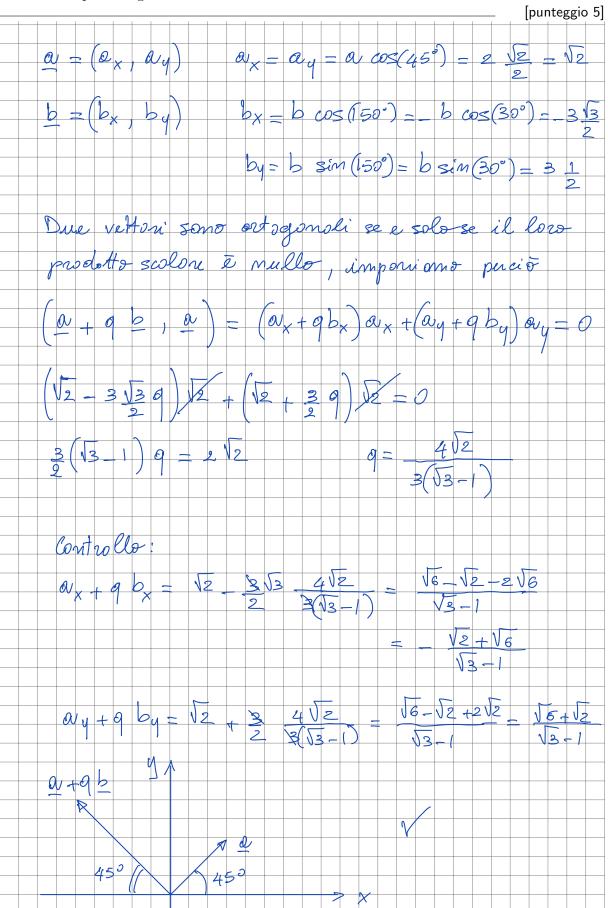
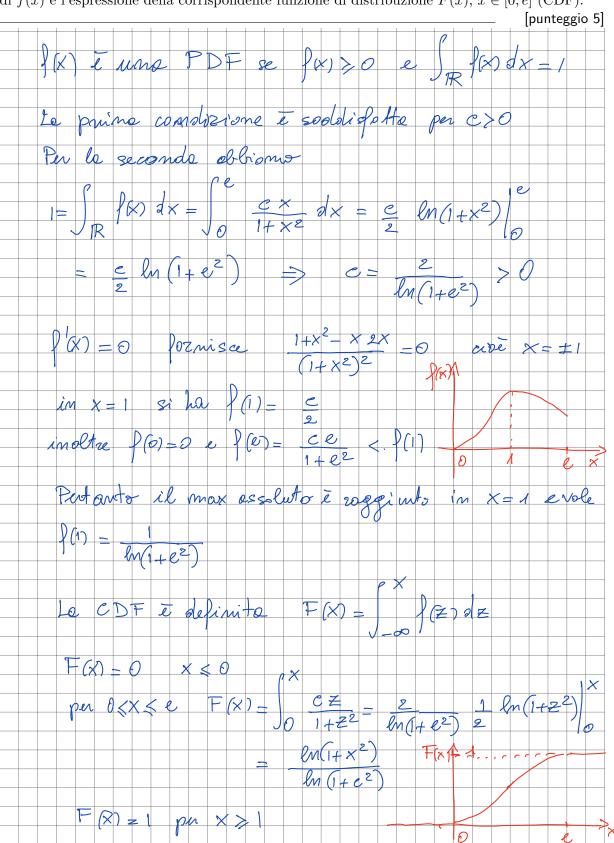

CALCOLO E BIOSTATISTICA


A.A. 2024/2025 – Prof. C. Presilla Prova A5 – 15 settembre 2025

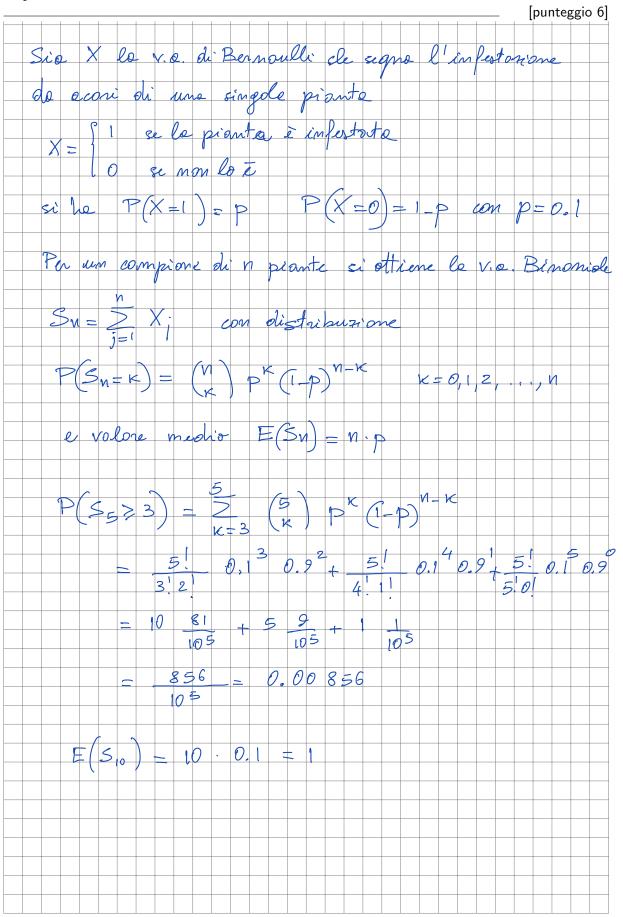
COGNOM								
NOME								
MATRICO	DLA							
							_	
esercizio	1	2	3	4	5	6	Pa S	<u> </u>
voto							penalità	

1 Una squadra di soccorso deve essere formata da 3 vigili del fuoco e 2 medici. Avendo a disposizione 5 vigili del fuoco e 4 medici, quante diverse squadre di soccorso sono possibili?

2 Dato il vettore \boldsymbol{a} di lunghezza 2 che forma un angolo di 45° con l'asse x e il vettore \boldsymbol{b} di lunghezza 3 che forma un angolo di 150° con l'asse x (come al solito gli angoli sono misurati positivamente per rotazioni antiorarie rispetto all'asse di riferimento), determinare il numero q tale che $\boldsymbol{a}+q\boldsymbol{b}$ è ortogonale ad \boldsymbol{a} .

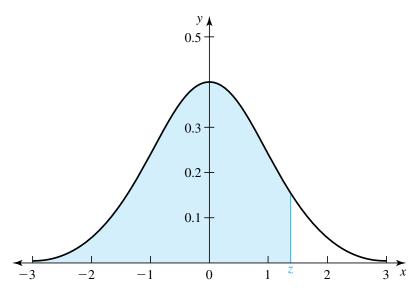

$$\frac{dy(x)}{dx} + \frac{y(x)}{x} = 1$$

													_]	nteg	gio
L'eque	r'one				213	old	<u>L</u> @	cor	n i	e,	ne	to	do	de	l	
fottore	integr	onte	Ac	<)												=
Posto	Alex) = -	×	e	qu	u'ne	oh.	A	(×)	7	lo	1 >	K 7	- C	1	7
moltip	li condi	9- m.e	enso	0	e m	nen	hrs	· /	ou	e	110	×)	e l	3lr'.	m	حر
e A &)	y' (x)	, e	, A(×) A	(×)	ıλ	(X)	IJ	e	A	(x)					
	4 (2)		<u> </u>			7	C /									
o e	H (35)	(×)) +	· l	1	* /										
			٢	۸۲۰) ,		(ln	1 ×		2		٨			
Osserv	isaslo.	de) e	 	d×		Je		ı×			0	$1 \times$			
				7	X 4	2	alz	×			X	2 		1	<u>ر</u>	
				J			,				2			1		_
integ	rando	men	pro	Ø	me	mb	20	l'	eg	ug.	se à	m	2 0	abl.	Ľa	m
A (x) (×)	, ,	3 -	_ ,	x e	CI	U ((x)	, ()	×	2	e)	1	
	70	T	5				ئ رگ			7		2			1	
) o emis	ce														
<u>u(x) =</u>	_	, .	. 9 –	C2		_	X	-		C			(2 ∈	R	
361	- X 2	4	2 - X L	Çi			2	-		×						
Contr	ollo.															
4 (x).					_4(×	()		1	,	C						
7 (7)	2	×2	-		×			2	7	×	2_					
V (×)	, <u>u</u>	(*) _	1						-		1		V			
3(1)	>		2	7	2	7	2 +	7	(2							


4 Determinare per quale valore della costante $c \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} cx/(1+x^2) & x \in [0,e] \\ 0 & x \notin [0,e] \end{cases}$$

rappresenta una densità di probabilità (PDF). Per questo valore di c trovare il massimo assoluto di f(x) e l'espressione della corrispondente funzione di distribuzione F(x), $x \in [0, e]$ (CDF).



5 Circa il 10% delle piante coltivate in una serra è infestata da acari. Un agronomo prende a caso un campione di 5 piante. Qual'è la probabilità che almeno 3 piante nel campione siano infestate? Quante piante infestate ci si aspetta di trovare in media in un campione casuale di 10 piante?

6 Un'urna contiene 5 palle verdi e 4 palle rosse. Si estraggono due palle senza reinserimento (cioè prima una palla e poi un'altra senza reinserire la prima nell'urna). Sapendo che viene estratta almeno una palla verde, qual'è la probabilità che nella coppia di palle estratte l'altra sia rossa?

[punteggio 6] pollo verde nell'estrasione probabilità dell'eve doll'evento con sizionsto esce olmeno una palle verdo (AnB Poiche 18)= P(V, n R2)= P(R2|V)) P(Vi 夕 18 P(R, NV_) = P(V_1 | R) P(R) 5 18 $P(R_1 n R_2) = P(R_2 | R_1) P(R_1)$ 18 É Quinoli PAIB

Figure B.1 Areas under the standard normal curve from $-\infty$ to z.

		1		2				7	0	
<i>z</i>	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5754
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7258	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7518	.7549
0.7	.7580	.7612	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7996	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986