Safran’s attraction

Q A network ?
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Two independent parameters: The droplet concentration pg = 1’; and the

polymer concentration p, = 1—:}1

A very simplified free energy (which neglects many coupling ...) can be
written as

BF = ﬁFCS + ﬁFpolymer

Ya (X .
BFpolym,er o _Np In Zp with Zp N—d (—d- + thilccesszble_d)
EP ZD z:p

with Nj accessible pd. Note that we have assumed that 2“ is the number

of attachment points on a droplet (proportional to the surface area of the
dropled divided by the surface area of the polymer head). Each polymer
can then end with probability %‘i on the same droplet and with probability

Nj accessible g" on an accessible droplet.

The system is thermodynamically stable if the free energy is a convex func-
tion of both p, and pg. This means that the second derivative of the free
energy (6°F = F,, ,,0p3 + 2F,, . 0padpp + F,, . 0p3) has to be positive or
equivalently the matrix

( Fpipa Fpap, )
depp FPpPp

< posses two positive eigenvalues.
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Entropic Phase Separation in Polymer-Microemulsion Networks
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Heterogeneous Diffusion in a Reversible Gel

Pablo L. Hurtado,"? Ludovic Berthier,' and Walter Kob'
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FIG. 2: Phase diagram for a wide range of volume fraction, ¢,
and number of polymer heads per droplet, R. Symbols are the
investigated state points in the sol (), gel (O), and phase
separated (¢) regions, the yellow point is the approximate
SAPIENZA location of the critical point. Transition lines are sketched.
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Another interesting soft-matter
case
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DNA-grafted gold nanoparticles
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Self complementary DNA sequences
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Number of bonds

50
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The number of ways of forming pairs (bonds) only of AA and BB type (as we have
when the particles are well separated) is

Q = (N4 — 1)II(Ng — DI

The number of ways of binding the N4 + Np sites in pairs allowing also for AB binding is

instead

Q= (Ng+ Np—1)!!

(Ny+ Ng-1)!

Then the change in entropy associated to converting intraparticle bonds with interparticle

bonds is

AS

kp

where we have used the fact that Ng4=Npg.

T

I
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N4y=2N4p=Ng

(G—© Bonds between distinct particles
[—£1 Total # of bonds

50

30

20

10

10

In[(N4+Npg— )N —In[(N4— D)I(Ng— 1] = In[(2N4 — 1)1 —2In[(N4— 1! (1)

« - k,TAS

— Effective potential
— effettive potential with only intraparticle bonds
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Superselectivity

(a) Nanoparticles in

soln. at fixed

concentration

o e e L/o ,;. Nano-

-- ’.,-,‘ o ',:;’.' '."7" - particle
_---,.’--.’,.-5:;1_--,7’--5 (with ligands)
L /v @ 7 /
-'.:I".---’*.-—;,---’---.-,a-
® ‘/’ 11, .‘ ,’, * s’ .’\, o
Cell surface \ receptor site

Designing super selectivity in multivalent
nano-particle binding PNAS, 108 , 10963 (2011) @_LDENSE
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(b)

Z = [Cp) unbound + Z X C‘,) bonded]NC

Nano-_y

particle

Surface coverage, e

! Ligand
O
X

Receptor

>

Strong monovalent

Ligands: k per
nanoparticle

particle

OOoooooo0don
‘Receptors: ng per site.

Ideal switch

Weak multivalent

Weak monovalent

>
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Uk, ng, #p) = (k — #3)1(#)! 8 (ngp — #b)!

# of ways #, bonds
are distributed

over ny sites

(first bond n, ways,
second bond ng-1 ...

# of ways #,
element can be
selected out of k

Q(#b) — (‘Ei_"gfb)#b Sl(lx Ng. #b)

min(k,ng)

Cgbonded - Z C")‘#b it np > k Cgbonded — (1 + 72.-R€_':‘3fb)k —1
1
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Mono-valent

o

Multi-valent

Fig. 1. Simulation snapshots comparing the targeting selectivity of mono-
valent and multivalent guest nano-particles. We compare the adsorption
onto two host surfaces with receptor concentrations (ng) that differ by a
factor of three. (A) The monovalent guests provide little selectivity: increas-
ing by three times the receptor coverage just increases the average number
of bound guests by 1.8 (i.e.,, from 5.4 to 9.7 bound particles in average).
(B) The multivalent nano-particles behave super selectively: an increase of
three times in receptor coverage causes a 10-fold increase in the average
number of adsorbed particles. (i.e., from 2.5 to 25.4 particles). The multiva-
lent guests have ten ligands per particle. The individual bonds of the multi-
valent nano-particles are 5kT weaker than the monovalent ones.
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There 1s life 1n the ground state:
vitrimers

(entropy 1n action)
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Science 334, 965 (2011);
DOI: 10.1126/science.1212648

Silica-Like Malleable Materials from
Permanent Organic Networks

Damien Montarnal, Mathieu Capelot, Francois Tournilhac, Ludwik Leibler*
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Ludwik Leibler - Vitrimers — a new class of polymers - YouTube
https://www.youtube.com/watch?v=5tA0ccD300I ~

= Apr 21, 2015 - Uploaded by EPOfilms

More about exceptional inventors and the European Inventor Award here: http://
buzz.mw/b1zgp_| European ...

From glass to vitrimers : a story of exchangeable links - YouTube
TR https://www.youtube.com/watch?v=cR_iiKrpCIQ
Nov 21, 2017 - Uploaded by Département de Physique de I'ENS
We use glass every day. But what is glass again? It is a solid phase... right?
P 1:04:10 Ludwik Leibler (ESPCI) explains ...

SAPIENZA @_LDENSE

UNIVERSITA DI ROMA OLLOIDS with
DESIGNED RESPONSE



INLLT \NJINT O

Catalyst ... Arrhenius Dynamics

“Strong glass former”
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Connections to patchy particle A

A ) X ¢
Network formed by a mixture of 'r

particles with valencef andf in R R ~
non-stochiometric ratiolin 2 !

which all possible bonds between
particles of different type are
present!

v

»<

al

L

Whereis T ? T=0K!

What does it mean to switch ? Explore the different
configurations of the ground state

There is life in the ground state !
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The patchy model analog

Bonding volume and energy scale....
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Wertheim theory: free energy

Using thermodynamic perturbation theory, we can approximate the (Helmholtz) free energy of
the model system.

BFiot/N = B foond + Bfus + B fmix

Free energy change as a result of forming bonds, in the limit of T going to zero (strong bonds):

‘(/p) )

fbond —

TScomb(4NA72NB) 4 ny
N N

Combinatorial entropy term:

kBlog( ), if n>m
Sc:omb (?’L, m) — m!
kp log D) otherwise
BOREINES Coiomnse
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T=0 K Equilibrium phase diagram (Entropy Only!)

network in a good 1.0
solvent leads to swelling

The network phase is
closer to the ideal x

0.84

u non—percolating -
the network never fully().6 | p 8

dissolves <, percolating -

non—percolating -

0.00 0.05 0.10 0.15 0.20 0.25
po
SAPIENZA Theory: black dashed line -
J  UNIVERSITA DI ROMA Simulations: points, solid line o




Entropy in Theory and Simulation: comparison

Comparison between the entropy from simulations (red) and
theory (blue).

Number density po° = (.35

S/ks

Entropy per particle
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Basic Concepts 1n Self Assem%ﬁ Cg <

The canonical partition function a system composed by non-interacting clus-
ters (ideal gas of cluster) composed each by n monomers, in the NVT en-
semble (where N is the total number of monomers) is

o0 N,
Q=1:[1?V’;! (1)

where (@),, is the partition function of the n-cluster and N,, is the number
of clusters of size n in the system. For spherical particles interacting with
isotropic potentials

’

1
Qn = 71'/\_3"/ dry....dry exp [-BV (71,72, ..., TN )] (2)

where the ’ sign in the integration limits indicates that only points in phase
space drj....dry for which the cluster does not break into disconnected

smaller clusters should be considered. SE
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Dimer partition function

/

1

@2 = 5116

drydradQdQge PV (r1or2,tha 2) / dQ4 dQs

— V V, e Puo

Basic concepts in self-assembly

> https://www.sif.it/static/SIF /resources/public/.../Sciortino_I .pdf
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For the monomer (assumed as a spherical rigid body, e.g. no internal fluc-
tuations)

The Helmholtz free energy F', the logarithm of the partition function Q, is
given by

o0 o0

BF =-Q=—-)Y [NnInQn—NplnNp+Np] = ) Nu[ln Qn —In Ny +1]
n=1 n=1

(3)

To evaluate the cluster size distribution N,;, we require F' to be a minimum

respect to all possible variation of N,,. Still, we must satisfy the constraint
> o 1N, = N. Introducing a Lagrange multiplier «

d(BF kN Ny
(ﬂ +sz k) =0 In— —na=0 or Nn=Qn(eXpa)n (4)
N, Qn

Since N1 = Q1 exp a, the same expression can be written as

N{

Np = QnQ—,l, =Qnpt (A*=1) (5)

A
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1 A-B dimerization process

Three cluster types: A, B and AB. Assuming for simplicity Nﬁ = N% =
N°/2 and Q4 = Qg =V (X = 1) the constraints are

>

N' N°
NA"’NAB—NA_T NB+NAB—NB

2
The total partition function Q@ is ‘

>~

Qi Qp” QY
Q= Na! Ng! Nag!

Minimizing SF respect to Ny, Ng and N4p (Lagrange multiplier a e j3),
nQsi—InNg+lna=0 mQp—InNg+nB =0 mMQg—InNgg+na+Ing =0

or Na=aQq Np=pQp Nap=0aBQg

Then

Na :
Nap=|—=—) Qap or Ny=
Qa

NapQ?
QaB

Defining the bond probability pg Eﬁf- the constraint expression

NapQ? N 2ppQ% Db Qan Ny
—— =4+ N4 = — becomes =1—p; or - =
V QaB AB = 79 NoQaB P (1—m)?2 Q% 2

. B o NOVb _
with Qap=V V,e ™ — T—m)? 2V ° a @_LDE!}“’SSE"
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Remember Pine’s argument on the lock and key
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One more example: equilibrium polymers m

Let’s assume we have N bifunctional particles which can form P bonds in a
volume V. The particles will form chains of length n. We are interested in
predicting the distribution N,, of chain lengths. There are two constraints
to be satisfied by N,,:

inNn:N i(n—l)Nn:P:N—NC where iNn:Nc

In the approximation of an ideal gas of aggregates (e.g. neglecting aggregate-
aggregate interactions) the free energy is the ideal gas entropy (with the
thermal wavelength A set to 1)

To calculate N,, we need to maximise S (but satisfying the constraints).



Defining « and [ the Lagrange multiplier associated to the two constraints

we have g N
N, (ln7 — 1) +14+an+pB(n+1)
N, n
v = expl(a + B)n+ B3] N, = Ax
To calculate a and (8 (or equivalently A and x) we use the constraints
®.@] N T
N = ZnA:z: 1-3:)2 NCZ;AZB = A—
providing
N. (%)’
r=1--=-  A=N-2X
Ne
N 1— &
Defining N .
Nbonds N — Nc Nc L >— _
P N. maxbonds N N Ne LB

UNIVERSITA DI ROMA
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Equilibrium chains O
1 =0.1

L howe J

'.Qo::} .. .Ol.;:.: :':;. ’ (’ J
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Q (1 58 I (a)
B8 24 )2 w0
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Generalization to branching
g@ G P = oo
o max
N, b

To “understand” self-assembly in these systems means:

A) To formulate a theory to calculate P ( P, T) Thermodynamics

B) To formulate a theory to calculate the cluster size distribution  \J "

knowing p b Geometric properties

¥~ SAPIENZA @_LD ENSE
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Assume we have N particles with functionaly f

Assume there are Ny bonds between the particles

QQQSQ .

PN )2

W hat is the cluster size distribution 7

How do particle sel f — assemble into clusters 7

Solution exists for loop-less clusters (Stockmayer JCP 11,45 1943)
SAPIENZA ‘CDLLDENSE
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Review of Stockmayer approach:

Let's call N,, the number of loopless clusters composed of n particles

» nN,=N

The total number of clusters is N, = Z N,

Fixing N and N, (or equivalently N and py)
which 1s the MOST PROBABLE distribution N,, 7

We need to find the N,, which maximize the number of modes

to connect with Ny bonds N f — functionalized particles,
Nid o RN ‘COLLDENSE
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How to estimate the number of modes ()

Let's call w,, the number of modes of a cluster of size n

Since particles are identical we have to divide w,, by n!

If there are N,, clusters of size n the number of modes becomes

N
Wn n
n!
A further division by N,,! accounts for permutations of clusters of the same size

As a result

wp\ Ve 1
T
SAPIENZA ’n,' N n ' @_LDENSE

QWY UNIVERSITA DI ROMA

EEEEEEEEEEEEEEEE



Find the cluster size distribution which maximize the entropy satisfying the two constraints:

Y aN,=N ) N,=N,

y = log(2) + log(A) Z nN,, + log(B) ZN'”

With A and B Lagrange multipliers

W

n—n) + nlog(A) + log(B) — log(N,,) =0

wid OAPIENZA n,! ‘CDLLDENSE
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f=3,N:2,w2:9

D
A
AD,AE.AF, BD,BE,BF, CD,CE,CF
E

—3 N_3(.d3—162

e

3 different dimers (12,13,23) each of them made in 9 ways, times 4x3 ways to mix a dimer
with the remaining monomer, divided by two to avoid overcounting

3x9x4x3/2=162

SAPTENZA @_LDENSE
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f=3 N =4,w, = 4536

4 different trimers (123,124,134,234) each of them made in 162 ways. Separating the linear and the
star configurations one gets:

Linear configurations: times 4x3 (bonds, 4 on the trimer and 3 on the monomer) ways divided by two
to avoid overcounting: 4 x 162 x 4 x 3 / 2 = 3888

WECT
OO 200

Star configuration: times 1x3 (bonds, 1 on the centratparticle and
3 on the monome) divided by three to avoid overcounting

4x162x1x3/3=648.
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APPENDIX

A. Combinatory problems

1. We seek w,, defined as the number of ways in which »
distinguishable polyfunctional units, each bearing f dis-
tinguishable equivalent functional groups capable of re-
acting with each other, can be formed into a single poly-
meric molecule containing no cyclic structures.

To permit visualization, a unit can be represented as a
mechanical frame containing f holes. We shall represent the
polymeric molecule by introducing a number of indis-
tinguishable bolts to connect the frames. Since an n-mer
requires (z— 1) bonds, (n—1) bolts are required to connect
the frames, each bolt passing through a pair of holes
belonging to different frames. In addition, we shall place
bolts through each of the other holes, these not serving to
connect different frames with each other. The total number
of bolts required to accomplish this structure is, therefore,

fm—=m—-1)=fn—n+1.

Now consider a particular bolted arrangement, corre-
sponding to one of the w, ways of forming an n-mer. We
wish to dissociate it into » separate frames, each containing
(f—1) holes filled by bolts and one empty hole, with one
free bolt left over. If the free bolt is chosen first, the empty
hole in each of the # frames is thereby uniquely determined.
Since any one of the (fn—n-1) bolts may be chosen to be
the free one, there are consequently (fn—n-+1) different
dissociated arrangements of the required type correspond-
ing to the same boited arrangement. Therefore, if P is the
number of different dissociated arrangements of this type
which are possible, and if Q is the number of ways in which
each such dissociated arrangement can be bolted together,
the number of different bolted arrangements is

w,=PQ/(fn—n+1). (A1)
Now the number 2 is simply
P=fn (A2)

since any one of the f holes on a frame may be chosen as the
empty one, and since the bolts are indistinguishable. To
find Q, we introduce the device of assigning a washer to
each bolt which is ultimately to be used in forming a bond
by passing through two holes. The washers are indis-
tinguishable. The (z—1) bolts which must receive washers
may, therefore, be selected in

(frn—nt+1)!
(n—DI(fn—2n+2)!

ways,

w'n,

How to calculate W ? (Appendix A of JCP

1145) n

since each of the (fn—n-1) bolts is now distinguishable
by virtue of its having been assigned to a definite hole in
forming a dissociated arrangement. The dissociated ar-
rangement must now be bolted together. Washered bolts
are chosen and placed through empty holes not on frames
with which they are already connected, the free bolt always
being kept for the last. Thus the first washered bolt can
choose any of (#—1) empty holes, for it must not pass
through the empty hole on its own frame. Then there are
still {n—2) single frames and one ‘‘double frame,” or
altogether (m—1) structures each still carrying one empty
hole. Thus the second washered bolt can choose any of
(n—2) empty holes, the third can choose {#—3), and so on.
Finally, only the free bolt remains. If the free bolt has no
washer, there remains just one empty hole into which it
must go. If the free bolt has a washer, there remain two
structures, each containing one empty hole, so that the free
bolt serves to form the last bond. Hence for a given
assignment of the washers the bolting process can be ac-
complished in {(z—1)! ways. Combining this result with the
number of ways of assigning the washers, we find the
number of ways of bolting together a given dissociated
arrangement to be
_{fa—n4+1)!
Q= (fn—2n+2)

Substitution of Egs. (A2) and (A3) into {A1) then yields
the desired result

(A3)

frifn—m)!
~“Un—In )l (A4)

f*"(fn—n)!

Wa

a fn—2n+ 2

!\
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Performing the sums... one finds 0<py < 1

f(fn—n)! e

il i Nn!(fn —2n + 2)! (1—ps)’ [ps(1—pp)f 2"

f=

p,=0.5 (percolation) —

Illl

10

1

cluster size n
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Vd

Cluster size distribution at percolation

f
V2r(f —2)(f - 1)

Critical behavior - power law dependence - critical exponent -2.5

TL_2'5

Ny (p = pp) = o—5/[(f~2)n]

o'~ 1
107E — Exact B

af — Large n approximation N ~n" | °
10°F - E
10™F 3

Z 10°F 1
. :
10 E E
10"F :
107 E
10°F

¥ Lol Lol ]

10° 10' 10° 10° 10°

cluster size n
Absence of a characteristic size !!!
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When energy and entropy
compete for self-assembly

DHS+Patchy Colloids
Janus Particles

Gel on heating
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Dipolar Hard Spheres...

Camp et al PRL (2000)

Tlusty-Safram,
SAPIENZA Science (2000) @—'—DENSE



We distinguish the particles in three groups: chains, chain ends, branching.
Defining ¥ (r) the probability that there is an end in r, then in mean field

Pend ™~ Y
Pchain ™ ¢ ~ ¢2
Pbranching ™~ 11)3

Assuming that branching and ends are the key actors, whose concentration
is fixed by the thermodynamic, one can assume that each of these defects
contributes about —kgT to the free energy density.

Then BF 1
Bf = B = —(Pend + Pbranching) + §¢2

where the last term account for the excluded volume at virial level.

The EOS is given by

dpBF o0 1 1
BP = —aﬁ—v = —¢2 ()86];)/(?5) = §(Pend — Pbranchmg) + §¢2

'''''
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Fig. 2. The phase diagram of the dipolar net-
work calculated for defect energies of £, = 0.67
and €5 = 0.12. At the critical point (circle), the
coexistence curve (thick solid line), the phase
stability boundary (dashed line), and the con-
nectivity transition (dotted line) meet. The
lines denote the coexistence of the end-rich
“gas” with the junction-rich "liquid.” At low
temperatures, the coexistence region narrows
to very low densities.
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A patchy particle models that behaves as Safran’s DHS

PATCHY PARTICLES THAT FORM CHAINS:

ADD BRANCHING POSSIBILITIES i




How the ground state looks like ?
Start from an infinite chain of AA bonds

Splitting the chain in two parts costs €

AA
0000000000 @ggeee00000
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How the ground state looks like ?
Start from an infinite chain of AA bonds

Splitting the chain in two parts costs €

AA
00008000000 gggeec00000

Joining the two newly created ends provides a gain of -2¢

B

SAPIENZA Chains win Branching wins @_LD ENSE
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How the ground state looks like ?
Start from an infinite chain of AA bonds

Splitting the chain in two parts costs 8 = Cost of creating 2 ends

Joining the two newly created ends provides a gain of -2¢

. . e /e =05 . )
Chaining wins B AA Branching wins

atlow T | even at low T

AE=¢ -2¢ >0
AA B

= Cost of creating 2 branching points

>
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A patchy model with a “pinched” phase diagram
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Evolution of the phase diagram on modulating the branching strength ¢
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Re-entrant Phases: What is the physics of competitive interactions ?

the emergence of a structure controlled by energy (stable at low T)
which competes with a structure stabilized by entropy at
intermediate T.

entropy-energy balance to stabilize different local structures:

Y UNIVERSITA DI ROMA COLLOIDS with
DESIGNED RESPONS!

SAPIENZA @_LDENSE



