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Manifolds of exceptional points and effective Zeno limit of an open two-qubits system
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We analytically investigate the Liouvillian exceptional point manifolds (LEPMs) of a two-qubits open system,
where one qubit is coupled to a dissipative polarization bath. Exploiting a Z, symmetry, we block diagonalize
the Liouvillian and show that one symmetry block yields two planar LEPMs while the other one exhibits a more
intricate, multisheet topology. The intersection curves of these manifolds provide a phase diagram for effective
Zeno transitions at small dissipation. These results are consistent with a perturbative extrapolation from the
strong Zeno regime. Interestingly, we find that the fastest relaxation to the nonequilibrium steady state occurs on
LEPMs associated with the transition to the effective Zeno regime.
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Introduction. A strong spectral response to perturbations
occurs in open quantum systems at their branch-point sin-
gularities, the so-called exceptional points (EPs) [1-3]. This
phenomenon can be used for sensing [4,5], hardware en-
cryption [6], optimizing performance of quantum thermal
machines [7], realizing a multipoint switch between modes
in photonic systems [8], and other applications [9].

In classical and semiclassical systems that ignore quantum
jumps, EPs are typically associated with degeneracies of non-
Hermitian Hamiltonians, and many theoretical aspects are
well understood. At the quantum level, EPs appear in Marko-
vian open systems, i.e., quantum dynamical semigroups
whose time evolution obeys a Lindblad master equation, with
a time-independent Liouvillian superoperator as the generator
[10—-12]. In these systems, exceptional points of the Liouvil-
lian (LEPs) occur in the parameter space where Liouvillian
eigenvalues and eigenvectors coalesce.

In contrast to the EPs of non-Hermitian Hamiltonians, the
LEPs include quantum jumps that reflect the open nature of
the systems and allow a comprehensive understanding of their
dynamics in interactions with the environment [13]. More-
over, LEPs provide information that is crucial in the analysis
of rapidly decaying states in systems subject to decoherence
[14].

The distribution of LEPs driven by the interplay between
non-Hermitian dynamics and dissipation gives rise to Liou-
villian exceptional point manifolds (LEPMs) in the parameter
space. Understanding these manifolds is crucial for control-
ling the system, such as optimizing sensing applications near
LEPs by tuning the system parameters. Conversely, operating
in regions where LEPs do not occur is essential for applica-
tions that require stability, such as quantum computing [15].
Additionally, the knowledge of LEPMs helps to identify the
parameter regions where the transition to the Zeno regime
can be achieved with minimal dissipative coupling to the
environment.
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Except for a few solvable cases involving two- [16] and
three-level systems [17], LEPMs, to our knowledge, are prac-
tically unexplored [18] (we discard all cases for which LEPs
reduce to EPs of non-Hermitian Hamiltonians as for example
in Ref. [18]).

The aim of the present Letter is to provide a full analytical
characterization of all the LEPMs of a two-qubits system and
to show how LEPMs can be used to optimize the phase transi-
tions of the system to an effective Zeno regime by keeping
the dissipative couplings with the environment as small as
possible.

In particular, we consider two XY Z Heisenberg spins 1/2
interacting with exchange anisotropies J = (Jy, J,, J;) and
coupled to a dissipative polarization bath through one of the
two spins only (see Fig. 1 for a scheme and Refs. [19-22]
for experimental realizations of a spin chain as well as of a
polarization bath). The parameter space is three dimensional
and consists, without loss of generality, of the two parameters,
y =J4/Jx, A =J;/J; (ie., we work in units of J, = 1), for
the Hamiltonian and one parameter, I', fixing the strength of
the dissipative coupling to the bath. We take advantage of a Z,
symmetry to block diagonalize the Liouvillian superoperator
into two blocks, one of which is independent of A.

Using this symmetry, we derive polynomial equations that
describe all the LEPMs. We show that, by restricting only to
real values of the parameters, for the A-independent block,
LEPMs reduce to two planes, ' = 8 and I' = 8y, while for
the other block, they exhibit more intricate topologies with
a number of sheets (branches) varying between one and six,
depending on parameter values.

Quite remarkably, from the intersection curves of some
of these surfaces, it is possible to derive a phase diagram
in the (y, A) plane for effective Zeno transitions occurring
at small dissipation. Also notable is the fact that the fastest
relaxation to the nonequilibrium steady state (NESS) from an
initial perturbation occurs precisely at the LEPMs that lie at

©2025 American Physical Society
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FIG. 1. An open two-qubits system is schematized as two XYZ
Heisenberg spins 1/2 interacting via anisotropic exchange energies
of strength J = (J,, Jy, J;). The system is coupled to a polarization
dissipative bath (green box with a large arrow inside) only through
one of the two spins. The red and blue dashed lines represent the
Heisenberg exchange interaction between the two spins and the
coupling I" between the first spin and the bath, respectively. Small
spheres indicate the sites on which the spins are located.

the boundary with the effective Zeno regime. These results are
in agreement with a perturbative calculation that extrapolates
the strong Zeno regime to small dissipations.

Two-qubits model and Liouvillian symmetry. We consider
an open system of two qubits undergoing an anisotropic
exchange interaction of strength (1, y, A) in the (x,y, z) di-
rections, respectively, and a Markovian dissipation of strength
I' acting only on qubit 1. The reduced density matrix p of
the system evolves in time according to the Lindblad master
equation

9
a_’; = Lp = —ilH, pl + T(LpL" — YL Lp + pL'L)), (1)

with jump operator L = ot ® b, I, being the n x n identity
matrix, and Hamiltonian

H=0"Qc"+y0"®c”+ Ac* Q" 2)

Asusual, 0* = (o* + io”)/2, with o*, 07, o* being the Pauli
matrices. Besides J, = 1, we work also in units of 7 = 1 so
that in Eq. (1) we have ¢ = t,J;/fi and I' = T'pp/i/Jy, where
tpnh and I'py are the physical time and the physical dissipa-
tion strength obtained for the effective values of 7% and J,.
In present units the parameters y, A, I' as well as the time
t and the operators H and £ are dimensionless. Note also
that H = H(y, A) and £ = L(y, A, T"). For H = 0, the dis-
sipative term proportional to I would result in relaxation of
the first spin into the fully polarized state in the z direction,
namely | 1)(1 |, where o%| 1) = | 1), with a relaxation time
of order 1/T". We will find the solution of Eq. (1) by solving
the associated eigenvalue problem Lo = Lo in vector form
[23] vec(Lp) = Lyecvec(p) = A vec(p). The corresponding
vectorized Liouvillian is given by the 16 x 16 matrix

Lyec = _iH®I4+iI4®HT+ F(L@L* —
- sl ® @D 3)

L)L

Both the Hamiltonian H and the Lindblad operator L com-
mute with the operator ¥; = 0* ® o, namely,

[X,,H]=0, [X,L]=0. “)

These relations can be used to block-diagonalize the vec-
torized Liouvillian L. as follows. Introduce the matrices
01 = (s + =, ® X.) which satisfy

Q++Q— 2116, [Q:ta Lvec] 207
Q:EQ? =0, Qicvech: =0. (5)

From these relations we have Ly.. = £, + £_, where L1 =
0+ LyecQ+ are matrices of rank 8 satisfying £, L+ = 0. The
block diagonalization of the vectorized Liouvillian is then
achieved as

B (=, 0
ﬁvec—2+@2——<o 2_), (©)

where X, are 8 x 8 diagonal blocks, obtained from L, =0
by eliminating the eight null rows and columns present in
these matrices [see Supplemental Material (SM) [24] for ex-
plicit matrix elements].

Liowvillian spectrum and LEPMs. The full Liouvillian
spectrum can be obtained by diagonalizing the blocks X
separately. Since the parameter A appears only in the lower
diagonal block ¥_ SM [24], the block diagonalization allows
to separate the A-dependent and A-independent parts of the
spectrum into two orthogonal spaces.

The secular equation for the eigenvalues of the block X is
given by A(I" + A)(T + 20)*A(y,T) =0, where A(y,T) is
the quartic polynomial in A

5
Aly, D)= A4 +2I0° + [8(1 +yH+ Zrﬂﬁ

F3
+ |:8(1 + 9y + T]X +2[8(1 + y*) +T7?
+ 732 - 16)].

Thus, the eight A-independent eigenvalues of X are

r r r 2
smy=lor, LT T 2
2 2 2 4

X \/F2—32(1+y2) + /(T2 — 64)(I'2— 647/2)}.
(7N

From Eq. (7) we see that these eigenvalues always have
branching points at two different values of |I'|, namely,
'l =8 and |I'| = 8|y|. Apart from these, A(y,I") has no
other singular points. The remaining eight A-dependent
eigenvalues of the block X_ are given by (see SM [24] for
details)

where §; = &;(y, A, I') are the roots of the quartic polynomial
Calt 83+ 2 eyl ¢, =0, 9

with coefficients c,, ¢, ., ¢4, ., Which depend on y, A, T,
given in SM [24]. The branching points of the ¥_ eigenvalues
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FIG. 2. Real (top panel) and imaginary (bottom panel) parts of
the eigenvalues A of the Liouvillian operator (3) vs I'. Red and
blue lines refer to eigenvalues of the ¥, and X_ blocks of L.,
respectively. LEPs coincide with the eigenvalue branching points and
correspond to broken/resumed symmetries (change of eigenvalue
degeneracies). Dashed lines denote perturbative extrapolations of
the eigenvalues from the strong, I' > I';, Zeno regime, to the low
dissipation Zeno regime, I' &~ I',, with [, given in (11). Note the
logarithmic horizontal scale and the rescaling of Re A by I" operated
in the top panel. Parameters are fixed as y = 0.6, A = 0.4, corre-
sponding to point b in the bottom panel of Fig. 4.

are obtained by equating to zero the discriminant of the poly-
nomial in Eq. (9), thus leading to the following eight degree
polynomial equation in the Z = I'? variable

8
Za,-(x, Y)Z! =0, (10)

i=0

with coefficients g; that are polynomials in ¥ = A? with co-
efficients which are polynomials in X = y? SM [24].

We stress that the equations determining the branching
points of both the ¥, and ¥_ eigenvalues depend on the
squares of the parameters y, A, I'. It follows that our results
are invariant with respect to a change of sign of each one of
these parameters. Hereafter, for simplicity, we will assume
that y, A, I" are all positive [25]. Depending on the values
of the parameters y and A, we have LEPs, corresponding to
branching points in Re A(I") and ImA(I") atupto 2+ 6 =8
different values of I'. An example with LEPs at 2 + 5 different
values of I" is shown in Fig. 2, and other examples are given
in SM [24]. In general, at an EP the eigenvalue coalescence
goes along with an eigenvector coalescence [26], which means
nondiagonalizability of the Liouvillian at any LEP. In SM [24]
we provide analytic expressions of the Liouvillian eigenvec-
tors on various LEPMs explicitly showing the characteristic
Jordan block decomposition of X .

FIG. 3. Two-dimensional LEP manifolds of the two-qubits open
system (1) in the three-dimensional parameter space {y, A, I'}. Only
the LEP manifolds originating from the A-dependent block ¥_ of
the Liouvillian are shown here.

In the three-dimensional space of parameters y, A, I' the
values of I' for which LEPs are found form two-dimensional
manifolds I'(y, A). The LEP manifolds originating from the
A-dependent block X_ of the Liouvillian are shown in Fig. 3.
Due to the divergence of some manifolds in the limit A — 0
(see later), the plot is limited to A > 0.05. The two manifolds
originating from the A-independent block X, of the Liouvil-
lian, not shown in Fig. 3, correspond to the straight planes
I'=8and ' = 8§|y]|.

Aiming at Zeno limit applications, we examine the location
of the LEPs with the largest I" value. Denoting by I' gp,; the
I' coordinates of the branching points in the (I', A;) plane
(see Fig. 2), we define I';; as the I value beyond which all
eigenvalues are analytical:

Ler(y, A) = supTigp ;. (11)
j

The behavior of I';(y, A) is shown in Fig. 4 by a bare three-
dimensional plot in the top panel and a (y, A) diagram in the
bottom panel. Remarkably, the (y, A) plane is divided into
two regions by a solid red boundary line (given parametrically
in SM [24]). The region above this line is further split by the
dashed line y = 1 into two parts: the gray region y < 1 where
' = 8, and the green region y > 1 where I'., = 8y. In the
blue region below the solid red line, I'.; corresponds to LEPs
arising from eigenvalues of ¥_ and depends on both y and
A. In this region I';; increases as A is decreased, and diverges
[see Eq. (14)] as A — 0, except at y = 1; the same holds for
y — 0. In contrast, in the gray and green regions of the phase
diagram, no singularities occur and the dynamics becomes
fully analytic. This analyticity allows for an expansion in
1/T", leading to an effective near-Zeno dynamics, as explained
below.

Relaxation times near and on LEPMs. Interestingly, we find
that in the region of parameter space characterized by ['¢; = 8
(see Fig. 4) the fastest relaxation from an initial perturbed state
to the exact NESS given in SM [24] is achieved on the ' = §
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FIG. 4. Top panel: Behavior of I'.,(y, A), light-blue surface with
a mesh, for A > 0.05. Within the region delimited by the red con-
tinuous line this surface coincides with the straight planes ', =
8 (displayed in gray) and I'; = 8y (displayed in green). Bottom
panel: Two-dimensional diagram of I'¢;(y, A). The detailed branch-
ing point structure of the Liouvillian eigenvalues at the point labeled
b is shown in Fig. 2. The same information at points a, ¢, and d
is provided in SM [24]. In SM [24] we also show the sections of
(v, A) at the planes A = 0.1, 0.3, and 0.7 whose projections are
indicated here by tiny solid lines.

LEPM. To show this we perform instantaneous quenches of
the parameter y from y; to y; on different constant-I" planes,
keeping A fixed. The quench is implemented by setting the
initial condition as p; = pngss(¥i, I'), the exact NESS [see
Eq. (S13) in SM [24]] corresponding to y;, for the time evo-
lution governed by Eq. (1) with £ corresponding to yy, i.e.,
L = L(yf, A, T'). To characterize the relaxation dynamics, we
compute the distance between p(f) and pness(yy), and plot it
as a function of time. The results are shown in Fig. 5.

From the left panel, we observe that the relaxation time
increases above I' = 8. This slower relaxation is due to the
onset of the quantum Zeno regime where the effective dis-
sipation strength starts to decrease with I" [see Eq. (12)].
The relaxation curves in this regime are smooth and uniform,
as expected due to the absence of LEPMs above I' = 8. In
contrast, below the LEPM plane, right panel, the relaxation
curves develop undulations or cusps, which we attribute to
interference with other LEPM branches present below the
I' = 8 plane. Just below the LEPM plane, the relaxation time
decreases slightly before rapidly increasing as I' is reduced

d) d()
0.01 0.100
0.001
1074
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1077
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10~
10710
10711
10—12 . . . . . . . . .
0 2 4 6 8 10 t 0 2 4 6 8 10 t

FIG. 5. Distance d(t) = ||p(t) — pness(¥7)ll, vs time ¢ for rapid
quenches in the parameter y, from y; = 0.4 to y, = 0.8, on different
constant-I" planes as indicated in the legend, for arbitrary A. The left
panel shows data for planes above the I' = 8§ LEPM, while the right
panel data for planes below it.

further. A similar behavior is observed when I'c; = 8y (see
Fig. S5 in SM [24]).

Effective near Zeno dynamics. If the dissipation is strong,
and in the absence of branching points, i.e., for I' > I, all
Liouvillian eigenvalues can be calculated explicitly using a
perturbative Dyson series [27]. The complete set of 16 Liou-
villian eigenvalues up to order 1/I" included is given by

Moo = {0, B, LS S ZAi},

r’ T

r © I 2. T 8 .
PYYSD B o e Nl A N1

2”27 271 27T

Y+ Y+ .
A a:{—r,—r L —iZA},
2 Ry T !

where y. = 4(1 £ y?). The eigenvalues are labeled by a
stripe index, numbers 0, 1, 2, and a mode index, Greek letters
o ranging from 1 to 4 for stripes 0 and 2 and from 1 to
8 for stripe 1 (see Ref. [27]). The modes Xy, contain the
NESS, corresponding to the null eigenvalue, and the slowest
relaxation modes, which determine the late time evolution. On
the other hand, the modes A; 4, A2 o have large negative real
parts and thus correspond to the rapid relaxation of the first
spin towards the target state, namely, the qubit fully polarized
along the z axis. The above asymptotic expressions for Liou-
villian eigenvalues are shown in Fig. 2 by dashed lines.

The theory also predicts [27] explicit analytic expressions
for the Liouvillian eigenvectors as well as an effective near
Zeno dynamics. Namely, while the first spin relaxes towards
the target state | 1)(1 | in a time t = O(1/T"), the second
spin has a slower dynamics described by a reduced effective
Lindblad equation [28]. In fact, for # > 1/T" up to an error
O(1/T'?) we have p(t) = | 1) (1 | ® R(t) with R(¢) satisfying

% = —i[hp, R] + %(ZRZ* — WI'LR+RL'L)), (12)
where hp = Ac® and L = 4(o* + iyo”). Note that for R(z),
i.e., for the density matrix of the spin not directly affected by
the dissipation, the effective dissipation strength is 1/I" and
not I' as in Eq. (1) for p(z). The near Zeno limit NESS is
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found straightforwardly as the time-independent solution of
Eq. (12). This yields

(V+1)2 O 1
2(y2+1
Pzeno = I1) (1] ® ( "0 ge ) + 0(;)- (13)

2(y2+1)

To apply the near Zeno limit predictions, we must ensure
that the 1/I" Dyson perturbative expansion is convergent.
Convergent series, which yield a unique sum, fail across
branching points. Therefore, the 1/I" Taylor series for each
Liouvillian eigenvalue A ; is expected to have a convergence
radius of 1/T' gp(A;), where I' gp(A ;) is the largest value of I
at which a branching point occurs (see Fig. 2). Beyond the
critical point I';; defined above, all Liouvillian eigenvalues
become analytic. On the (y, A) plane, I, is finite except near
A =0 and y = 0, where singularities appear. We find that
[ (A) for A — 0% behaves as

3
v~y D (14)

2(y° = 1)
A A

s

(A — 07) = max (‘

This singularity originates from the fact that at A = 0 the
spectrum of the dissipation projected Hamiltonian hp = Ac*
becomes degenerate.

Conclusions. We analytically investigated the Liouvil-
lian spectrum of two-qubits systems and identified regions
of the LEPM where it is possible to achieve an ef-
fective Zeno regime at a minimal, I'., dissipation. We
provided an analytic description of the temporal dynam-
ics which applies in this regime and showed that the
fastest relaxation time to the NESS occurs precisely on
the LEPMs characterizing the effective Zeno regime. The
rich LEPM structure uncovered here could be checked ex-
perimentally by quantum process tomography, as done in
Ref. [29].
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This Supplemental Material contains eight sections organized as follows. In section A we describe the block structure
¥1,X_ of the Liouvillian. The polynomial equation whose roots provide the LEPs arising from ¥_ is detailed in
section B. In C we show some two-dimensional sections of the three-dimensional LEPMs given in Fig. 3 as well as of
Ter(v,A) given in Fig. 4. The bifurcation diagrams at the four points indicated in Fig. 4 of the main text is shown in
section D. In section E we explain how the boundary red line shown in Fig. 4 is obtained while in section F we make
explicit the non-diagonalizability of the Liouvillian on the LEPMs. In section G we compare relaxation times to the
NESS achieved on and out the I' = 8y LEPM. Finally, in section G we discuss some subtle details regarding quantum
Zeno regime which did not appear in the main text.

A. Block diagonalization of the Liouvillian

The Z; symmetry discussed in the main text allows to put the Liouvillian in the form

= (% o) (-1

with the two 8 x 8 diagonal-blocks, ¥, related to the Z; symmetry, achieved by eliminating the eight null rows
and columns from the corresponding 16 x 16 matrices XL = Uy - L - U+. In Fig. S-1 we show the block structure of
the Liouvillian £ obtained directly from Eq. (3) (left panel) and the one obtained after the Z; block diagonalization
discussed in the main text (right panel).
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FIG. S-1: Liouvillian of the dissipative two qubit system as obtained from Eq. 3 (left panel) and its block diagonal form
(right panel) acquired after operating the U+ transformation. Colors are associated to different matrix elements, white regions
corresponding to zeros (for other color correspondences see Egs. S-3, S-4).

The blocks ¥4 can be further rearranged in the form



(A C (B C
Z+_<C A2>’ E-‘(c BQ> (8-2)
with C a 4 x 4 matrix whose single nonzero element is C; o =TI', and A, A2 and B;, By are given by:
0 0 —i(l—7) i(1l-7)
A — 0 -I' il =) —i(l=9)
! —i(l1=7) i(l=7) —3 0 ’
i(l—v) —i(l—=v) 0 -5
(S-3)
0 0 i(y+1) —i(y+1)
e 0 T —i(y+1) i(y+1)
27 iy +1) —i(y+1) -L 0 ’
—i(y+1) i(y+1) 0 —
2iA 0 —i(y+1) i(1—7)
3 0 T+ 2%A i(1—v) —i(y+1)
! —i(y+1) i(l—v) —-LT+2A 0 ’
i(1—7) —i(y+1) 0 -L+2iA
(S-4)
—2iA 0 —i(1—7) i(y+1)
B 0 - —2A i(y+1) —i(1—7)
2T -l -y i(y+1) L -2iA 0
i(y+1) —i(1—7) 0 -L—2iA

Note that the parameter A appears only in the block ¥ _.
From the above expressions it is easy to find that the secular equation for the eigenvalues of the block ¥, provides

AT 4+ M) (T +2))2A(y,T) = 0, (S-5)

where A(v,T) is the quartic polynomial in A

3
A(y,T) = A 4 2I\3 + {8(1 +%) + ZFQ} A [8(1 + )T + lﬂ A+2[8(1+4")+I2+~%I%-16)]. (S-6)

We conclude that the eight A-independent eigenvalues of 3, are

r r T

Ay, T) = {07 T -5, -5 5% g\/m —32(1 +92) £ /(I'2 — 64)(I'2 — 6472)} . (S-7)

On the other hand, the eight A-dependent eigenvalues of the block ¥_ are given by

)\:%(—Fj:\/FQJr&), i=1,....4, (S-8)

where & = &;(7, A, T) are the roots of the quartic polynomial c¢,&* + €3 + &2 + c4€ + c. = 0 with coefficients

cq =1,

cp = 2I% 4+ 25(1 4+ ~%) + 26A2,

ce = 2°T% (2(1 +92) + 5A2) + T + 2% (29 + (1 +72)2 + 2(1 + ) A% + 6AY)

ca=2° (8% (1 4+7°)® + 69 + 14A") + T (1 ++°) + 5A?) (S-9)
+25 (V1 + ) + (1 +97)? —69%) A% — (1 + 7)) A% +2A5))

Co = 2TOA% 216 (2 — (144%)A% + AY) 4 25T (492 — 2(1 +72)A% + 9AY)
+2T% (292(1 + %) + (1 +9°) — 69%) A% = 4(1 + %) A" + 6A%) .



By using Mathematica, we find

&1 = —cp/(4ca) —pa/2 — V/ps — pe/2,
& = —cp/(4ca) = Pa/2 + VD5 — D6 /2, (S-10)
& = —cy/(dea) +pa/2 = Vb5 T P6/2,
§a = —cp/(4ca) — pa/2 4+ /D5 + pe/2,
where

p1 =26} — 9epceca + 2Tcach + 27¢)ce — T2¢qcCcCe,

Po = Pp1 + \/p% — 4(0% — 3Cde + 120(106)37

ps = (c2 — 3cpeq + 12¢4¢) /(3cq W) T W/(?)C,J, (S-11)

ps =/ /(4e2) — 2c./ (3ca) + s,
b5 = Cz/(2cz) - 4CC/(BCG) — Ps,
po = (—c} /el + depea/c2 — Sca/ca) /(4pr).

Note that with {/p2/2 we mean the real-valued cube root of pa/2.

B. Polynomial equation for the LEP manifolds arising from >_

All Liouvillian exceptional points (LEPs) in the (y,A,T') parameter space of the ¥_ block are determined by
requiring that the discriminant of the polynomial in Eq. (9) vanishes. This condition yields the following degree-eight
polynomial equation in the Z = I'? variable

8
> ai(X,Y)Z" =0, (S-12)

=0
with coefficients a; given by

ap =22 (X — 1)*XY?(X? + (1 —4Y)? — 2X (1 +4Y))?,

ap = —22T(X — 1)8XY +2°1(X — )S(X + )XY? +231(X — 1)*(1 + 30X + X?)XV?

—2%(X —1)°X(X +1)(3+2X +3X%)Y* +25(X - 1)2X(5+6X +5X?)Y° — 28X (X — 1)}(X +1)YS,

ag =22 (=1 + X)BX +2%0(—1+ X)°(1 + X)(1 — 34X + X?)Y — 223(—1 + X)*(1 + 24X +238X? +24X3 + X*)y?
+ 22 (=1 + X)?(1 4 X)(1 + 44X — 602X + 44X% + X*)Y? + 229X (27 + 36X + 2X? 4 36X° + 27X *)Y*
—2BX(1+X)(5—-2X +5X2)Y° + 233X (342X +3X?)Y5,

az = —2"(—1+X)°(1 + X)(1 — 18X + X?) + 2!8(—1 + X)*(1 + 4X + 54X? +4X3 + XY
+ 221+ X) (=14 X)*(1 + 10X + 42X + 10X> + X*)Y? — 229(3 + 22X — 883X?% — 332X3
—883X* +22X° +3X%)Y? — 226X (1 + X)(21 4 22X + 21X%)YV* + 22X (5 + 6X +5X?)Y° — 20X (1 + X)YF,

ag = —28(=14+ X)*(15 — 60X —166X2 — 60X3 +15X*) — 215(—1 + X)?(1 + X)(1 + 4X —42X? +4X3 + XY
—216(3 442X — 3X? — 340X° — 3X* +42X° + 3X)V? 4 21%(1 + X)(3 — 156X — 974X? — 156 X° 4+ 3X*4)Y?
+ 221X (39 + 74X 4+ 39X%)Y* — 5 x 22X (1 + X)V® + 2 XY,

as = —25(34+ X —21X% + 17X3 + 17X* — 21X° + XO + 3X7) — 2% (=1 + X)?(1 + 68X + 246X? + 68X° + X*)Y
+ 281+ X)(1 - 6X + X3)(1+ 14X + X?)Y? - 212(1 — 236X — 682X2 — 236X° + X*)y?3
—9x 28X (14 X)Y* +220XY5,

ag =22(1 —2X — X? +4X? - X* —2X° + XO) + 2* (-1 + X)?(1 + X)(5+ 38X + 5X?)Y
—27(1 — 28X — 138X2% — 28X3 + X1 Y2 — 7 x 212X (1 + X))V 4 3 x 213 XY*,

= —(14+4X —10X2 +4X° + XY - 2"X (1 + X)Y? + 28X Y3,



ag = XY?2.

It is worth noting the multi-polynomial structure of Eq. (S-1), where the coefficients a; are polynomials in Y = A2
whose coefficients are, in turn, polynomials in X = 2. This nested polynomial structure reveals the complexity of
the LEPMs in the parameter space.

C. Two-dimensional cuts of the LEP manifolds

In Fig. S-2 we show the two-dimensional sections at A = 0.8 (left panel) and v = 1.5 (right panel) of the three-
dimensional LEP manifolds reported in Fig. 3. The solid blue lines are the sections of the A-dependent LEPs arising
from ¥ _ while the dashed lines indicates the LEPs I' = 8 and I' = 8y from the A-independent Liouvillian block 3 .

FIG. S-2: Two-dimensional sections at A = 0.8 (left panel) and v = 1.5 (right panel) of the manifolds shown in Fig. 3. The
dashed straight lines indicate the intersections with the I' = 8 and I" = 8y planes (not shown in Fig. 3).

In Fig. S-3 we provide the two-dimensional sections at A = 0.1, 03, and 0.7 of T'.,-(y, A) given in Fig. 4. Also in this
case, the dashed lines are the sections of the planes I' = 8 and I' = 8y which partially coincide with the A-dependent
sections shown by solid lines.

D. Bifurcation diagrams at points a,b,c,d in Fig. 4 of the main text

In Fig. S-4 we depict the bifurcation diagrams obtained for the rescaled real part of all Liouvillian eigenvalues (from
> _ as well as from X ) as a function of I for parameter values corresponding to points a, b, ¢, d of Fig. 4. In cases a,d
the largest bifurcation belongs to the A-dependent Liouvillian eigenvalues (red curves), while in cases b,c it belongs
to the A-independent Liouvillian eigenvalues (blue curves), in full agreement with the analysis done in the main text,
see Fig. 4.
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FIG. S-3: Two-dimensional sections at A = 0.1, 03, and 0.7 of ¢ (7, A) of Fig. 4. The dashed lines are the sections of the
planes I' =8 and I' = 8.

0
r (b
— — E
= = _5
Q Q
& g2
_1 Il Il Il Il Il I}
0 5 10 15 20 25 30
r r
0 0
r © r (d)
— . — F
=~ _5 < -5
Q Q
2 2
_1 Il Il Il Il Il I} _1 Il Il Il Il Il I}
0 5 10 15 20 25 30 0 5 10 15 20 25 30
r r

FIG. S-4: Rescaled real parts of the Liouvillian eigenvalues versus I' for parameter values (y,A) = (0.3,0.4), (0.6,0.4),
(1.2,0.4), and (1.6,0.4) corresponding, respectively, to the points a,b,c, and d depicted in Fig. 4 of the main text. Blue and
red dots refer to A-independent and A-dependent eigenvalues, respectively. Notice that for the A-independent part of the
spectrum the first and second left most branching points occur at I' = min(8, 8y) and at I = max(8, 8v), respectively.

E. Obtaining the boundary lines in Fig. 4

Here we explain how we obtain the red boundary lines, shown in both panels of Fig. 4, separating the regions where
T'c, corresponds to a LEP arising from an eigenvalue of ¥, or ¥_.

To determine the left part of the curve, we solve numerically Eq. (S-1) for A fixing the value of I' = 8 and varying
v in the interval 0 < v < 1. This yields two branches of solutions Ay (y) > 0 and Azr(y) > Air(y). The upper
branch Asry(y) gives the red line in Fig. 4 in the interval 0 <y < 1.



-8 -4 —4 0 2(=2+ /1 —+2) 2(—24+ /1 —192) —2(24 /1 —1~2) —2(24 /1 —1~2)
1 0 0 i(1+7) (17—27472) _i(4447+3V1—~249V1-12) 0 _i(=4=4v43V1—7247V1-92) 0
(=142 (147 (2+V1-92) 1+ (-2+V1-2)
1 0 0 Li(14) i(=V1-7249V1-+2) 0 i(=V1-7249V1-+2) 0
4 (17 2+V1-42) (1) (—2+V1-72)
o o 1 -2 ——= 0 e o
— 14y /1—~2 /1-~2
0 0 1 _—l—y Nt S e A 0 _ 1y 0
— 1+ /1—~2 V1—~2
1 0 0 i(17+2v+~2) 2iV/1-92 | i(47) 0 i(=3-274+2441/1-+2) 0
401+7) 4y 241/1—~2 (147)(—24V1-~2)
1 1.1 i(14~) __i(d4y)
0 0 711 4+7) /T 0 Yy 0
0 1 0 -1 -1 0 -1 0
0 1 0 1 1 0 1 0

TABLE I: Eigenvalues (top row) and eigenvectors (corresponding underlying columns) of the ¥4 diagonal block of the Liouvillian
on the LEPM {~,A, T = 8}.

0 —8y —dvy —dy 2(vV? —1-2y) 2(vV7? —1-2v) —2(v/72 = 1+27) —2(v/72 =1+ 27)
A4 a=29+179%) 0 _ilvtay? e/ —1492 48y —1447) 0 iy 4492 V14234~ 1442) 0
-1+ A+ @y +V=1++2) A+ @y =V-1+72)
i(14y) 1 0 0 _ iV 149249V —1442) 0 _ iV 149249V —1442) 0
4"* (147 (2v+V = 14+2) (47 (=27+V-14792)
14y 1—v —1+y
- 0 0 1 Bt 0 Bt 0
_—l=n 1 __—l4y _ 1=y
1t~ 0 0 /—14+~2 0 V142 0
i(14274+1742) 1 0 0 2iV/—1492 | (4 0 _2iy/—1442 i(145) 0
4y (1+7) 1+ 2y 4t/ — 142 I+ 2yt —1472
i(1+v) 1 0 0 i(1+~) 0 _ i(1+~) 0
e 2y+v/—14+2 —2y4+y/—1+42
-1 0 1 0 -1 0 -1 0
1 0 1 0 1 0 1 0

TABLE II: As in Table I on the LEPM {v, A, T" = 8v}.

Likewise, in the region 1 < v we solve Eq. (S-1) for A, fixing the value of I' = 8y and varying v > 1. Also in this
case we obtain two branches of solutions Ajr(y) > 0 and Azg(y) > A1r(y). The upper branch Asr(7) gives the red
line in Fig. 4 in the region v > 1.

F. Non-diagonalizability of the Liouvillian on LEPMs

In this section we show that on the LEPMs the Liouvillian matrix is non-diagonalizable. The analysis is made on
the two diagonal blocks Y1, separately. For the block ¥ the LEPMs are A independent, they are the points of the
two planes I' = 8 and I' = 8. Eigenvalues and eigenvectors of ¥, at these points are reported in Table I and II,
respectively. In both cases, we note the presence of the null eigenvalue in the spectrum, meaning that the NESS of
the system, obtained from the corresponding eigenvector, belongs to the block 3.

From Tables T and II it is evident that the coalescence of two pairs of complex eigenvalues (5th-6th and 7th-8th
eigenvalues in both tables) is associated to the appearance of two null eigenvectors in the corresponding eigenspace.
In fact, the dimension of the eigenspace is reduced as in the general case of linearly dependent eigenvectors. In other
words, the ¥ matrix becomes non-diagonalizable and its Jordan decomposition provides the typical Jordan blocks
shown in Table III.



-8 0 0 0 O 0 0 0 0o 0 0 0 o 0 0 0
0 -4 0 0 O 0 0 0 0 -8y O 0 o 0 0 0
0O 0 —-40 O 0 0 0 0O 0 -4y O o 0 0 o0
S (v, AT = 8) = 0O 0 0 0 O 0 0 0 S (v, AT = 8y) = 0o 0 0O —4y 0 0O 0 O
0 0 0 Ojlay 1 0 0 0o 0 0 0 |8+ 1 0o 0
0 0 0 0[O0 ay| O 0 0o 0 0 0 B+ 0 O
0O 0 0 0 O 0 |a_ 1 0o 0 0 0 0o 0 |B- 1
0O 0 0 0 O 0 0 o_ 0o 0 0 0 0O 0|0 pg_

TABLE III: Jordan block form of ¥4 on the LEPMs relative to Table I (left matrix) and Table II (right matrix). We put
ar =—4+2,/1—(8y)%2 and B+ = -4y +2/7% — 1.

—6 — 2iA —6 — 2iA —2 — 2iA —2 — %A —6 + 2iA —6 + 2iA —2 4+ %A —2 4+ 2A
—2A+44 .
et 0 0 0 0 0 i 0
0 0 0 0 (A +4)? 0 0 0
1 _
L. 0 0 0 0 0 1 0
0 0 0 0 —i(A +14)? 0 0 0
0 0 —i 0 2A 4 0 0 0
i 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0

TABLE IV: Eigenvalues and eigenvectors of the diagonal block ¥_, arranged as in Table I, on the EP line {y =1,A,I" = 8}.

Similar results are obtained for the Y _ block of the Liouvillian. However, in the case of this A-dependent block
the LEPMs are much more involved with complicated topology and several sheets. Taking only positive real values
for v, A and restricting to only real positive solutions of the polynomial equation (S-1), one can show that LEPM can
have a number of sheets (branches) that varies from 1 to 6 depending on the values of ~, A.

Analytical expressions for the Jordan block decomposition of X_, except for a few simple cases (see below), are
impossible to derive and one must recourse to numerical calculations. Using numerical solutions of Eq. (S-1) one finds
for generic points on a LEPM, results qualitatively similar to those obtained for the block ¥ with the difference that
the NESS does not belong to the manifold and the number of pairs of complex coalescing eigenvalues can be maximal,
i.e., as large as 4, depending on 7, A values.

A particularly simple case in which the coalescence of the eigenvalues and eigenvectors of the ¥_ block can be
checked analytically is obtained for v = 1. In this case the coefficients of the polynomial appearing in Eq. (S-1)
drastically simplify and it admits the real positive root I' = 8 for all values of A. The corresponding LEPM then
becomes the EP line {y =1, A,T = 8}. Eigenvalues and eigenvectors of the X _ block along this line are reported in
Table IV and the corresponding Jordan block decomposition is given in Table V.

—8 — 21 1 0 0 0 0 0 0
0 —8 — 21 0 0 0 0 0 0
0 0 —6 + 2¢ 1 0 0 0 0
S (y=1,AT=8) = 0 0 0 —6+ 23 0 0 0 0
0 0 0 0 —4 — 24 1 0 0
0 0 0 0 0 —4 -2 0 0
0 0 0 0 0 0 —2+2¢ 1
0 0 0 0 0 0 0 —2 421

TABLE V: Jordan block form of ¥_ on the LEPMs {y =1,A,T = 8}.
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FIG. S-5: Distance d(t) = ||p(t) — pness(vs)||, versus time ¢ for rapid quenches in the parameter v, from v; = 1.1 to vy = 1.6,
on different I" = n~y planes as indicated in the legend, for arbitrary A. The left panel shows data for planes above the I' = 8y
LEPM, while the right panel data for planes below it.

G. Relaxation times near and on the I' = 8y LEPM.

In the following, we show that in the region v > 1 of the parameter space that characterizes the effective Zeno
regime with I'.. = 87, the fastest relaxation from an initial perturbed state to the exact NESS is achieved on the
I' = 8y LEPM. In this case, the quench involves two parameters and is done from 7;,I'; = 8v; to v¢,I'f = 8y¢. The
results obtained are depicted in Fig. S-5 from which we see that the fastest relaxation is achieved on the I' = 8y plane.

H. Convergence to NESS and characteristic dissipation value ['cj.

The exact NESS of the two-qubit problem (when it is unique) can be evaluated analytically and is given by

(v+1)? (47° =8v+T°+4) 0 0 i(y=1)(y+1)°T
2(871+~2(T2—16)+I2+8) T8y HA2(T2—-16)+1248
0 (D (448742 H4)  i(y—1)* ()T 0
I = 287 7 2(T2—16)+12+48) B8yA+~2(12—16)+12+8 S-13
prvess(I) 0 ~ i 1Ganr 2(-1)2(1+1)’ 0 (8-13)
8YEIFAZ(T2—16)+12+8 B8y f~2(12—16)+12+8
i(y=1)(v+1)°T 0 0 2(y=1)%(y+1)*
8v4+~2(I'2—-16)+1248 8v4+~2(I'2—-16)+1248
Note that the NESS is A-independent. In the quantum Zeno limit we have
(’Yng)Q 0
PZeno = FILH;O pNESS(F) = |T> <T| ® 207+ (y—1)2 s (8-14)
0 25=D

in accordance with Eq. (13) obtained in the main text with the help of the reduced Zeno dynamics [28]. We observe
that for large I’

() — x(nss(T) = O () + - (5-15)

so that this quantity can serve as a measure of the distance to the Zeno NESS for fixed values of the dissipation I'.
Using Eq. (S-3) we introduce a characteristic dissipation strength T'.;, needed to reach the Zeno NESS, as

4710 4 3678 — 40~% — 407* 4 3672 + 4
2 T 2 2 2 _
Fch(’Y) - FIL)II;OF [tr(pZeno) - tI‘(pNESS (F))] - ,78 + 4,}/6 + 6’}/4 + 472 +1 : (8_16)




First of all, note that I'.j, is independent of A and also it does not have any singularities for v — 0. This might seem
in contradiction to what is stated in Eq. (14). To resolve the issue, we remark that the effective dynamics (12) only
concerns the relaxation of the diagonal elements of the reduced density matrix, i.e., those elements which in the limit
I' — oo become the NESS eigenvalues. Expression (S-4) thus gives an estimate of the relaxation of a part of the
system only, while for the relaxation of the non-diagonal part of the reduced density matrix p the full system (1) still
needs to be considered.



