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Abstract
We find that the density operator of the nonequilibrium steady state (NESS) of
XXZ spin chains with strong ‘sink and source’ boundary dissipation, can
be described in terms of quasiparticles, with renormalized—dissipatively
dressed—dispersion relation. The spectrum of the NESS is then fully accoun-
ted for by Bethe ansatz equations for an associated coherent system of these
quasiparticles. The dissipative dressing generates an extra singularity in the
dispersion relation, which significantly changes the NESS spectrum. In partic-
ular, it leads to a dissipation-assisted entropy reduction, due to the suppression
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in the NESS spectrum of plain wave-type Bethe states in favor of Bethe states
localized at the boundaries.

Keywords: non-equilibrium steady state, dissipative systems, Bethe ansatz,
XXZ spin chains, boundary driven integrable spin chains

1. Introduction

Integrable many-body systems play an important role in statistical mechanics. For instance,
it was the celebrated Onsager solution of the 2D Ising model [1] that has proved, for the first
time, that phase transitions are related to non-analyticity of the free energy functional, giving
rise to the theory of critical phenomena. Solution of Korteweg–deVries equation [2] has shown
that a nonlinear system can possess an infinite number of local conservation laws, which led
to a concept of nonlinear asymptotic Fourier transform [3] and to theory of stable nonlinear
excitations—solitons. Integrable quantummany-body systems serve as reference points and as
calibration tools for contemporary experiments in cold atoms [4, 5] and in quantum circuits [6].

One practical definition of integrability for isolated quantummany-body systems rests upon
the possibility of finding their spectra with computational effort growing slower than exponen-
tially in system size N. Indeed, finding specific solutions of the Bethe ansatz equations (BAEs)
for an integrable Hamiltonian typically requires only poly(N) computation steps, while the
dimension of the Hilbert space grows exponentially in N. This practical aspect of integrability
is in full accordance with the theoretical treatment of integrable quantum Hamiltonians, which
are centered around finding the BAEs for their spectra [7–9].

On the other hand, the situation with the same quantum systems in nonequilibrium, par-
ticularly for systems exposed to dissipation, is quite different. The central object for nonequi-
librium systems is the nonequilibrium steady state (NESS) which is a (often unique) fixed
point of time evolution. While, because of the discovery of the matrix product ansatz method
[10, 11], the k-point correlations in the NESS can be calculated in a polynomial time, find-
ing the NESS spectrum or even specific eigenvalues of nontrivial NESS has so far remained
accessible by direct diagonalization only, i.e. still requiring exponentially (with systems size)
growing effort.

Our aim is to present a method for finding the NESS spectrum of a famous quantum sys-
tem, the XXZ spin chain, attached to boundary dissipation of the ‘sink and source’ type, via a
Bethe Ansatz approach, that is, in polynomial time. This demonstrates a principal possibility
of extending the above mentioned standard integrability paradigm to a certain family of integ-
rable quantum systems in nonequilibrium. In this communication we present a mathematically
rigorous proof for our chosen ‘sink and source’ scenario figure 1, while for other examples,
where the validity of the same property is established numerically, we direct a reader to [12].

One remarkable feature of our NESS spectrum solution that should be mentioned before-
hand, is related to a concept of quasiparticles. Quasiparticles are fundamental constituents of
eigenstates of integrable coherent many-body systems: an energy Eα of any eigenstate |α⟩ is a
sum of individual energies of all quasiparticles it contains: Eα =

∑
j ϵ(ujα) where ujα is a set

of quasiparticles rapidities and ϵ(u) is a dispersion relation.
What we find is that the NESS spectrum {να}= {exp(−Ẽα)} can be written in the same

form Ẽα =
∑

j ϵ̃(ujα), where ujα is a set of admissible rapidities for some related integrable
coherent model, and ϵ̃(u) is a new effective dispersion relation characterizing ‘coherent’ qua-
siparticles ‘renormalized’ by the dissipation. Such a ‘survival’ of the intrinsically coherent
objects – quasiparticles—under the action of dissipation, cannot be expected a priori and is
very surprising.
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2. XXZ model with sink and source

Our aim is to find the spectrum of NESS of a XXZ spin chain, with boundary dissipation,
described by the Lindblad Master equation for the density matrix

∂ρ(Γ, t)
∂t

=−i [H,ρ] +Γ(DL1 [ρ] +DL2 [ρ]) (1)

H=
N∑
n=0

(
σxnσ

x
n+1 +σynσ

y
n+1 +∆σznσ

z
n+1

)
, (2)

L1 = σ−
0 , L2 = σ+

N+1, (3)

DL [ρ] = LρL† − 1
2

(
L†Lρ+ρL†L

)
. (4)

With the choice (3) the Lindblad dissipators DL1 and DL2 make the edge spins (spins at sites
0 and N+ 1, see figure 1) relax towards targeted states | ↓⟩, | ↑⟩, with typical relaxation time
τboundary = O(1/Γ). The matrix product Ansatz for NESS (but not for NESS spectrum!) is
formulated in [13]. Here we shall consider the so-called quantum Zeno (QZ) regime, where
τ boundary is much smaller than typical time needed for the bulk relaxation τboundary ≪ τbulk.
Then, fast relaxation of the edge spins constrains the reduced density matrix of (1) to an
approximately factorized form [14] ρ(Γ, t) = ρl⊗ ρ(Γ, t)⊗ ρr+O(1/Γ) for t≫ 1/Γ, where
ρ(Γ, t)≈ tr0,N+1ρ(t) is the reduced density matrix of interior spins. We are interested in com-
puting the spectrum {να} of the (unique) Zeno NESS,

ρNESS = lim
Γ→∞

lim
t→∞

ρ(Γ, t) =
∑
α

να|α⟩⟨α|. (5)

To this end, we establish three crucial properties:

(i) ρNESS commutes with the Hamiltonian

[ρNESS,HD] = 0, (6)

HD =
N−1∑
n=1

(
σxnσ

x
n+1 +σynσ

y
n+1 +∆σznσ

z
n+1

)
+∆(σzN−σz1) , (7)

(ii) να are given by stationary solution of an auxiliary Markov process

Γ
dνα
dt

=
∑
β ̸=α

wβανβ − να
∑
β ̸=α

wαβ , α= 1,2, . . . (8)

with rates

wβα = |⟨α|σ−
1 |β⟩|

2 + |⟨α|σ+
N |β⟩|

2, (9)

where |α⟩, |β⟩ are eigenstates of (7).
(iii) {να} satisfy the detailed balance condition

ναwαβ = νβwβα. (10)

Let us comment on all the properties (i), (ii), (iii).
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To obtain (i) we expand the time-independent steady state solution ρ(Γ) of (1) in powers
of 1/Γ, ρ(Γ) = ρ0 +Γ−1ρ1 +Γ−2ρ2 + . . . Substituting into (1) we obtain the recurrence
i [H,ρk] = (DL1 +DL2)[ρk+1], for k= 0,1, . . . For the consistency of the recurrence [H,ρk]must
have no overlap with the kernel of the operator (DL1 +DL2), equivalent to tr0,N+1[H,ρk] = 0. In
the leading order k= 0, a substitution of ρ0 = ρl⊗ ρNESS ⊗ ρr into tr0,N+1[H,ρ0] = 0 yields (6).
The Hamiltonian (6) is called a dissipation-projected Hamiltonian [14] and can alternatively
be obtained via a Dyson expansion.

To establish (ii) one writes down a Dyson expansion of the ρ(Γ, t) in (1) using 1/Γ as a
perturbation parameter. This leads to an effective Lindblad evolution of the internal spins, see
figure 1, of the form

∂ρ(Γ, t)
∂t

=−i [HD,ρ] +
1
Γ

(
Dσ−

1
[ρ] +Dσ+

N
[ρ]
)
+O

(
Γ−2

)
, (11)

containing a dominant coherent part with the Hamiltonian (7) and perturbative (of order 1/Γ)
Lindbladian dissipator. The latter gives rise to the auxiliary Markov process (8), (9). The pro-
cedure is explained in detail in [14, 15], and [12], so we shall omit it here.

Finally, the detailed balance (iii) equation (10) is a special property related to integrability
of (7) and it is proved a posteriori, see appendix B.

Our strategy is to use the integrability of the Hamiltonian (7) in order to calculate the
rates (9) and then the NESS spectrum via (10). Due to (6), ρNESS and HD in (7) can be diag-
onalized simultaneously.

The Hamiltonian (7) is treated in its more general version (for arbitrary longitudinal bound-
ary fields) in the pioneering paper of Sklyanin [16]. Due to U(1) invariance, (7) can be block-
diagonalized within blocks of fixed total magnetization

∑N
n=1σ

z
n. The eigenvalues of the block

with magnetization N− 2M are given by

Eα = (N− 1)∆+
M∑
j=1

ϵ(uj,α) , (12)

ϵ(u) =
−2sin2 γ

sinh
(
u+ iγ

2

)
sinh

(
u− iγ

2

) . (13)

where uj,α, j = 1, . . . ,M, are Bethe roots satisfying the set of BAE

u[−3]
j

u[+3]
j

(
u[+1]
j

u[−1]
j

)2N+1

=
M∏
k=1
k ̸=j

∏
σ=±1

(uj+σuk)
[+2]

(uj+σuk)
[−2]

, (14)

in which we defined u[k] = sinh(u+ i kγ/2), where cosγ =∆.
Using the Algebraic Bethe Ansatz machinery and some previous results [17] we are able

to calculate the rates wβα from (9),(10) and hence the NESS spectrum {να}. Details of the
proof are given in appendix A. Usually, finding correlation functions for open integrable spin
chains is a difficult task, and a result (if it exists) is expressed in terms of multiple integrals,
infinite products, etc., see e.g. [17–20]. In our case, we succeeded to obtain an elegant explicit
formula for the NESS spectrum, namely:

να = Aexp
(
−Ẽα

)
,

Ẽα =
∑
j

ϵ̃(uj,α) (15)
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Figure 1. Schematic picture of the dissipative setup. The boundary spins are fixed by dis-
sipation, while the internal spins follow an effective dynamics consisting of fast coher-
ent dynamics (7) and slow relaxation dynamics (8) towards the NESS. For our ‘sink and
source’ model (1) n⃗r = (0,0,1) and n⃗l =−n⃗r.

ϵ̃(u) = log

∣∣∣∣∣∣
sinh

(
u+ 3iγ

2

)
sinh

(
u− 3iγ

2

)
sinh

(
u+ iγ

2

)
sinh

(
u− iγ

2

)
∣∣∣∣∣∣ 1

= log |1− ϵ(u)∆|, ∆= cosγ, (16)

where A is a normalization constant, and Ẽα, ϵ̃(u) in (15), (16) are obvious dissipative analogs
of the Eα, ϵ(u) in (12), (13).

Tomake the analogy evenmore obvious, we compare two reduced densitymatrices: a Gibbs
state for the dissipation projected Hamiltonian (7) and the NESS, governed by (7):

ρGibbs =
1
Z

∑
α

e−βEα |α⟩⟨α|,

Eα =
∑
j

ϵ(ujα) ,
(17)

ρNESS =
1

Z̃

∑
α

e−Ẽα |α⟩⟨α|,

Ẽα =
∑
j

ϵ̃(ujα) .
(18)

Note that both the eigenstates |α⟩ and the Bethe rapidities uj,α (solutions of Bethe
ansatz (14)) in (17) and (18) are the same.

It is instructive to compare singularities of the original dispersion ϵ(u) (13) and of the ϵ̃(u)
(16). ϵ(u) has a singularity at uj =±iγ/2. Its dissipative analog ϵ̃(u) (16) inherits the singular-
ity uj =±iγ/2 from ϵ(u) and ‘dresses’ ϵ(u) with an additional singularity at uj =±3iγ/2, see
also figure 2. For this reason we shall call ϵ̃(u) a dissipatively dressed dispersion relation and
Ẽα a dissipatively dressed energy. In other words, ϵ(uj) is an energy of a quasiparticle with
rapidity uj and ϵ̃(uj) the energy of the same quasiparticle in the dissipative setup (figure 1).

Equations (15) and (16) are our main results. We have shown that a spectrum of a NESS
for the ‘NESS-integrable’ system (1) can be obtained by solving Bethe Ansatz equations for a
related auxiliary coherent integrable problem (7). In [12] we argue that the effect of dissipative
dressing of quasiparticles’ dispersion is not restricted to the U(1)-symmetric XXZ model with
sink and source (1) but it extends to other integrable spin chains, with U(1) symmetry broken
at the boundary and in the bulk. However, for the latter models a rigorous proof is currently
lacking.
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Figure 2. Surfaces ϵ(Reu, Imu) (left panel) and ϵ̃(Reu, Imu) (right panel) for isotropic
case∆= 1 showing singularities at u=±i/2 and at u=±i/2, u=±3i/2, respectively.

In the following we discuss some physical consequences of the dissipative dressing (16).

3. Dissipation assisted entropy reduction

Coupling of a quantum system to a dissipation typically leads to a mixed state and a volume-
extensive entropy. In setups with quenches,leading to steady bulk currents, a volume-extensive
entropy is also typical [21], as well as in mesoscopic conductors [22]. Here we show that subtle
effect of dissipative dressing in the effective dispersion relation ϵ̃(u), in the contrary, can make
the entropy subextensive in volume or even vanishingly small, see below.

To this end, we shall first discuss the isotropic case, ∆= 1 in (7), which is obtained from
the XXZ case by substituting γ→ δ, u→ δu and letting δ→ 0. We then obtain BAE (14) with
u[q] = u+ iq/2, while ϵ(u), ϵ̃(u) are given by

ϵ(u) =− 2

u2 + 1
4

,

ϵ̃(u) = log

∣∣∣∣∣u2 + 9
4

u2 + 1
4

∣∣∣∣∣ .
(19)

The surfaces ϵ(u), ϵ̃(u) (19) for complex u are shown in figure 2. Let us consider one-particle
sectorM= 1, containing N Bethe eigenstates |α⟩ ≡ ψ(uα) parameterized by the solutions uα,
α= 1, . . .N, of the BAE (14) with u[q] = u+ iq/2. For any N the set {uα} consists of N− 1
real solutions, say u2, . . . ,uN (corresponding to plane-wave type eigenstates) and one imagin-
ary solution u1 (corresponding to a boundary-localized eigenstates), see figure 3. The root u1
lies exponentially close to the singularity u= 3i/2 of ϵ̃(u) in (19) due to dressing. Explicitly,
from (14) we find u1 − 3i/2≡ δ = 3i2−2N−1(1+O(Nδ)), see [12] for a proof. The singular-
ity of ϵ̃(u) drastically decreases ϵ̃(u1) with respect to ‘coherent’ energy ϵ(u1), the difference
growing proportionally to the system size: ϵ̃(u1)− ϵ(u1) =−2(N+ 1) log2+O(1). On the
other hand, for real (plain wave type) solutions, the dressed and original energies are com-
parable, see figure 3. As a result, the boundary localized Bethe eigenstate ψ(u1) enters the
NESS (18) with an exponentially large relative weight with respect to the other eigenstates
ψ(u2), . . . ,ψ(uN) from the same one-quasiparticle sector M= 1, see figure 3.

The above mechanism predicting boundary-localized Bethe states to yield dominant con-
tribution to the NESS (18) can be qualitatively extended to higher but fixed M. E.g. also in
M= 2,3 sectors there will be BAE roots exponentially close to the singularity u=±3i/2

6
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Figure 3. Left panel: quasiparticle energies ϵ(uα) (blue joined points) and ϵ̃(uα) (red
joined points) in the XXXmodel withN= 18 spin, in the block with onemagnonM= 1.
The state α= 1 is a localized Bethe state with u1 ≃ 3i/2+ ie−24.5. Right panel: coeffi-
cients Ak of the normalized localized Bethe state |α= 1⟩=

∑N
k=1Ak σ

−
k | ↑ · · · ↑⟩ (black

empty circles). The dashed red line is the fit Ak = 1.7× 2−k. The green joined points are
the coefficients ReAk and ImAk for the plain-wave like Bethe state with u4 ≃ 1.781 39.

of ϵ̃(u), corresponding to boundary-localized eigenstates of HD. Understanding physics at
fixed magnetization density M/N would require controlling thermodynamic Bethe Ansatz
in the presence of boundary fields, which is beyond our present scope. However, we can
see the net effect of dissipative dressing by looking at scaling of the von Neumann entropy
S(ρ) =−tr(ρ logρ) with system size N. We observe the usual extensive volume law for Gibbs
state (17), at β= 1, S(ρGibbs) = O(N) and a clear sub-extensive scaling S(ρNESS)≃ N0.3 for the
NESS (18), see Left upper panel of figure 4. Keeping the dissipation term fixed, and break-
ing the integrability of (2) (by adding a staggered magnetic field), we ruin the subtle dressing
mechanism, rendering both S(ρGibbs),S(ρNESS) volume-extensive, which is a conventionally
expected outcome, see left bottom panel of figure 4.

The difference of responses of an integrable and non-integrable spin chain to the boundary
dissipation can be also well-seen on the distribution of eigenvalues {Eα} and {Ẽα}, shown in
figure 5.

The case ∆= 1 considered above lies at the boundary between the easy plane gapless
regime |∆|< 1 where correlations in XXZ model decay algebraically, and the easy axis
gapped regime with correlations decaying exponentially with distance. The net effect of dress-
ing (16) in the two cases is also different. Indeed, we observe distinct behavior of the entropy
of NESS: a fast, perhaps exponential decay of S(ρNESS)/N in the gapped regime |∆|> 1, and
saturation to a finite value (restoring extensive volume law) S(ρNESS)/N∼ const in the gap-
less regime |∆|< 1, see two right Panels of figure 4. For ∆= 0, see equation (16), we have
ϵ̃(u) = 0 leading to ρNESS = I and S(ρNESS) = N log2. It is unclear at present if the extens-
ive volume law S(ρNESS)∼ O(N) sets in for |∆|< 1 or some critical value of ∆crit exists,
above which the entropy is sublinear. Investigation of the one-particle sector M= 1, see [12]
shows that a boundary-localized eigenstate for large N, exponentially close to the singularity
u=±3iγ/2 in (16) appears in the range 1

2 < |∆|⩽ 1 allowing to propose the lower bound
∆crit ⩾ 1

2 .

4. Discussion

We have developed an explicit Bethe Ansatz procedure for diagonalizing the steady state
density operators of boundary dissipatively driven integrable quantum spin chains in the

7
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Figure 4. Von Neumann entropy S(ρ) =−tr(ρ logρ) per spin versus the system size
N for ρ= ρGibbs (blue points) and ρ= ρNESS (red points), illustrating the dissipation
assisted entropy reduction. Left upper panel corresponds to the isotropic Heisenberg
model ∆= 1, red dashed line is a fit given by 2/(3N0.7). Left bottom panel shows a
nonintegrable case in which a staggered magnetic field (−1)jhσzj , with h= 1.5, has been
added. Right panels correspond to the anisotropic Heisenberg model in the easy plane
∆< 1 and easy axis ∆> 1 regime.

Figure 5. Distribution of the eigenvalues E of − logρGibbs (left panel) and Ẽ of
− logρNESS (right panel) for the XXX model with N= 13. In both panels, the yellow
and blue histograms correspond, respectively, to the integrable and nonintegrable cases
of figure 4 with∆= 1. Distinct asymmetricity of P(Ẽ) (right Panel, yellow area) for the
integrable case is due to the dissipative dressing effect.

limit of large dissipation, alias the Zeno regime. This becomes possible due to a surprising
phenomenon of ‘dissipative dressing’ of quasiparticle energies in integrable coherent sys-
tems exposed to a dissipation. We find a general mechanism of entropy reduction due to
dissipation—pushing the steady state density matrix towards a pure state—which is a con-
sequence of additional singularities arising in the quasiparticle dispersion relation due to dis-
sipative dressing.
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Our results should have applications in state engineering and dissipative state preparation.
Moreover, we expect analogous emergent integrability of the steady state in the discrete-time
case of an integrable Floquet XXX/XXZ/XYZ circuit, where boundary dissipation can be con-
veniently implemented by the so-called reset channel [6].
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Appendix A. Derivation of equation (16)

We first recall some details of well-known Bethe Ansatz solution of an open XXZ model with
diagonal boundary fields

H=
N−1∑
n=1

[
σxnσ

x
n+1 +σynσ

y
n+1 + coshησznσ

z
n+1

]
+

sinhη
tanhp

σz1 +
sinhη
tanhq

σzN. (A.1)

Here, η ≡ iγ is the anisotropic parameter. The boundary fields we are interested in are
−coshησz1 and coshησzN (see equation (7)), which corresponds to a substitution q=−p= η
in (A.1) . We shall perform the calculus for arbitrary p,q and make the substitution at the very
end.

The R-matrix and K-matrices for the model are

R(u) =


sinh(u+ η) 0 0 0

0 sinhu sinhη 0
0 sinhη sinhu 0
0 0 0 sinh(u+ η)

 , (A.2)

K− (u) =

(
sinh

(
p+ u− η

2

)
0

0 sinh
(
p− u+ η

2

) ) , (A.3)

K+ (u) =

(
sinh

(
q+ u+ η

2

)
0

0 sinh
(
q− u− η

2

) ) . (A.4)

Let us introduce the one-row monodromy matrices

T0 (u) = R0,N
(
u− η

2

)
. . .R0,1

(
u− η

2

)
,

T̂0 (u) = R1,0
(
u− η

2

)
. . .RN,0

(
u− η

2

)
,

(A.5)
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and the double-row monodromy matrix

U−
0 (u) = T0 (u)K

−
0 (u) T̂0 (u) =

(
A− (u) B− (u)
C− (u) D− (u)

)
. (A.6)

The transfer matrix is given by

t(u) = tr0
{
K+
0 (u)U−

0 (u)
}
. (A.7)

The Hamiltonian (A.1) rewritten in terms of the transfer matrix reads

H= sinhη
∂ ln t(u)
∂u

∣∣∣∣
u= η

2

−Ncoshη− tanhη sinhη. (A.8)

The eigenvalue of the quantum transfer matrix can be given by the following T −Q relation

Λ(u) =
sinh(2u+ η)

sinh(2u)

∏
s=p,q

sinh
(
u+ s− η

2

)
sinh2N

(
u+ η

2

)
×

m∏
j=1

sinh(u−λj− η)sinh(u+λj− η)

sinh(u−λj)sinh(u+λj)

+
sinh(2u− η)

sinh(2u)

∏
s=p,q

sinh
(
u− s+ η

2

)
sinh2N

(
u− η

2

)
×

m∏
j=1

sinh(u+λj+ η)sinh(u−λj+ η)

sinh(u+λj)sinh(u−λj)
. (A.9)

The Bethe roots {λ1, . . . ,λm} in (A.9) satisfy the following BAE[
sinh

(
λj+

η
2

)
sinh

(
λj− η

2

)]2N ∏
s=p,q

sinh
(
λj+ s− η

2

)
sinh

(
λj− s+ η

2

)
×

m∏
k̸=j

sinh(λj−λk− η)sinh(λj+λk− η)

sinh(λj+λk+ η)sinh(λj−λk+ η)
= 1, j = 1, . . . ,m. (A.10)

Multiplying the left and right sides of BAE for all j, we get

m∏
j=1

[
sinh

(
λj+

η
2

)
sinh

(
λj− η

2

)]N sinh
1
2
(
λj+ q− η

2

)
sinh

1
2
(
λj+ p− η

2

)
sinh

1
2
(
λj− q+ η

2

)
sinh

1
2
(
λj− p+ η

2

)
=±

∏
1⩽j<k⩽m

sinh(λj+λk+ η)

sinh(λj+λk− η)
. (A.11)

The energy of the system in terms of the Bethe roots reads

E=
m∑
j=1

2sinh2 η

sinh
(
λj+

η
2

)
sinh

(
λj− η

2

) + sinhη (cothp+ cothq)

+ (N− 1)coshη. (A.12)
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A.1. Expressing local operators σ±
1 and σ±

N in terms of monodromy matrix elements

The trigonometric R-matrix possesses the following properties:

R1,2 (0) = sinhηP1,2,

R1,2 (u)R2,1 (−u) = sinh(η+ u)sinh(η− u)× I,
R1,2 (u) =−σy1R

t1
1,2 (−u− η)σy1.

(A.13)

It is easy to check that

tr0
{
σ−
0 K

+
0 (u)U−

0 (u)
}
= sinh

(
q+ u+ η

2

)
B− (u) , (A.14)

tr0
{
σ+
0 K

+
0 (u)U−

0 (u)
}
= sinh

(
q− u− η

2

)
C− (u) . (A.15)

We have

tr0
{
σ−
0 K

+
0

(
−η

2

)
U−
0

(
−η

2

)}
= tr0

{[
σ−
0 K

+
0

(
−η

2

)
R0,N (−η) . . .R0,1 (−η)

]t0 [K−
0

(
−η

2

)
R1,0 (−η) . . .RN,0 (−η)

]t0}
= tr0

{
[R0,N (−η) . . .R0,1 (−η)]t0

[
σ−
0 K

+
0

(
−η

2

)]t0
[R1,0 (−η) . . .RN,0 (−η)]t0

[
K−
0

(
−η

2

)]t0}
= tr0

{
Rt00,1 (−η) . . .R

t0
0,N (−η)

[
σ−
0 K

+
0

(
−η

2

)]t0 Rt0N,0 (−η) . . .Rt01,0 (−η)[K−
0

(
−η

2

)]t0}
= tr0

{
R0,1 (0) . . .R0,N (0)

[
σy0σ

−
0 K

+
0

(
−η

2

)
σy0
]t0 RN,0 (0) . . .R1,0(0)

[
σy0K

−
0 (−

η
2 )σ

y
0

]t0}
= sinh2Nη

[
σyNσ

−
N K

+
N (−

η
2 )σ

y
N

]tN tr0{[σy0K−
0 (−

η
2 )σ

y
0

]t0}
=−2coshη sinhpsinhqsinh2Nησ−

N . (A.16)

Analogously, we get

tr0
{
σ+
0 K

+
0

(
−η

2

)
U−
0

(
−η

2

)}
=−2coshη sinhpsinhqsinh2Nησ+

N . (A.17)

Then, we get the following relation between σ±
N and B−(−η

2 ), C−(−η
2 )

σ−
N =−

B−
(
−η

2

)
2coshη sinhpsinh2Nη

, (A.18)

σ+
N =−

C−
(
−η

2

)
2coshη sinhpsinh2Nη

. (A.19)

One can rewrite the transfer matrix in another way

t(u) = tr0

{[
K+
0 (u)T0 (u)

]t0 [K−
0 (u) T̂0 (u)

]t0}
= tr0

{
Tt00 (u)

[
K+
0 (u)

]t0 T̂t00 (u)[K−
0 (u)

]t0}
= tr0

{[
K−
0 (u)

]t0 [U+
0 (u)

]t0}
= tr0

{
K−
0 (u)U+

0 (u)
}
, (A.20)
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where[
U+
0 (u)

]t0
= Tt00 (u)

[
K+
0 (u)

]t0 T̂t00 (u)
= Rt00,1

(
u− η

2

)
. . .Rt00,N

(
u− η

2

)[
K+
0 (u)

]t0 Rt0N,0 (u− η
2

)
. . .Rt01,0

(
u− η

2

)
=

(
A+ (u) C+ (u)
B+ (u) D+ (u)

)
. (A.21)

Using the same technique, we obtain that

sinhpB+

(
η
2

)
= tr0

{
σ−
0 K

−
0

(
η
2

)
U+
0

(
η
2

)}
= tr0

{[
σ−
0 K

−
0

(
η
2

)]t0 [U+
0

(
η
2

)]t0}
= tr0

{[
σ−
0 K

−
0

(
η
2

)]t0 Tt00 (η2 )[K+
0

(
η
2

)]t0 T̂t00 (η2 )}
= tr0

{
K+
0

(
η
2

)
T0
(
η
2

)
σ−
0 K

−
0

(
η
2

)
T̂0
(
η
2

)}
= tr0

{
K+
0

(
η
2

)
R0,N (0) . . .R1,0 (0)σ

−
0 K

−
0

(
η
2

)
R1,0 (0) . . .RN,0 (0)

}
= sinh2Nησ−

1 K
−
1

(
η
2

)
tr0
{
K+
0

(
η
2

)}
= 2coshη sinhqsinhpsinh2Nησ−

1 , (A.22)

sinhpC+

(
η
2

)
= 2coshη sinhqsinhpsinh2Nησ+

1 . (A.23)

To find the rates of the auxiliary Markov process, see the main text, we need to calculate the
quantity

|⟨≊ |σ−
1 |≿⟩|2 + ⟨≊ |σ+

N |≿⟩|2

|⟨≿ |σ−
1 |≊⟩|2 + ⟨≿ |σ+

N |≊⟩|2
=

|⟨≊ |σ−
1 |≿⟩|2

|⟨≊ |σ−
N |≿⟩|2

=

∣∣∣∣ sinhpsinhq

∣∣∣∣2 |⟨≊ |B+

(
η
2

)
|≿⟩|2

|⟨≊ |B−
(
−η

2

)
|≿⟩|2

, (A.24)

where

≊= {u1, . . . ,un+1} , ≿= {v1, . . . ,vn}

are the solution of BAE (A.10) and |≊⟩, |≿⟩ are the corresponding Bethe state.

A.2. Calculating the expression (A.24)

In the following we will recall some result of [17] to derive the ratio

⟨≊ |B+

(
η
2

)
|≿⟩

⟨≊ |B−
(
−η

2

)
|≿⟩

. (A.25)

appearing in (A.24). The Bethe state |u⟩ can be constructed by either
∏n+1

j=1 B−(uj)|vac⟩ or∏n+1
j=1 B+(uj)|vac⟩ where |vac⟩= | ↑ · · · ↑⟩. Inserting the expression of |≿⟩, |≊⟩ into (A.25),

we get

⟨≊ |B+

(
η
2

)
|≿⟩

⟨≊ |B−
(
−η

2

)
|≿⟩

=
⟨vac|C− (u1) · · ·C− (un+1)B+

(
η
2

)
B+ (v1) . . .B+ (vn) |vac⟩

⟨vac|C+ (u1) · · ·C+ (un+1)B−
(
−η

2

)
B− (v1) . . .B− (vn) |vac⟩

× ⟨vac|C+ (u1) · · ·C+ (un+1)

⟨vac|C− (u1) · · ·C− (un+1)

B− (v1) . . .B− (vn) |vac⟩
B+ (v1) . . .B+ (vn) |vac⟩

. (A.26)
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From [17], we know that

⟨vac|C+ (u1) · · ·C+ (un+1)

⟨vac|C− (u1) · · ·C− (un+1)

B− (v1) . . .B− (vn) |vac⟩
B+ (v1) . . .B+ (vn) |vac⟩

=
n+1∏
j=1

sinh(η− 2uj)
sinh(η+ 2uj)

n∏
j=1

sinh(η+ 2vj)
sinh(η− 2vj)

G({≿} ;q,p)G({≊} ;p,q) , (A.27)

where

G({λ1, . . . ,λm} ;x,y) =
m∏
j=1

sinhN
(
λj− η

2

)
sinhN

(
λj+

η
2

) sinh(λj− x+ η
2

)
sinh

(
λj+ y− η

2

)
∏

1⩽r<s⩽m

sinh(λr+λs+ η)

sinh(λr+λs− η)
. (A.28)

With the help of theorem 4.1 and corollary 4.1 in [17], we get

⟨vac|C− (u1) · · ·C− (un+1)B+

(
η
2

)
B+ (v1) . . .B+ (vn) |vac⟩

⟨vac|C+ (u1) · · ·C+ (un+1)B−
(
−η

2

)
B− (v1) . . .B− (vn) |vac⟩

=
⟨vac|C− (u1) · · ·C− (un+1)B+

(
η
2

)
B+ (v1) . . .B+ (vn) |vac⟩

⟨vac|C+

(
η
2

)
C+ (−v1) · · ·C+ (−vn)B− (−u1) . . .B− (−un+1) |vac⟩

=
S−,+
n+1

(
{≊} ;

{
η
2 ,≿

})
S+,−
n+1

(
{−≊} ;

{
η
2 ,−≿

}) , (A.29)

where

S−,+
m ({λ} ;{µ}) =

m∏
j=1

sinhN
(
λj− η

2

)
sinhN

(
λj+

η
2

) det J ({λ} ;{µ})
det V ({λ} ;{µ})

, (A.30)

S+,−
m ({µ} ;{λ}) =

m∏
j=1

sinhN
(
λj+

η
2

)
sinhN

(
λj− η

2

) det J ({λ} ;{µ})
det V ({λ} ;{µ})

, (A.31)

Vj,k ({λ} ;{µ}) =
sinh(2λj)sinh(2µk− η)

sinh(2λj− η)sinh(µk−λj)sinh(µk+λj)
, (A.32)

Jj,k ({λ} ;{µ}) =
∂

∂λj
Λ(µk,{λ}) . (A.33)

The identity

Λ(u,{λ}) = Λ(u,{−λ}) = Λ(−u,{−λ}) , (A.34)

implies that

det J
(
{≊} ;

{
η
2 ,≿

})
det J

(
{−≊} ;

{
η
2 ,−≿

}) = (−1)n+1
. (A.35)
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For the matrix V , we have

Vj,1 ({≊} ;{x,≿})
Vj,1 ({−≊} ;{x,−≿})

=
sinh(2uj+ η)

sinh(2uj− η)
, (A.36)

Vj,k ̸=1 ({≊} ;{x,≿})
Vj,k ̸=1 ({−≊} ;{x,−≿})

=− sinh(2vk−1 − η)

sinh(2uj− η)

sinh(2uj+ η)

sinh(2vk−1 + η)
. (A.37)

As a consequence, it can be verified that

det V
(
{≊} ;

{
η
2 ,≿

})
det V

(
{−≊} ;

{
η
2 ,−≿

}) = (−1)n
n+1∏
j=1

sinh(2uj+ η)

sinh(2uj− η)

n∏
k=1

sinh(2vk− η)

sinh(2vk+ η)
. (A.38)

Then, one can derive the following equation

S−,+
n+1

(
{≊} ;

{
η
2 ,≿

})
S+,−
n+1

(
{−≊} ;

{
η
2 ,−≿

}) =−
n+1∏
j=1

sinh(2uj− η)

sinh(2uj+ η)

n∏
k=1

sinh(2vk+ η)

sinh(2vk− η)
. (A.39)

Substituting (A.27) and (A.39) into (A.26), we finally obtain

⟨≊ |B+

(
η
2

)
|≿⟩

⟨≊ |B−
(
−η

2

)
|≿⟩

= G−1 ({≿} ;q,p)G−1 ({≊} ;p,q)

=
n+1∏
j=1

sinhN
(
uj+

η
2

)
sinhN

(
uj− η

2

) n+1∏
j=1

sinh
(
uj+ q− η

2

)
sinh

(
uj− p+ η

2

)
×

∏
1⩽r<s⩽m

sinh(ur+ us− η)

sinh(ur+ us+ η)

×
n∏

k=1

sinhN
(
vk+

η
2

)
sinhN

(
vk− η

2

) sinh(vk+ p− η
2

)
sinh

(
vk− q+ η

2

)
×

∏
1⩽r<s⩽n

sinh(vr+ vs− η)

sinh(vr+ vs+ η)

=±
n+1∏
j=1

sinh
1
2
(
uj+ q− η

2

)
sinh

1
2
(
uj− p+ η

2

) sinh 1
2
(
uj− q+ η

2

)
sinh

1
2
(
uj+ p− η

2

)
×

n∏
k=1

sinh
1
2
(
vk+ p− η

2

)
sinh

1
2
(
vk− q+ η

2

) sinh 1
2
(
vk− p+ η

2

)
sinh

1
2
(
vk+ q− η

2

) . (A.40)

When q=−p= η, the Bethe Ansatz equations are[
sinh

(
λj+

η
2

)
sinh

(
λj− η

2

)]2N+1 sinh
(
λj− 3η

2

)
sinh

(
λj+

3η
2

)
×

m∏
k̸=j

sinh(λj−λk− η)sinh(λj+λk− η)

sinh(λj+λk+ η)sinh(λj−λk+ η)
= 1, j = 1, . . . ,m, (A.41)

14



J. Phys. A: Math. Theor. 58 (2025) 45LT01

or, [
sinh

(
λj+

iγ
2

)
sinh

(
λj− iγ

2

)]2N+1 sinh
(
λj− 3iγ

2

)
sinh

(
λj+

3iγ
2

)
×

m∏
k̸=j

sinh(λj−λk− iγ)sinh(λj+λk− iγ)
sinh(λj+λk+ iγ)sinh(λj−λk+ iγ)

= 1, j = 1, . . . ,m. (A.42)

Then,

|⟨≊ |σ−
1 |≿⟩|2 + ⟨≊ |σ+

N |≿⟩|2

|⟨≿ |σ−
1 |≊⟩|2 + ⟨≿ |σ+

N |≊⟩|2

=

∣∣∣∣∣∣
n+1∏
j=1

sinh
(
uj+

η
2

)
sinh

(
uj+

3η
2

) sinh
(
uj− η

2

)
sinh

(
uj− 3η

2

) n∏
k=1

sinh
(
vk− 3η

2

)
sinh

(
vk− η

2

) sinh
(
vk+

3η
2

)
sinh

(
vk+

η
2

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
n+1∏
j=1

sinh
(
uj+

iγ
2

)
sinh

(
uj+

3iγ
2

) sinh
(
uj− iγ

2

)
sinh

(
uj− 3iγ

2

) n∏
k=1

sinh
(
vk− 3iγ

2

)
sinh

(
vk− iγ

2

) sinh
(
vk+

3iγ
2

)
sinh

(
vk+

iγ
2

)
∣∣∣∣∣∣ ,

(A.43)

leading to equation (16).

Appendix B. Kolmogorov property of the rates wαβ. Proof of equation (10)

With the help of (A.43), we can derive that

wαβ = Fα/Fβ , (B.1)

where Fα depends only on the Bethe roots, corresponding to eigenstate |α⟩. Therefore, we
conclude that the following Kolmogorov relation holds,

wαβ1wβ1γwγβ2wβ2α = wαβ2wβ2γwγβ1wβ1α. (B.2)

Equation (10) is a direct consequence of the Kolmogorov relation (B.2).
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