δ((λ − L̄)−nf) ≤ (λ+ λ1 −Θ)−nδ(f) pointwise.

Hence, by (3.22), for t > 0

|||Ptf ||| =
∑

x∈Zd

δx(Ptf) =
∑

x∈Zd

lim
n→∞

(n
t

)n

δx

((n
t
− L̄

)−n

f
)

≤
∑

x∈Zd

lim
n→∞

(n
t

)n((n
t
+ λ1 −Θ

)−n

δ(f)
)

x

=
∑

x∈Zd

(
e(Θ−λ1)tδ(f)

)
x
≤ e(M−λ1)t|||f ||| ,

where we used ‖Θ‖ℓ1→ℓ1 ≤ M in the last inequality.

Step 3. For each f ∈ A and t ≥ 0 the sequence P(n)
t f converges to Ptf as n → ∞.

Since Pt and P(n)
t are contractions on A, and A1 is dense in A, it is enough to

show the statement for each f ∈ A1. By Step 2 and standard interpolation, we
have

Ptf − P(n)
t f =

∫ t

0

ds
d

ds

(
P(n)
t−sPsf

)
=

∫ t

0

dsP(n)
t−s(−L(n) + L)Psf ,

so that

‖Ptf − P(n)
t f‖ ≤

∫ t

0

ds‖(−L(n) + L)Psf‖ .

By the argument below (3.21), dominated convergence, and again Step 2, we then
conclude that the right-hand side vanishes as n → ∞.

Conclusion. By Step 1, L̄ generates a strongly continuous contraction semigroup
(Pt)t≥0 on the Banach space A. To show that (Pt)t≥0 is a QMS we need to prove
that Pt is a completely positive operator on the C∗-algebra A for each t ≥ 0.
Observing that L(n) is a finite rank operator, the standard theory of QMS on finite

dimensional C∗-algebra [19] implies that P(n)
t is a completely positive operator on

A for each t ≥ 0 and n ∈ N. As follows from Step 3, for each t ≥ 0, the operator

Pt is the strong limit of P(n)
t , and therefore also completely positive.

In view of Step 2 and [21, Thm. X.49] A1 is a core for L̄. Claims (iii) and (iv)
are the content of Steps 2 and 3, respectively.

Finally, to prove item (v), pick µ ∈ S and set

µT :=
1

T

∫ T

0

µPt dt, T ∈ (0,∞).

Since ‖µT ‖A′ = 1, the Banach-Alaoglu theorem yields the existence of π ∈ A′ with
‖π‖A′ ≤ 1 and a sequence Tn → ∞ such that µTn → π weakly* in A′. Moreover, π
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is positive and, since A is unital, π(1) = 1 so that π ∈ S. Fix s ≥ 0, by taking the
limit n → ∞ in

µTnPs =
1

Tn

∫ Tn

0

µPt+s dt = µTn − 1

Tn

∫ s

0

µPt dt+
1

Tn

∫ Tn+s

Tn

µPt dt,

we deduce that π = πPs hence π is stationary. �

Remark 3.6. The proof of Theorem 2.2 given above actually implies that for each
f ∈ A1 and t ≥ 0

δ(Ptf) ≤ e−λ1tetΘδ(f) pointwise.

3.2. Perturbative criterion for ergodicity. Before discussing the proof of The-
orem 2.3, we show that the QMS

(
Pt

)
t≥0

has finite speed of propagation: the

evolution of the product of two observables, with distant “support”, can be ap-
proximated by the product of their respective evolution on a suitable time scale.

Proposition 3.7. Set

ωx,y := 8η2
∑

α∈I
χ(α)⊃{x,y}

‖ℓα‖2, x, y ∈ Z
d (3.23)

and assume there exists ξ > 0 such that

Mξ := sup
y∈Zd

∑

x∈Zd

θx,ye
ξ|x−y| < ∞, (3.24)

Ωξ := sup
x,y∈Zd

ωx,ye
ξ|x−y| < ∞. (3.25)

Then, for each Λ1,Λ2 ∈ P, f1 ∈ AΛ1
, f2 ∈ AΛ2

, and t ≥ 0,

‖Pt(f1f2)− (Ptf1)(Ptf2)‖ ≤ Ωξ
e2(Mξ−λ1)t − 1

2(Mξ − λ1)
e−ξ dist(Λ1,Λ2)|||f1||||||f2|||.

Lemma 3.8. For any f1, f2 ∈ A1 and t ≥ 0,

‖Pt(f1f2)− (Ptf1)(Ptf2)‖ ≤
∑

x,y∈Zd

ωx,y

∫ t

0

dse−2λ1s(esΘδ(f1))x(e
sΘδ(f2))y .

Proof. Set Ft = Pt(f1f2)− (Ptf1)(Ptf2). By direct computation,

d

dt
Ft = LFt +Gt

where

Gt := L((Ptf1)(Ptf2))− (LPtf1)(Ptf2)− (Ptf1)(LPtf2) .

Since F0 = 0 and Pt is a contraction on A we deduce

‖Ft‖ =
∥∥∥
∫ t

0

Pt−sGs ds
∥∥∥ ≤

∫ t

0

‖Gs‖ds .

Given g1, g2 ∈ A1, by direct computation,

L(g1g2)− (Lg1)g2 − g1(Lg2) = 2
∑

α∈I

[ℓ∗α, g1][g2, ℓα]

whose operator norm, using (3.1), is bounded by
∑

x,y ωx,yδx(g1)δy(g2). In view of
Remark 3.6, the statement follows by choosing gi = Ptfi, i = 1, 2. �



18 L. BERTINI, A. DE SOLE, G. POSTA, AND C. PRESILLA

Proof of Proposition 3.7. Recalling (3.14), assumption (3.24) readily implies, for
s ≥ 0,

sup
y∈Zd

∑

x∈Zd

(
esΘ

)
x,y

eξ|x−y| ≤ esMξ .

This bound, together with assumption (3.25), yields
∑

x′,y′∈Zd

ωx′,y′

(
esΘ

)
x′,x

(
esΘ

)
y′,y

≤ Ωξe
2Mξs−ξ|x−y|.

The statement now follows from Lemma 3.8 and elementary computations. �

Proof of Theorem 2.3. To prove (i), we observe that for f ∈ A1 the sequence
(Ptf)t≥0 is Cauchy in A as t → ∞. Indeed, for t ≥ s ≥ 0

Ptf − Psf =

∫ t

s

LPrf dr,

so that

‖Ptf − Psf‖ ≤
∫ t

s

‖LPrf‖ dr ≤ C0

∫ t

s

|||Prf ||| dr

≤ C0

∫ t

s

e−(λ1−M)r|||f ||| dr =
C0

λ1 −M

(
e−(λ1−M)s − e−(λ1−M)t

)
|||f ||| ,

(3.26)

where we used Lemma 2.1 for the second inequality and Theorem 2.2(iv) for the
third one. Let then f∞ = limt→∞ Ptf ∈ A. We claim that f∞ ∈ C1. Indeed, by
Lemma 3.1 and Theorem 2.2(iv) Ex,hf∞ = 0, x ∈ Zd, h ∈ {1, . . . , N} which, as
observed below (2.7), yields f∞ ∈ C1.

Let π : A1 → C be defined by f∞ = π(f)1. We claim that π extends to a state
π on A. The map π is obviously linear and, since Pt is a contraction, |π(f)| =
limt→∞ ‖Ptf‖ ≤ ‖f‖. Hence, ‖π‖A′ ≤ 1. This bound implies that the map π can
be extended to a continuous linear functional on A. Furthermore π(1) = 1. It
remains to show that π(f) ≥ 0 for f ≥ 0. Since (Pt)t≥0 is a QMS, we have that
Ptf ≥ 0, and passing to the limit t → ∞ we obtain f∞ ≥ 0, which implies π(f) ≥ 0.
The semigroup property and the definition of π imply that π(Ptf) = π(f) for any
t ≥ 0 and f ∈ A1, hence π is a stationary state.

To show uniqueness, if ν is a stationary state, for f ∈ A1 we have ν(f) = ν(Ptf)
which in the limit t → +∞ yields ν(f) = ν(π(f)1) = π(f). Hence ν = π since A1

is dense in A.
To prove (ii) it suffices to take the limit t → ∞ in (3.26).
Finally, we prove claim (iii). By the triangle inequality, for each t ≥ 0,

|π(f1f2)− π(f1)π(f2)| ≤ ‖Pt(f1f2)− π(f1f2)1‖+ ‖Ptf1 − π(f1)1‖‖Ptf2‖
+ |π(f1)|‖Ptf2 − π(f2)1‖+ ‖Pt(f1f2)− (Ptf1)(Ptf2)‖

≤ Ce−(λ1−M)t
(
|||f1f2|||+ |||f1|||‖f2‖+ ‖f1‖|||f2|||

)
+ ‖Pt(f1f2)− (Ptf1)(Ptf2)‖ ,

where we have used (ii) and have set C = C0/(λ1 −M). The bound (3.12) implies

|||f1f2||| ≤ Nη2
(
|||f1|||‖f2‖+ ‖f1‖|||f2|||

)
≤ Nη2

(
‖f1‖+ |||f1|||

)(
‖f2‖+ |||f2|||

)
.

Note that conditions (3.24) and (3.25) trivially hold for any ξ > 0 by the finite
range assumptions. Moreover, denoting by R the range, we have Mξ ≤ MeRξ. We
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can thus apply Proposition 3.7 which yields

|π(f1f2)− π(f1)π(f2)|

≤ Cξ

2

(
e−(λ1−M)t + e2MeRξt−ξ dist(Λ1,Λ2)

)(
‖f1‖+ |||f1|||

)(
‖f2‖+ |||f2|||

)
,

where Cξ = 2Nη2 max
{
C,Ωξ/(2MeRξ)

}
.

By choosing t = ξ
(
λ1−M +2MeRξ)−1dist(Λ1,Λ2), we deduce (iii) with C = Cξ

and ζ = (λ1 −M)ξ
(
λ1 −M + 2MeRξ

)−1
. �

3.3. Convergence of the specific quantum one-Wasserstein distance. We
first recall the dual formulation of the quantum one-Wasserstein distance WΛ in
terms of a Lipschitz seminorm proven in [14, Prop. 8]. Given Λ ∈ P we introduce the
Lipschitz seminorm ||| · |||Λ,Lip on AΛ as |||f |||Λ,Lip := supx∈Λ θx(f) where θx(f) :=

2 infg∈AΛ\{x}
‖f − g‖. Then the quantum one-Wasserstein distance on the set of

states on AΛ can be represented as

WΛ(µ, ν) = sup
|||f |||

Λ,Lip
≤1

|µ(f)− ν(f)|. (3.27)

Lemma 3.9. For each Λ ∈ P and f ∈ AΛ

|||f ||| ≤ 1

2
Nη|Λ| |||f |||Λ,Lip.

Proof. Since Ex,hf = Ex,h(f − g) for any h ∈ {1, . . . , N} and g ∈ AΛ\{x}, by
Lemma 3.1, we deduce ‖Ex,hf‖ ≤ ηθx(f)/2. The statement follows. �

Proof of Theorem 2.4. Since L is translation covariant, the QMS (Pt)t≥0 has a
translation invariant stationary state π, which is unique by Theorem 2.3(i). Recall-
ing (2.15), for each µ ∈ Sτ and t ≥ 0,

w(µPt, π) = sup
Λ∈P

1

|Λ| sup
|||f |||Λ,Lip≤1

∣∣µ
(
Ptf − π(f)1

)∣∣

≤ sup
Λ∈P

1

|Λ| sup
|||f |||

Λ,Lip
≤1

∥∥Ptf − π(f)1
∥∥.

The stated bound, with C = C0(λ1 −M)−1Nη/2, now follows directly from Theo-
rem 2.3(ii) and Lemma 3.9. �

4. Interacting qudits: examples

To exemplify the abstract theory developed before, we next introduce simple
dissipative quantum lattice systems and discuss when the perturbative criterion for
ergodicity in Theorem 2.3 can be applied.

4.1. Quantum spin systems: application of the perturbative criterion.

We consider a class of QMS with purely dissipative Lindblad generators L and
show how the decomposition L = L0 + L1 can be achieved. We focus on the case
of translation covariant interactions with finite range.

Let H = C
2, A = B(C2) and denote by H and A the Hilbert space and the

C∗-algebra constructed in Section 2.2. Let I = Zd × {1, 2, 3} and χ : I → P be the
map (x, j) 7→ {y : |x−y| ≤ R} =: BR(x). Consider the informal Lindblad generator

L =
∑

α∈I

(
ℓ∗α[ · , ℓα] + [ℓ∗α, · ]ℓ∗α

)
, (4.1)
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where the jump operators ℓα satisfy ℓ(x,j) ∈ ABR(x) and are translation covariant.
As we will next show, under suitable conditions on these operators, Theorems 2.2
and 2.3 can be applied to deduce that the graph norm closure of L generates an
ergodic QMS.

We denote by σj , j = 1, 2, 3 the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

and by σx,j , j = 1, 2, 3, the corresponding elements of A{x}.

Fix x0 ∈ Zd, let D{x0} ⊂ A{x0} be the real linear span of {1, σx0,3} and set

∆1,2 = min
{
‖σx0,1g − ℓ(x0,1)‖+ ‖σx0,2g − ℓ(x0,2)‖ : g ∈ D{x0}

}
,

∆3 = min
{
‖g − ℓ(x0,3)‖ : g ∈ D{x0}

}
.

(4.2)

Next, choose

a ∈ argmin
{
‖σx0,1g − ℓ(x0,1)‖+ ‖σx0,2g − ℓ(x0,2)‖ : g ∈ D{x0}

}
,

b ∈ argmin
{
‖g − ℓ(x0,3)‖ : g ∈ D{x0}

}
.

By translation covariance, ∆1,2, ∆3 do not depend on x0. Furthermore, identifying
A{x0} with A = B(C2), there exist reals α0, α1, β0, β1 such that

a =

(
α0 0
0 α1

)
, b =

(
β0 0
0 β1

)
.

Hereafter, we assume α2
0 + α2

1 > 0.
Introduce on A the Lindblad generator

L0 =

2∑

j=1

(
aσj [ · , σja] + [aσj , · ]σja

)
+ bσ3[ · , σ3b] + [bσ3, · ]σ3b. (4.3)

By direct computation, the Lindblad generator L0 is self-adjoint with respect to
the GNS inner product induced by the density matrix

ρ =
1

α2
0 + α2

1

(
α2
0 0
0 α2

1

)
.

The eigenvalues of −L0 are λ0 = 0, λ = 4(α2
0+α2

1), and µ = 2(α2
0+α2

1)+(β0−β1)
2

with multiplicity 2. The corresponding normalized eigenvectors can be chosen as
e0 = 1IC2 ,

eλ =

(α0

α1
0

0 −α1

α0

)
, eµ+ =

√
1 +

α2
0

α2
1

(
0 1
0 0

)
, eµ− =

√
1 +

α2
1

α2
0

(
0 0
1 0

)
. (4.4)

In particular, the spectral gap of −L0 is λ1 = λ ∧ µ. Moreover, again by direct
computation, η = max{‖eλ‖A, ‖eµ+‖A, ‖eµ−‖A} = (α0/α1) ∨ (α1/α0).

The decomposition in Section 2.4 is then achieved as follows. Set I0 = I =
Zd × {1, 2, 3} and let ı : I0 → I be the identity map. Denoting by ax, bx the
elements in A{x} corresponding to a, b via the identification of A with A{x}, we

then set ℓ0(x,j) = σx,jax, j = 1, 2, ℓ0(x,3) = bx, and ℓ1α = ℓα − ℓ0α, α ∈ I. By

construction

L =
∑

α∈I0

(
ℓ0α

∗
[ · , ℓ0α] + [ℓ0α

∗
, · ]ℓ0α

)
+

∑

α∈I

L1
α

in which L1
α is given by the right-hand side of (2.12) with kα = 0.
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Recalling (2.11) and (2.13), by few trite computations we get C0 = 4η
∑3

j=1 ‖ℓ0,j‖
and

M ≤ 72η2(η2 + 1)(2R+ 1)d
(
2(|α0| ∨ |α1|)∆1,2 + 2(|β0| ∨ |β1|)∆3 +∆2

1,2 +∆2
3

)
.

In particular, the QMS generated by L is ergodic if ∆1,2 and ∆3 are small enough
compared to the spectral gap λ1.

4.2. Quantum spin systems: conjugation with classical spin systems. Ac-
cording to the terminology in [18, Ch.III], a (classical) spin system is a Markov
semigroup (Pcl

t )t≥0 on the commutative C∗-algebra C(Ω) of the continuous C-

valued functions on Ω := {−1, 1}Zd

whose generator acts on local functions by

(Lclfcl)(σ) =
∑

x∈Zd

cx(σ)[fcl(σ
x)− fcl(σ)], σ ∈ Ω,

where cx : Ω → [0,∞) is the flip rate and σx is the configuration in which the spin
σ is flipped at site x. Many popular models like the stochastic Ising model, the
contact process and the voter model are examples of spin systems. Provided the
flip rates cx satisfy suitable conditions, the semigroup generated by Lcl is ergodic.
On the other hand, for particular choices of the flip rates ergodicity fails, i.e. the
stationary state is not unique. We refer to [18] for the details of both situations.

When the jump rates cx have finite range, we next construct a QMS (Pt)t≥0

whose action on a commutative subalgebra D of A is conjugate to the one of
(Pcl

t )t≥0, thus providing, for non-ergodic (Pcl
t )t≥0, examples of non-ergodic QMS.

The corresponding Lindblad generator has the form considered in the previous
section, see in particular (4.1). Let D ⊂ A be the commutative C∗-subalgebra of
A generated by σx,3, x ∈ Zd. Consider the C∗-algebra isomorphism ı : C(Ω) → D
defined by ı(fcl) = fcl({σx,3}x∈Zd). By choosing ℓx,j = ı(

√
cx)σx,j , j = 1, 2 and

ℓx,3 ∈ D, a direct computation shows that L ◦ ı = ı ◦ Lcl. Hence the QMS (Pt)t≥0

generated by L leaves invariant D and its action on D is conjugated to the one of
(Pcl

t )t≥0.

4.3. XY Z-model with site dissipation. In this section we consider a Heisen-
berg perturbation induced by the XY Z-Hamiltonian of non-interacting dissipative
spins. We show that, if the interaction parameters are small enough the resulting
evolution is ergodic.

As in the previous sections, let H = C2, A = B(H), and σj , j = 1, 2, 3 be the
Pauli matrices. The one-qubit unperturbed Lindblad generator is

L0 =
1

4

2∑

j=1

(
σj [ · , σj ] + [σj , · ]σj

)

which is self-adjoint with respect to the GNS inner product induced by the state
ρ = (1/2)1IH . Note that this generator is a particular case of the one introduced
in (4.3) when a = 1IH and b = 0. In particular, the eigenvalues of −L0 are λ0 = 0,
λ1 = λ2 = 2, λ3 = 4, with corresponding normalized eigenvectors given by (4.4)
with α0 = α1 = 1/2 and β0 = β1 = 0

e0 = 1IH , e1 =
√
2

(
0 1
0 0

)
, e2 =

√
2

(
0 0
1 0

)
, e3 = σ3.
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Hence η = maxj∈{1,2,3} ‖ej‖H→H =
√
2. As in Section 2.2, we denote by L0 the

Lindblad generator in which each qubit evolves independently according to L0, see
equation (2.4).

Given Jj ∈ R, j = 1, 2, 3, let kX,j = Jjσx,jσy,j if X = {x, y} with |x − y| = 1,
and kX,j = 0 otherwise. Here we understand, as in the previous section, σx,j =
σj ⊗ 1IH{x}c

, j = 1, 2, 3. The XY Z model is then defined in terms of the informal

Hamiltonian K =
∑

X∈P

∑3
j=1 kX,j . Accordingly, we set L = L0 + L1 where L1

is the informal Heisenberg operator L1 = i[K, · ]. To fit this case in the general
framework of Section 2.3, set I = P× {1, 2, 3}, let χ : I → P be the projection on
the first coordinate, kα as defined above, ℓ({x},j) = (1/2)σx,j, x ∈ Zd, j = 1, 2, and
ℓα = 0 otherwise. Note that the family {kα, ℓα}α∈I is translation covariant and
has range R = 1.

As by definition L = L0+L1, to apply the results of Section 2.4 it is enough to set
I0 = Zd × {1, 2} with ı : I0 → I given by ı(x, j) = ({x}, j). By direct computation
‖k({x,y},j)‖ ≤ |Jj | for |x− y| = 1 and therefore the constant in (2.11) satisfies C0 ≤
2
√
2(1 + 2d|J |), where |J | = ∑3

j=1 |Jj |. Recalling (2.13), few trite computations

yield M ≤ 96
√
2d|J |. In particular, by Theorem 2.3, the QMS generated by L is

ergodic whenever |J | < (48
√
2d)−1.

5. Interacting fermions

In this section we consider quantum lattice systems described in terms of ferm-
ionic operators satisfying the canonical anticommutation relations (CAR). The un-
perturbed dynamics is given by the Fermi Ornstein-Uhlenbeck semigroup, while
the interaction will be expressed as a superposition of local generators.

5.1. Canonical anticommutation relations and fermionic C
∗-algebra. Re-

ferring e.g. to [17] for the abstract setting of Clifford algebras, we next introduce a
family of operators satisfying the CAR in a concrete representation that describes
fermions on the whole lattice Zd.

Let H be the Hilbert space with complete orthonormal system {eX}X∈P, where
we recall that P denotes the family of the finite subsets of Zd. For Λ ⊂ Zd we
also consider the subspace HΛ spanned by {eX}X⊂Λ. If Λ is finite, then HΛ has
dimension 2|Λ|. Clearly, H0 =

⋃
Λ∈P

HΛ is dense in H. Moreover HΛ1⊔Λ2
≃

HΛ1
⊗HΛ2

, where ⊔ denotes the union of disjoint sets.
Denote by B(H) the C∗-algebra of bounded operators on H and by ‖ · ‖ the

corresponding norm. As in the previous sections 1 ∈ B(H) is the identity. Fix a
total order ≤ on Zd and for x ∈ Zd define ax ∈ B(H) by

axeX = 1X(x)(−1)|{y∈X : y<x}|eX\{x}, X ∈ P

where 1X denotes the indicator function of the set X . Accordingly,

a∗xeX = 1Zd\X(x)(−1)|{y∈X : y<x}|eX∪{x}, X ∈ P.

By direct computations, the family {ax, a∗x}x∈Zd satisfies the CAR, i.e.

{ax, ay} = {a∗x, a∗y} = 0, {ax, a∗y} = δx,y1 (5.1)

where {a, b} = ab + ba is the anticommutator of a and b. Let nx = a∗xax, x ∈ Zd,
be the fermionic number operators. These operators are pairwise commuting, self-
adjoint, satisfy n2

x = nx, and act on H as nxeX = 1X(x)eX .
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For Λ ∈ P, let AΛ ⊂ B(H) be the subalgebra generated by {ax, a∗x}x∈Λ and set
A0 :=

⋃
Λ∈P

AΛ. Noticing that A0 is a ∗-subalgebra of B(H), we finally let A be

the norm closure of A0. In particular, A is a unital C∗-subalgebra of B(H). In
fact, it is a proper subalgebra as, for example, the translation operators τx, x ∈ Z

d,
defined by τx(eX) = eX+x, lie in B(H) but not in A. As in the previous section,
we denote by S the collection of states on A.

Note that the Hilbert space H constructed above can be identified with the
one presented in Section 2.2 when H = C2. However, under this identification,
the C∗-algebra A defined here does not coincide with the C∗-algebra A defined in
Section 2.2, since the fermionic operators ax, a

∗
x are not local.

In order to define the dynamics, we next introduce another family of operators
{vx, v∗x}x∈Zd satisfying the CAR. They will have the property that vx and ay com-
mute for x 6= y. To this end, let w be the self-adjoint and unitary element of B(H)
given by

weX = (−1)|X|eX , X ∈ P.

The operator w is usually referred to as the main automorphism or sign operator
[17]. Observe that it does not belong to A and

wax = −axw, wa∗x = −a∗xw, x ∈ Z
d. (5.2)

Hence, letting Adw(f) = wfw, f ∈ B(H), for each Λ ∈ P, the subalgebra AΛ is left
invariant by Adw. In particular, Adw defines an outer automorphism of A.

Define also the operators in wA ⊂ B(H)

vx = wax , v∗x = a∗xw , x ∈ Z
d . (5.3)

Readily, also the family {vx, v∗x}x∈Zd satisfies the CAR. Moreover, by direct com-
putations,

[vx, ay] = [v∗x, a
∗
y] = 0, [vx, a

∗
y] = −[v∗x, ay] = δx,yw , x, y ∈ Z

d . (5.4)

For Λ ∈ P we let VΛ be the finite-dimensional C∗-subalgebra of B(H) generated by
{vx, v∗x}x∈Λ. As for the algebra A, set V0 :=

⋃
Λ∈P

VΛ ⊂ B(H), and let V be its
norm closure. As follows from (5.4), for disjoint X,Y ∈ P the algebras VX and AY

commute, that is

[u, f ] = 0, for any u ∈ VX , f ∈ AY with X ∩ Y = ∅. (5.5)

For Λ ∈ P, the algebras AΛ and VΛ are Z/2Z-graded, by letting deg(ax) =
deg(a∗x) = 1 and deg(vx) = deg(v∗x) = 1, respectively. Hence, we have the de-
compositions AΛ = AΛ,0 ⊕ AΛ,1 and VΛ = VΛ,0 ⊕ VΛ,1, where AΛ,p and VΛ,p are
the subspaces of parity p ∈ Z/2Z, respectively. In view of (5.2), VΛ,0 = AΛ,0 and
VΛ,1 = wAΛ,1.

Following [8, 12] we introduce a gradient structure induced by the fermionic
operators. Let ∂x, ∂̄x, x ∈ Zd, be the bounded operators on A defined by

∂x := w[vx, · ] , ∂̄x := −w[v∗x, · ] . (5.6)

In view of (5.2) and (5.3), if f ∈ A{x}c then ∂xf = ∂̄xf = 0. Moreover, ∂x and ∂̄x
are skew derivations in the sense that for each f, g ∈ A

∂x(fg) = (∂xf)g +Adw(f)∂xg, ∂̄x(fg) = (∂̄xf)g +Adw(f)∂̄xg.

Let also ∂̌x,
ˇ̄∂x, x ∈ Zd, be the bounded operators on V defined by

∂̌x := w[ax, · ] , ˇ̄∂x := −w[a∗x, · ] . (5.7)
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5.2. Dynamics. As unperturbed dynamics we consider the Fermi Ornstein-Uhlen-
beck semigroup introduced in [8, 12], that describe the dissipative evolution of free
fermions.

For h ∈ R let π0 ∈ S be the product state corresponding to free fermions with
external field h. More precisely, for Λ ∈ P and f ∈ AΛ, we set

π0(f) =
TrHΛ

(
eh

∑
x∈Λ

nxf
)

(1 + eh)|Λ|

which, by the density of A0 in A, uniquely defines π0.
We then define the unperturbed generator on A by

L0 =
∑

x∈Zd

L0
x (5.8)

where

L0
x = eh/2

(
[vx, · ]v∗x + vx[ · , v∗x]

)
+ e−h/2

(
[v∗x, · ]vx + v∗x[ · , vx]

)
. (5.9)

By direct computation, L0
xA ⊂ A, and L0 is symmetric with respect to GNS inner

product induced by π0.
In this section, we define the seminorm ||| · ||| on A0 by

|||f ||| :=
∑

x∈Zd

(‖∂xf‖+ ‖∂̄xf‖). (5.10)

Observe that |||f ||| = 0 if and only if f is a scalar multiple of 1. Let also A1 be the
closure of A0 with respect to the norm ‖ · ‖+ ||| · |||. Clearly, A0 ⊂ A1 ⊂ A.

We consider perturbations of the generator L0, both of conservative and dissi-
pative type. The local Hamiltonians will be assumed, as natural from a physical
viewpoint, to be even functions of the fermionic operators, while the jump opera-
tors associated to the dissipative perturbation, belonging to V , can be both even
and odd but we will require them to have a definite parity. More precisely, fix
a countable set I and functions p : I → Z/2Z and χ : I → P with finite fibers
χ−1(X), X ∈ P. Denote also I0 = p−1(0) and I1 = p−1(1). Fix then a collection
{kα, ℓα}α∈I such that kα = k∗α ∈ Vχ(α),0 = Aχ(α),0 for α ∈ I0, kα = 0 for α ∈ I1,
and ℓα ∈ Vχ(α),p(α) for every α ∈ I. We then set

L1 =
∑

α∈I

L1
α, where L1

α = i[kα, · ] + [ℓ∗α, · ]ℓα + ℓ∗α[ · , ℓα] . (5.11)

The above parity assumptions guarantee that L1
αA ⊂ A, α ∈ I. We will show

in Lemma 5.1 and Theorem 5.2 that, under suitable conditions on the family
{kα, ℓα}α∈I , the right-hand side of (5.11) is well defined on A1, and the graph
norm closure of L = L0 + L1 generates a QMS on A.

As in Section 2, the family
{
kα, ℓα

}
α∈I

, has finite range if there exists R ∈ [0,∞)

such that kα = ℓα = 0 whenever diam(χ(α)) > R. The family
{
kα, ℓα

}
α∈I

is tran-

slation covariant if there exists an action of the abelian group Zd on I, denoted by
(x, α) 7→ x + α, satisfying χ(x + α) = x + χ(α), such that Adτx(kα) = kx+α and
Adτx(ℓα) = ℓx+α.

5.3. Main results. As we next state, under suitable assumptions, the operator
L = L0 + L1 is well defined on A1.
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Lemma 5.1. If

C0 := 2 ch(h/2) + 4 sup
x∈Zd

∑

α :χ(α)∋x

(‖kα‖+ 2‖ℓα‖2) < +∞, (5.12)

then for each f ∈ A1 the series defining Lf converges in A and ‖Lf‖ ≤ C0|||f |||.

As in the case of qudits, we first show the existence of the dynamics of interacting
fermions. For Λ ∈ P we denote by LΛ the bounded Lindblad generator on A defined
by

LΛ :=
∑

x∈Λ

L0
x +

∑

α∈I : χ(α)⊂Λ

L1
α

and by (PΛ
t )t≥0 the corresponding QMS.

Theorem 5.2. Assume (5.12) and consider L = L0+L1 as an operator on A with
domain A1. If

M :=4 sup
y∈Zd

∑

x∈Zd

∑

α : χ(α)∋y

(
‖∂xkα‖+ ‖∂̄xkα‖

+ 2‖ℓα‖
(
‖∂̌xℓα‖+ ‖∂̌xℓ∗α‖+ ‖ ˇ̄∂xℓα‖+ ‖ ˇ̄∂xℓ∗α‖

))
< ∞,

(5.13)

then

(i) the graph norm closure L̄ of L generates a QMS (Pt)t≥0 on A;
(ii) A1 is a core for L̄;
(iii) for each t ≥ 0 the operator Pt is the strong limit of PΛ

t as Λ ↑ Zd;
(iv) for any f ∈ A1 and t ≥ 0 we have

|||Ptf ||| ≤ e(M−2 ch(h/2))t|||f ||| ;

(v) the QMS (Pt)t≥0 has at least one stationary state.

The perturbative criterion for the ergodicity of interacting fermions is then stated
as follows.

Theorem 5.3. Assume (5.12) and M < 2 ch(h/2). Then

(i) the QMS (Pt)t≥0 has a unique stationary state π;
(ii) for any f ∈ A1 and t ≥ 0

‖Ptf − π(f)1‖ ≤ C0

2 ch(h/2)−M
e−(2 ch(h/2)−M)t|||f ||| ;

(iii) if furthermore
{
kα, ℓα

}
α∈I

has finite range, there exist C, ζ > 0 such that for

any Λ1,Λ2 ⊂ Zd and any f1 ∈ AΛ1
, f2 ∈ AΛ2

,

|π(f1f2)− π(f1)π(f2)| ≤ Ce−ζ dist(Λ1,Λ2)
(
‖f1‖+ |||f1|||

)(
‖f2‖+ |||f2|||

)
.

As gap(−L0
x) = 2 ch(h/2), the above criterion corresponds to the one formulated

in Theorem 2.3 for qudits. As in Section 2, in the translation covariant case,
Theorem 5.3 implies the exponential decay of specific quantum one-Wasserstein
distance between µPt and π. We refer to Theorem 2.4 for the precise statement.
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5.4. Bounds on the commutators. The proofs of Theorems 5.2 and 5.3 are
accomplished by the arguments presented in Section 3. The relevant ingredients
are: (i) the intertwining relationships, as discussed in [8] and stated in Lemma 5.5
below, between the derivatives ∂x, ∂̄x and the unperturbed generator L0; (ii) some
quantitative bounds on the commutators between the derivatives ∂x, ∂̄x and the
perturbed generator L1 that are here derived anew.

We start with the following lemma which provides the fermionic counterpart to
(2.6).

Lemma 5.4. Let Ex be the normalized partial trace on H{x} and set

Dx = a∗x∂x = v∗x[vx, · ], D̄x = ax∂̄x = vx[v
∗
x, · ],

that are regarded as bounded operators on A. Then for each x ∈ Z
d and f ∈ A

f = Exf +Dxf + D̄xf − 1

2

(
DxD̄x + D̄xDx

)
f. (5.14)

Proof. By linearity and density it suffices to show (5.14) when f is a monomial;
namely, when f = ⊗yfy with fy ∈ A{y} and the product runs over finitely many
sites. In view of (5.4), for such f

Dxf =
(
⊗y<x fy

)
(Dxfx)

(
⊗y>x fy

)
, D̄xf =

(
⊗y<x fy

)
(D̄xfx)

(
⊗y>x fy

)
.

On the other hand, by direct computations,

Dx1 = 0, Dxax = 0, Dxa
∗
x = a∗x, Dxnx = nx,

D̄x1 = 0, D̄xax = ax, D̄xa
∗
x = 0, D̄xnx = nx − 1.

As the linear span of {1, ax, a∗x, nx} is A{x}, the statement follows by linearity. �

Proof of Lemma 5.1. Since ‖w‖ = ‖ax‖ = ‖a∗x‖ = 1 and w2 = 1, we have

‖[vx, f ]‖ = ‖∂xf‖ , ‖[v∗x, f ]‖ = ‖∂̄xf‖ , ‖[nx, f ]‖ ≤ ‖∂xf‖+ ‖∂̄xf‖ . (5.15)

Hence, from (5.9) we get

‖L0
xf‖ ≤ 2 ch(h/2)

(
‖∂xf‖+ ‖∂̄xf‖

)
. (5.16)

As follows from a direct computation, the statement is achieved by the following
estimate. For each X ∈ P, u ∈ VX , and f ∈ A1

‖[u, f ]‖ ≤ 4‖u‖
∑

x∈X

(‖∂xf‖+ ‖∂̄xf‖). (5.17)

To prove the bound (5.17), let X = {x1, . . . , xm} and introduce the operator
Fx : A → A defined by Fx = Dx+D̄x−(1/2)(DxD̄x+D̄xDx). By recursively using
(5.14) we deduce, cf. (3.3),

f =
( m∏

j=1

Exj

)
f +

m∑

j=1

( j−1∏

h=1

Exh

)
Fxj

f. (5.18)

Since ‖Ex‖A→A ≤ 1, ‖Dx‖A→A ≤ 2, ‖D̄x‖A→A ≤ 2, ‖Dxf‖ ≤ ‖∂xf‖, and
‖D̄xf‖ ≤ ‖∂̄xf‖, we deduce

∥∥∥
( j−1∏

h=1

Exh

)
Fxj

f
∥∥∥ ≤ 2

(
‖∂xj

f‖+ ‖∂̄xj
f‖

)
, j = 1, . . . ,m. (5.19)

Recalling (5.5), the claim (5.17) follows by noticing that
(∏m

j=1 Exj

)
f belongs to

AXc . �
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We next recall the intertwining relationship between the unperturbed generator
L0 and the gradient structure introduced in (5.6).

Lemma 5.5. For each f ∈ A1 and x ∈ Zd

∂xL0f − L0∂xf = −2 ch(h/2)∂xf

∂̄xL0u− L0∂̄xf = −2 ch(h/2)∂̄xf.

Proof. Both identities are obtained by a straightforward computation, see also [8,
§6.2]. �

Lemma 5.6. Fix x ∈ Zd and X ∈ P.

(i) For each u ∈ VX,0 and f ∈ A1

‖∂x[u, f ]− [u, ∂xf ]‖ ≤ 4‖∂xu‖
∑

y∈X

(
‖∂yf‖+ ‖∂̄yf‖

)
,

‖∂̄x[u, f ]− [u, ∂̄xf ]‖ ≤ 4‖∂̄xu‖
∑

y∈X

(
‖∂yf‖+ ‖∂̄yf‖

)
.

(ii) For each j = 0, 1, u ∈ VX,j, and f ∈ A1

∥∥∂x(u∗[f, u] + [u∗, f ]u)− u∗[∂xf, u]− [u∗∂xf ]u
∥∥

≤ 8‖u‖
(
‖∂̌xu∗‖+ ‖∂̌xu‖

) ∑

y∈X

(
‖∂yf‖+ ‖∂̄yf‖

)
,

∥∥∂̄x(u∗[f, u] + [u∗, f ]u)− u∗[∂̄xf, u]− [u∗∂̄xf ]u
∥∥

≤ 8‖u‖
(
‖ ˇ̄∂xu∗‖+ ‖ ˇ̄∂xu‖

) ∑

y∈X

(
‖∂yf‖+ ‖∂̄yf‖

)
.

Proof. We use the notation introduced in the proof of Lemma 5.1. For (i), we prove
only the first bound. Since u ∈ VX,0, the Jacobi identity yields

∂x[u, f ]− [u, ∂xf ] = w[[vx, u], f ] = w

m∑

j=1

[
[vx, u],

( j−1∏

h=1

Exh

)
Fxj

f
]
,

where we used (5.18) and (5.5) in the second step. The statement now follows from
(5.19).

Regarding (ii), we prove again only the first bound. By direct computation, for
j = 0, 1, u ∈ Vj , f ∈ A,

∂x(u
∗[f, u])− u∗[∂xf, u] = w

(
(∂̌xu

∗)[f, u] + (−1)ju∗[f, ∂̌xu]
)

∂x([u
∗, f ]u)− [u∗, ∂xf ]u = w

(
[∂̌xu

∗, f ]u+ (−1)j [u∗, f ](∂̌xu)
)
.

The statement now follows by (5.17). �

As we next state, the estimates in Lemma 5.6 provide the required bounds on
the commutator between the gradient structure introduced in (5.6) and perturbed
generator L1.
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Lemma 5.7. For x, y ∈ Zd set

θx,y := 4
∑

α : y∈χ(α)

(
‖∂xkα‖+ 2‖ℓα‖(‖∂̌xℓα‖+ ‖∂̌xℓ∗α‖)

)

θ̃x,y := 4
∑

α : y∈χ(α)

(
‖∂̄xkα‖+ 2‖ℓα‖(‖ ˇ̄∂xℓα‖+ ‖ ˇ̄∂xℓ∗α‖)

)
.

Then for each x ∈ Zd and f ∈ A1

‖∂xL1f − L1∂xf‖ ≤
∑

y∈Zd

θx,y(‖∂yf‖+ ‖∂̄yf‖) ,

‖∂̄xL1f − L1∂̄xf‖ ≤
∑

y∈Zd

θ̃x,y(‖∂yf‖+ ‖∂̄yf‖).

Proof. The result is a direct consequence of Lemma 5.6. �

Recalling (5.13), note that

M = sup
y∈Zd

∑

x∈Zd

(θx,y + θ̃x,y).

Lemmata 5.1, 5.5, and 5.7 provide the ingredients to achieve the proofs of Theorems
5.2 and 5.3 by the arguments presented in Section 3.

5.5. Nearest neighbor interacting fermions with site dissipation. Consider
the informal Hamiltonian given by

K = J
∑

{x,y} : |x−y|=1

(
a∗xay + a∗yax

)
,

for some J ∈ R. Letting L0 be the Lindblad generator of the Fermi Ornstein-
Uhlenbeck QMS introduced in (5.8), consider the QMS with informal generator

L = L0 + i[K, · ].
It fits the setting introduced in Section 5.2 with the translation covariant conser-
vative interaction parametrized by I =

{
{x, y} : x, y ∈ Zd, |x − y| = 1

}
⊂ P and

given by

k{x,y} = J
(
a∗xay + a∗yax

)
,

understanding that χ : I → P is the inclusion map. In particular, the family
{kα}α∈I has range 1. By direct computation, ‖k{x,y}‖ = |J | and

θx,y = θ̃x,y =





8|J |d if x = y,

4|J | if |x− y| = 1,

0 otherwise.

Correspondingly, M = 32d|J |, so that the assumptions of Theorem 5.3 are met
when |J | < ch(h/2)/(16d).
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P.le A. Moro 5, I-00185 Roma, Italy

Email address: desole@mat.uniroma1.it

Gustavo Posta

Dipartimento di Matematica, Università di Roma La Sapienza,

P.le A. Moro 5, I-00185 Roma, Italy

Email address: gustavo.posta@uniroma1.it

Carlo Presilla

Dipartimento di Matematica, Università di Roma La Sapienza, & INFN,
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