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Explicit study of the hydrogen bond network in water offers a microscopic approach to 
understanding the anomalous properties of water, while an alternate, thermodynamic approach 
is offered by the reentrant limit of stability (spinodal) conjecture. To relate the two approaches, 
we develop a lattice model based on microscopic considerations. We show that the model 
displays anomalous thermodynamic behavior that is in qualitative agreement with the behavior 
of water. We study the model in the mean field approximation and by numerical simulations. We 
explicitly demonstrate the interrelation between density maxima and the reentrance of the 
spinodal: both originate from the contribution of orientational degrees of freedom to the 
thermodynamics of the system. The metastable liquid state is bounded by a spinodal at positive 
pressures as well as negative pressures, where the positive pressure spinodal is the limit of 
stability with respect to the solid state. The liquid-gas and liquid-solid spinodals form a 
continuous locus, but the “critical” properties of these two spinodals are quite different. While 
the response functions (specific heat, compressibility) diverge at liquid-gas spinodal, at the 
liquid-solid spinodal they do not-even though the response functions tend to higher values in 
the same fashion as occurs near the liquid-gas spinodal. 

1. INTRODUCTION 

Water, in the liquid phase, exhibits well-known anom- 
alous behavior for a wide range of temperatures and pres- 
sures close to the coexistence line with the solid phase, 
such as the density maximum at 4 “C! at atmospheric pres- 
sure, the isothermal compressibility minimum at 46 ‘C, 
and the rise upon cooling of the constant pressure specific 
heat. This anomalous behavior extends into the metastable 
region of the liquid and has been particularly well studied 
in the supercooled state, where these anomalies grow stron- 
ger.’ Experimental studies are, however, limited in the 
metastable region by homogeneous nucleation (whereby 
the stable phase of the system grows spontaneously) and 
by the challenge of attaining large negative pressures.2 

From a microscopic point of view, theoretical and ex- 
perimental studies have established that the anomalous 
properties of water are related to the hydrogen bond net- 
work. Hence, microscopic approaches to explaining anom- 
alies in water focus on the properties of this hydrogen bond 
network. An attempt to view the problem from a different 
perspective was initiated by Speedy and Angell,3 who ob- 
served that at atmospheric pressure, various thermody- 
namic quantities appear to diverge at a single temperature 
T, below the homogeneous nucleation temperature TN. 
They proposed that T, corresponds to the absolute limit of 
stability (the spinodal) for the liquid and, further, that the 
locus of limits of stability for the liquid forms a continuous 

curve. Speedy4 showed that from the assumed shape of the 
limit of stability line, the thermodynamic anomalies of 
water-including the existence of a density maximum- 
could be deduced. The spinodal line estimated by Speedy 
turns around at a temperature of 35 “C and a pressure of 
-210 MPa, upon intersecting the line of density maxima, 
and reaches positive pressures at -45 “C. Speedy’s ther- 
modynamic analysis has been generalized by Debenedetti 
et aI.,’ who derive relations for any liquid between density 
anomalies and spinodal behavior from requirements of 
thermodynamic consistency. 

However, in spite of much work on the issue,b6 the 
stability limit conjecture of Speedy and Angel1 remains 
unsettled. In particular, the conjecture has not been ad- 
dressed by studies of the microscopic behavior of water. In 
order to understand the relationship between the micro- 
scopic causes of anomalies and the behavior of the limits of 
stability, we introduce a lattice-gas model based on the 
microscopic properties of water. Various lattice models 
have been studied previously,7*8 but generally,’ insufficient 
attention has been paid to the study of the metastable be- 
havior, which is the focus of this paper. We obtain ther- 
modynamic behavior that is in qualitative agreement with 
the behavior of water. We explicitly demonstrate the rela- 
tionship between anomalous density behavior and the be- 
havior of the limits of stability, both being obtained from a 
common microscopic mechanism. We show that at low 
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temperatures the liquid-gas spinodal merges with and 
gives way to the liquid-solid spinodal line, which becomes 
the physically relevant limit of stability. Thus, the reen- 
trance of the spinodal does not imply that the liquid be- 
comes unstable at low temperatures to gas-like fluctua- 
tions. The low-temperature fluctuations are the same that 
prompt the formation of the open ice structure. 

II. MOTIVATION FOR THE MODEL 

From the interpretation of experimental data,” as well 
as from detailed microscopic results provided by computer 
simulations, ’ l-t4 liquid water is viewed as an imperfect net- 
work of hydrogen bonds: regions with strong linear hydro- 
gen bonds intercalate with regions of distorted hydrogen 
bonds. While the low energy regions are characterized by 
tetrahedral coordination and a local density comparable 
with that of ice, the weakly bonded regions are character- 
ized by a higher local density and by higher molecular 
mobility. In typical configurations the molecules in high 
density regions have more than four neighbors in their first 
coordination shell, and significantly larger orientational en- 
tropy compared to molecules in the low density region.14 
Thus, the gain in orientational entropy serves to stabilize 
the higher density (and higher energy) configurations with 
respect to energetically more favorable low density struc- 
tures. A reflection of this mechanism is the persistence of 
the liquid state, even at temperatures at which the hydro- 
gen bond energy is considerably larger than the thermal 
energy. 

The above description of the liquid phase suggests that 
the transition from the solid to the liquid phase is driven by 
the rotational entropy gain associated with configurations 
of higher local density. Conversely, if we start at high tem- 
peratures where water behaves normally, similar consider- 
ations can explain the onset of anomalous behavior as the 
temperature is lowered; indeed, orientational entropy con- 
siderations are implicit in earlier work which describe wa- 
ter anomalies in terms of an increase in the concentration 
of four-bonded molecules,‘5 unstrained polyhedral spe- 
ciest6 or pentagonal ring structures’7-all of which locally 
reduce the entropy and also the density. The formation of 
these specific structures as the temperature is reduced can 
be interpreted as the weakening of the entropic advantage 
of higher density states. 

Thus, the inclusion of the entropic contribution asso- 
ciated with high density configurations is important for 
describing the behavior of water. Our purpose here is to 
develop a simple lattice-gas model incorporating these con- 
siderations. 

Ill. THE MODEL 

The basic features we want the model to incorporate 
are the following. 

( 1) The low temperature state (ground state) of the 
system should have an open, low density structure 
like that of ice. 
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(2) Linear hydrogen bonds can form between two 
molecules only when (a) the local configuration is 
open and (b) the participating molecules are 
properly oriented. 

(3) Increased local density with respect to the open 
structure must result in an increase in the (a) lo- 
cal energy and (b) the local entropy. The normal 
lowering of energy on increasing the number of 
neighbors is reversed in water due to the distortion , 
of hydrogen bonds. 

We describe the Hamiltonian constructed from these 
considerations in two steps. Also, for simplicity, we de- 
scribe the model for a two-dimensional square lattice. The 
corresponding three-dimensional lattice will be described 
at the end of this section. 

In the first step, we define a Hamiltonian that has, as 
its ground state, a low density configuration, with an open 
structure. We define an occupancy variable ni ( nj = 0 or 1) 
for each lattice site i. If ni = 1, lattice site i is said to be 
occupied by a molecule. If ni = 0, lattice site i is empty. 

In order to define the open structure, we partition the 
lattice into two interpenetrating sublattices, A and B, as 
shown in Fig. 1 (a). In the ground state configuration, one 
sublattice is completely occupied and the other is empty. 
The Hamiltonian Xl that describes such a ground state 
favors the occupation of adjacent sites on the same sublat- 
tice (AA or BB pairs) and disfavors the occupation of 
adjacent sites on different sublattices (AB pairs). Thus we 
define 

X,G -2E C ( ($J’ nink+ (Y) n$j) i k i 

b-1 
-WC 2 nf(l-nj). 

1 i 
(1) 

Here Zj= Zz 1 denotes the sum over all sites in the lattice, 
Xi&’ is the sum over the z neighbors of site i on the same 
sublattice > and ZqAB’ is the sum over the z neighbors of site 
i on the other s:blattice (if i is on sublattice A, j is on 
sublattice B and vice versa).‘* 

The first term in ( 1) describes normal liquid behavior, 
where the energy is proportional to the number of interac- 
tions. The second term describes the extra energy (if J> E) 
gained by the formation of a linear hydrogen bond in the 
open structure, where sites on only one of the sublattices 
are occupied.lg Thus, in the ground state, each occupied 
site has z interactions with occupied sites and contributes 
an interaction energy of - 2z( J+ E) . If we associate with 
each pair of occupied sites a “hydrogen bond,” then the 
energy of a single hydrogen bond is - 4 (J+ E) . 

The Hamiltonian (1) satisfies all the conditions stated 
above, except 2(b) and 3(b), both of which refer to the 
orientational state of molecules. Since the model Hamil- 
tonian Z1 so far contains no orientational degrees of free- 
dom, (i) the hydrogen bond is not yet defined subject to 
any condition on the orientational state, and (ii) when the 
local density increases by the occupation of an AB neigh- 
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AB interactions (-25 or -2s) + 

AA interac!ions (-2~) 

AA interactions (-2~) 

W  

AB interactions (-2J or -24 

FIG. 1. The division of the lattice into sublattices (A, B) and interactions 
of sites of the same sublattice (AA interactions) and different sublattices 
(AB interactions) are shown (a) for the two-dimensional square lattice, 
and (b) for the three-dimensional bee lattice. The A sites are connected by 
solid diagonal lines to form one of the diamond sublattices. The B sites are 
connected by long dashed diagonal lines to form the other sublattice. 
Note that sites at the center of two adjacent cubes belong to different 
diamond sublattices. The short dashes in the lower right cube indicate AB 
interactions and should not be confused with the lines representing the 
division into sublattices. The AA interaction strength is always - 2~ 
while the AB interaction strength is - 2.5 or - W  depending on the 
orientational state of the molecule. 

bor, there is no increase in entropy. Therefore we extend 
Zi to incorporate such orientational degrees of freedom. 

First, we must describe the orientational state of a mol- 
ecule. We  follow the spirit of Ref. 24 and associate with 
each occupied site i an additional (Potts) variable, oj, 
which can take values between 1 and q (ai = 1,2,. . .,q). We 
distinguish “bonding” from “nonbonding” orientations by 
associating a subset of possible values of oi with orienta- 
tions in which hydrogen bonding can take place. It is suf- 
ficient to choose this subset to be one specific value of oi, 
namely ai = 1, since what is significant is the ratio of de- 
generacies of bonding and nonbonding orientations. 

To include this orientational information, the extra en- 
ergy corresponding to the second term in ( 1) is present if 
and only if the occupied site i is in the properly oriented 
state, of = 1. To achieve this, we mu ltiply the second term 
in ( 1) by S,, , which is zero when aif 1. W ith this modi- 

’ fication, ( 1) becomes 

TABLE I. (a) Possible AA pair configurations and their interaction en- 
ergies. (b) Possible AB pair configurations and their interaction energies. 

ni ni Energy 

1 0 0 
0 1 0 
0 0 0 
1 1 -2.5 
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vi 
#I 

Any 
1 

ni Energy 

0 0 
0 * 0 
1 0 
1 -2.5 
0 -2J 

CAB) 
-a c  ni(l--nj&Ti*. (2) 

i j 

The interaction energies for all the AA and AB pair 
configurations with the relevant orientational information 
are summarized in Table I. Two noteworthy features are 
(i) the orientational state affects the interaction energy 
only of an AB pair of occupied and empty sites; (ii) since 
in such an AB pair configuration only one site is occupied, 
X2 does not contain any interaction term between the 
variables oi. The inclusion of orientational degrees of free- 
dom in this manner is sufficient to give rise to a difference 
between the orientational entropies of “hydrogen bond” 
interactions and other interactions.” 

We  illustrate the behavior of the system defined by the 
Hamiltonian (2) by inspecting the ground state of the sys- 
tem and some excitations above this ground state. In the 
ground state, only one of the sublattices (say A) is occu- 
pied, and each occupied site i is in the orientational state 
crj = 1. This configuration is shown in Fig. 2 (a). The energy 
per occupied site is -2z(J+e) with z=4. 

As illustrations of the behavior of the system, we con- 
sider excitations arising from changing the state of the sys- 
tem at one site, which can be of three types: (i) removing 
a molecule; (ii) adding a molecule; and (iii) changing the 
orientational state of a molecule. In all the three examples, 
the energy of the system increases. In case (i), the increase 
in energy is 2z(J+e) [Fig. 2(b)]. In case (ii), the energy 
increases by 2z( J - E), since the AB interaction energy 
changes from J to E [Fig. 2(c)]. Also, in case (ii), the 
entropy increases by k,log( q), since the added molecule 
can be in any of the q orientational states.‘l For case (iii), 
when the orientational state of a molecule changes, the 
increase in energy is 2zJ and the increase in entropy is 
kBlog(q - 1) pig. 2(d)].22 

The partition function written for X2 can, in the first 
approximation, be reduced to an effective lattice-gas parti- 
tion function by performing an approximate sum over the 
orientational degrees of freedom.23 In the resulting effective 
Hamiltonian, the AB interaction strength 4”( 3”) is 
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FIG. 2. The ground state configuration and three types of excitations that 
can occur over the ground state configuration. Only those diagonal bonds 
connecting to the central site are shown. The energies of interaction are 
indicated for an AB and an AA interaction between the central site and a 
neighboring site. (a) The ground state. Only one sublattice is occupied 
(filled circles) and all molecules are properly oriented for hydrogen bond 
formation (ui = 1). (b) Remouing a molecule. The site where the mole- 
cule is removed is indicated by an arrow. The energy change is equal to 
the energy per site in the ground state, 2z(J+ E) . (c) Adding a molecule. 
The energy increase results from the change in interaction with surround- 
ing neighbors from -2J to -2~ [cf. with (a)]. The entropy increase is 
logq. (d) Changing the orientational state of a molecule (u&l). The 
interaction energy with neighboring sites changes from -2J to zero. The 
entropy increase is log(q- 1). 

temperature-dependent, since it contains information about 
behavior resulting from the orientational degrees of free- 
dom. This effective Hamiltonian is given by 

MB) 
2?3=-qff(T) C C nisi 

i j 

(AA) 
-2E 2 c njnk- [.dJ( T) +kBT log q] 2 nj. 

i k i 

(3) 
Here, 

SJ( T) qff(T) 3~-2 .- i. ~. - - (4) 

is the effective AB interaction strength, while 

GJ(T)=Tlog l+;(Y/*BT-l) 
1 I 

(5) 

results from the approximate sum over variables ai in the 
last term of (2). 

The temperature dependence of the coupling 4” is 
shown in Fig. 3(a) for J=l, e=O.3 and q=12. These 
values will be used henceforth. At high temperatures, 
where the entropic effects dominate, the effective interac- 
tion approaches E - J/q since the orientational degeneracy 
for this interaction is high. As the temperature decreases, 

I I I I 1 
’ (a) 

.- 

.25 0.5 0.75 1 1.25 1.5 1.75 2 

:- 0.25 0.5 0.75 1 1.25 1.5 1.75 2 
TEMPERATURE 

FIG. 3. (a) The effective AB interaction strength G”(T) as a function of 
temperature (solid line). The dashed line corresponds to the value zero. 
The sign of the interaction changes at the temperature where the two lines 
cross. The temperature and the effective interaction are expressed in units 
of J. (b) (J, + J2)/2kBT as a function of temperature (solid line). Also 
shown is the value of l/z (dashed line). The two points of intersection 
correspond to critical points for liquid-gas coexistence. 

the effective coupling moves away from this value, eventu- 
ally crossing over to the opposite sign and approaching 
E-J as T approaches zero. We denote the temperature 
where the effective coupling is zero by T,, . 

Although here we carry out calculations within the 
framework of a lattice model, the notion of a temperature- 
dependent interaction does not depend upon a lattice 
model. That is, without reference to a lattice, we can un- 
derstand how a temperature-dependent interaction arises 
by noting that in a system where directional interactions 
are present, at high T the entropically favorable weak in- 
teractions are dominant in determining the effective inter- 
actions, while as T is lowered, the energetically favorable 
directional interactions become dominant. Thus, as T is 
varied, there is an effective change in the interaction. 

Before concluding this section, we define the model in 
three dimensions. We consider a bee lattice [Fig. l(b)], 
which can be subdivided into two diamond lattices A and B 
by assigning to the two sublattices alternating sites on each 
of the interpenetrating cubic lattices. Thus, any given site is 
surrounded by eight sites (at the vertices of the surround- 
ing cube), four of which belong to one sublattice and four 
to the other. We define nonzero interactions between each 
site and the sites on the surrounding cube. We define as 
before the interactions between sites belonging to the same 
sublattice (AA interactions) and between sites belonging to 
different sublattices (AB interactions). The model defined 
by these interactions exhibits the same phase behavior as 
the two-dimensional model above, and has a ground state 
with one of the diamond sublattices occupied and the other 
vacant. 
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IV. MEAN FIELD APPROXIMATION 

In this section, we study the effective Hamiltonian 
XX in the mean field approximation. The grand canonical 
partition function for the Hamiltonian (3) is 

EEexp(g) -exp(&) = 5 exp( -TBFNO). (6) 

Here ~,&+,~~~ Z&-, is over all configurations of the 
occupancy variables ni, N, is the number of occupied sites 
in a given configuration, ,U is the chemical potential, 0 the 
grand potential, and the volume V (on the left-hand side) 
given by the number of sites in the lattice. Making the 
standard mean field approximation for the grand potential, 
we write 

-($n,+rz,)l-T(S,+S.), (7) 

where nA, nB are the A and B sublattice densities and 
P’ = ,LL + z6J + kBT log(q). The interaction strengths 
J1 and J2 are given by J1 G 2~ - 6J and J2 = 2~. SA, the 
configurational entropy for molecules on sublattice A, is 

s,=-k,(~/2)[n,log(n,>+(l--n,)log(l--nA)]. 
(8) 

The’cotigurational entropy 5’~ for sublattice B is given by 
a similar expression. 

In the mean field approximation, the stable solution is 
given by the values of nA and ylg such that a is a minimum. 
For T > T,,, both J1 and J2 are greater than zero. Thus, 
to find the stable solution, we can look for the minimum fi 
in the (nA, nB> plane along the line defined by nA = nB 
= n, where n is the density. For T < T,, the search for the 
stability of the mean field solution must be performed in 
the entire plane, as described below. 

For T > Ttr, the grand potential becomes 

n=V{-z(JI+Jz)n2-,u’n 

+kBT[nlog(n)+(l-n)log(l-n)]). (9) 

The solution for the density n is given by the condition 

i act 
van=O=-2~(J~+Jz)n-~’ 

1-k&- log & . I 1 (10) 
Equation ( 10) is the familiar Bragg-Williams solution for 
the lattice gas, except that now the interaction strength is T 
dependent. The equation of state is the implicit equation 

Peq= --z(J1+Jdn$-k+Y log( 1 -neq), (11) 
where Pq is the equilibrium pressure and neq is the equi- 
librium density. 

To locate the critical point(s), we solve simultaneously 
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=o, 
T=T, 

( 124 

a2P i ) dn2 =o, 
T= T, 

(12b) 

with P given by ( 11). Equations ( 12) state that the P-Y 
isotherm for T = T, is characterized by a horizontal tan- 
gent and an inflection point when P = PC and n = n,. The 
solution of Eqs. ( 12) gives 

k,T,=z(JI+J2)/2, n,=1/2. (13) 

Thus, n has solutions other than n= l/2 (the disordered 
solution above the critical point) if z(J1 + J2)/2k,T > 1 
or, equivalently, if (J1 + J2)/2ksT > l/z. 

The temperature at which (J1 + J2)/2k,T = l/z de- 
fines the critical point(s) for the liquid-gas transition, be- 
low which phase separation occurs. Figure 3(b) shows 
(J1 + J2)/2kBT plotted against temperature, as well as the 
quantity l/z. Notice that (J1 + J2)/2kBT cuts l/z at two 
values, implying that the liquid-gas phase separation re- 
gion is bounded by two critical points, an upper and a 
lower one.24 The density of the liquid phase is l/2 at both 
critical points, implying that the density must pass through 
a maximum between the two critical points. The model 
displays a density maximum which is closely connected to 
the existence of two critical points. Interestingly, both the 
critical points appear at positive pressure, given by PC 
= k,T,[log(2) - OS]. Note also that the lower critical 
point is below Ttr, since kBTtr = 0.703 for the choice of 
parameters mentioned above. As we shall see, the ordering 
behavior of the system changes below T,,, and hence, the 
lower critical point is not in the stable region. 

To calculate the equilibrium liquid-gas line we use the 
equal-area construction, while we use the equation of state 
( 11) together with Eq. ( 12a) to calculate the spinodal line 
for the liquid-gas transition. For lower temperatures, the 
stability of solutions for which izA is different from nB must 
be investigated to define the correct coexistence lines. Sim- 
ilarly, the limit of stability calculated from Eq. (12a) could 
be pre-empted by instabilities in a direction perpendicular 
to the fiA = nB line, as discussed further in the following 
section. 

At T,,, the first neighbor coupling J1 changes sign, so 
below T,, we have repulsive AB and attractive AA interac- 
tions. In the Ising model mapping of the lattice gas, these 
interactions define a metamagnet.25 Metamagnets have an 
ordered antiferromagnetic (AF) state below the N6el tem- 
perature. Antiferromagnetic order in the metamagnet cor- 
responds to the low-density open structure in the lattice- 
gas system defined here. We shall refer to this low density 
ordered phase as the solid phase or ice.26 To discuss the 
solid phase as well as the liquid and gas phases, we need to 
consider Eq. (7), the grand potential expressed in terms of 
the sublattice densities. The equilibrium solution for the 
solid phase is then obtained by solving simultaneously ex- 
tremum conditions [like (lo)] with respect to the two 
sublattice densities. 
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FIG. 4. (a) The phase diagram of the model. The coexistence lines be- 
tween solid, liquid and gas phases are shown. The critical point for the 
liquid-gas transition is also shown. The pressure is expressed in arbitrary 
units. (b) The spinodals bounding the liquid phase. Note that the two 
lines meet smoothly at the triple point temperature. 

The equilibrium phase boundaries between the solid 
and the liquid/gas phases are found by comparing the 
grand potential for the respective solutions, the phase 
boundary being given by the condition that the grand po- 
tential CI for the two phases be the same. 

We then have three coexistence lines, one between the 
upper critical point for the liquid-gas transition and T,,, 
and two coexistence lines between solid and liquid or gas 
phases, respectively. These three coexistence lines meet at 
T,, . Since at T,, we have three-phase coexistence, we iden- 
tify (T,,P,,) as the triple point. Figure 4(a) shows the 
coexistence lines in the P-T plane. Note that the liquid- 
solid coexistence line has the negative slope expected for 
water at lower pressure values.27 

V. LIMITS OF STABILITY AND THE LINE OF DENSITY 
MAXIMA 

The limits of stability of the liquid phase can be ob- 
tained by locating the values of temperature and pressure 
where the metastable density value obtained from the ex- 
tremum condition for the grand potential ceases to be a 
minimum. To find the limits of stability also for T 
< T,,, we must study the stability of the mean field solu- 

tion for the liquid phase not only with respect to the gas 
phase [i.e., along the nA = nE line as calculated from Eq. 
(12)], but also with respect to states with nA different from 
nB2’ The limit of stability of the liquid is obtained by 
calculating the determinant of the Hessian for the grand 
potential and locating the pressures and temperatures 
where it approaches zero from above, 

(14) 

6 , I I I I 

L-S COEXISTENCE 
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FIG. 5. Coexistence lines, spinodal boundaries of the liquid and the line 
of density maxima in the liquid phase. Note that the line of density 
maxima meets the liquid-gas spinodal at the point of reentrance, and 
meets the liquid-solid spinodal at zero temperature. 

For the liquid phase (with nA = nB), the two solutions of 
(14) for the densities at the spinodal are 

l- 
2kBT I/2 

-1 1 z(J2fJd (15) 

The solution n, corresponds to the limit of stability with 
respect to the gas phase [and coincides with the solution 
calculated directly from Eq. ( 12) for temperatures other 
than T,], while the solution n- corresponds to the limit of 
stability with respect to the solid phase. Using these solu- 
tions in the expression for the equilibrium pressure ( 11)) 
we obtain the corresponding expressions for the spinodal 
values of pressure. We see from Eqs. ( 11) and ( 15) that 
the liquid-gas spinodal pressure would be nonmonotonic, 
since 2kBT/(JI + J2) is nonmonotonic. As discussed in 
Sec. IV, the nonmonotonicity in 2kBT/( J1 + J2) also leads 
directly to the existence of the density maximum. Thus, in 
the present model, the presence of density maxima and the 
reentrance of the spinodal are intimately related. 

Figure 4(b) shows these two spinodals in the P-T 
plane. Note that they meet tangentially at T,, . We find that 
the liquid-gas spinodal is the limit of stability above Ttr, 
while the liquid-solid spinodal is- the limit of stability be- 
low Ttr.2g We see that the liquid-gas spinodal is reentrant 
and varies nonmonotonically with temperature, exhibiting 
an extreme value at a finite temperature. 

Next, we study the locus of points where the density is 
maximum. Figure 5 shows the line of density maxima, 
together with the spinodal lines and the coexistence lines. 
We see that the end points of the line of density maxima 
meet the liquid-solid spinodal at the upper end, and the 
liquid-gas spinodal at the reentrance point. This is consis- 
tent with the predictions of Speedy and Debenedetti,435 
based on thermodynamic consistency. At the lower end, 
the slope of the liquid-gas spinodal is changed when the 
line of density maxima meets the spinodal. At the upper 
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FIG. 6. Magnetization at two constant magnetic field values, h=O (solid 
curve and filled circles) and h=0.2 (dashed curve and filled squares). 
The continuous lines in the figure are mean field results and the data 
points are from Monte Carlo simulation. Note that the qualitative behav- 
ior of the Monte Carlo simulation is the same as that of the mean field 
calculation. 

end, the liquid-solid spinodal and line of density maxima 
meet at T-O. The high pressure termination of the density 
maximum line is again consistent with the prediction of 
Speedy and Debenedetti. 

VI. NUMERICAL SIMULATIONS 

We have studied the model in the mean field approxi- 
mation in order to obtain the most detailed information 
about the system in the metastable region. We have done 
so, however, on the basis of prior research on the behavior 
of the system in various limits which shows that the mean 
field approximation can be relied upon to exhibit the cor- 
rect qualitative behavior. To obtain an indication of the 
quantitative accuracy of the mean field approximation, we 
performed Monte Carlo simulations of the Ising model 
(which corresponds to the present lattice-gas model) in 
three dimensions.30 

In Fig. 6 we show the variation of magnetization with 
temperature obtained from mean field calculations and 
Monte Carlo simulations of the three-dimensional model 
for two different constant field values. Figure 7 shows the 
magnetic susceptibility at constant field for the same values 
of the field. Note that in their qualitative trends the simu- 
lation results are similar to the corresponding mean field 
results. The simulations also reproduce the phase diagram 
calculated obtained from the mean field approximation. As 
expected, however, the critical point for the ferromagnetic 
transition is overestimated by the mean field approxima- 
tion. 

To confirm the reentrance behavior and the continuity 
of the limits of stability of the liquid phase, we performed 
simulations in the metastable regime for the corresponding 
Ising model. We determined the limits of stability by de- 
fining an arbitrary criterion for the lifetime of the metasta- 
ble phase (50 Monte Carlo steps). The locus of the limits 
of stability (or, more accurately, the locus of homogeneous 
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FIG. 7. Magnetic susceptibility from the mean field calculation (contin- 
uous lines) and Monte Carlo simulations (data points) for (a) magnetic 
field h = 0 and (b) magnetic field h = 0.2. As in Fig. 8, we see qualitative 
agreement between mean field and Monte Carlo results. Note that the 
magnitude of the susceptibility is lower for the higher magnetic field 
value. 

nucleation points) thus obtained is shown in Fig. 8, along 
with the corresponding mean field solution. It is evident 
that the limit of stability curve is reentrant, and forms a 
continuous boundary. We can further distinguish the na- 
ture of the limit of stability points by studying the phase to 
which the system decays when these limits are reached. 
The simulations confirm the statement above that below 
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FIG. 8. Spinodal lines from the mean field calculation (continuous lines) 
and homogeneous nucleation points from Monte Carlo simulations (data 
points). Note that the nucleation points from the simulations track the 
mean field spinodal. Also, at temperatures for which the liquid-solid 
spinodal is the limit of stability, the system nucleates to the solid phase, 
while at higher temperatures the spinodal and the nucleation are to the 
gas phase. The open circles indicate nucleation events to the solid phase 
and filled circles to the gas phase. 
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FIG. 9. (a) Density change at constant pressure. (b) Corresponding 
behavior of the coefficient of thermal expansion, which changes sign at the 
temperature of maximum density. 

Tt the limit of stability is the liquid-solid spinodal, while 
above Tt, the limit of stability is the liquid-gas spinodal. 

VII. RESPONSE FUNCTIONS 

The anomalies of water are described in terms of well 
known “anomaly indicators.” Apart from the density, 
these indicators are the various response functions one can 
study and measure. We now present mean field results for 
specific heats at constant volume and pressure, the isother- 
mal compressibility and the coefficient of thermal expan- 
sion. Figure 9(a) shows the density change for a constant 
pressure trajectory, while Fig. 9 (b) shows the correspond- 
ing coefficient of thermal expansion. We observe that the 
model displays a density maximum or, equivalently, a re- 
gion with negative coefficient of thermal expansion. Figure 
10(a) shows the behavior of the specific heats and Fig. 
10(b) the isothermal compressibility. The compressibility 
is nonmonotonic, increases on cooling, and decreases on 
compression. Although the qualitative behavior of these 
response functions is correct, they do not agree quantita- 
tively with experimental values. The density of the liquid 
phase compared to the density of the open ordered struc- 
ture is very different from the experimental ratio. 

These quantitative discrepancies are common for lat- 
tice models and other simplified models.31 However, the 
main feature of our model is that it exhibits the correct 
anomalous behavior for water. Further, where compari- 
sons can be made, simulations confirm our mean field re- 
sults. 

The “critical” properties at the supercooling or liquid- 
solid limit of stability found in the present model are dif- 
ferent from the properties near the superheating or liquid- 
gas limit of stability. In particular, there are no divergences 
in the isothermal compressibility near the liquid-solid 
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FIG. 10. (a) Specific heats at constant pressure (solid curve) and con- 
stant volume (dashed curve) along a constant pressure trajectory. Note 
that the specific heats increase upon lowering temperature and coincide at 
the temperature of maximum density from Fig. 9. (b) Isothermal com- 
pressibility along a constant pressure trajectory, which increases upon 
cooling-displaying anomalous behavior. 

spinodal. When the liquid becomes unstable with respect to 
the gas phase, there are divergences. This can be under- 
stood in terms of the nature of the instabilities at the two 
spinodals: 

(i) At the liquid-gas spinodal, the liquid state becomes 
unstable with respect to the gas along a direction of chang- 
ing density. The derivative of the pressure with respect to 
density approaches zero at the liquid-gas spinodal, result- 
ing in divergent compressibility. 

(ii) At the liquid-solid spinodal, the liquid becomes 
unstable with respect to “crystal ordering,” along a direc- 
tion orthogonal to density. The derivative of the pressure 
becomes zero along this orthogonal direction and hence 
the vanishing of the density derivative does not define the 
liquid-solid spinodal. Thus, the compressibility does not 
diverge. 

In the temperature range between the lower liquid-gas 
critical point and Ttr, the system becomes unstable with 
respect to the solid phase. Nevertheless, by extrapolating 
data to where response functions diverge, the liquid-gas 
spinodal “hidden behind it” can be deduced as the source 
of anomalies. 

VIII. CONCLUSIONS 

We have proposed a lattice model with behavior qual- 
itatively similar to that of water. We focused on the behav- 
ior of the spinodal limits to the liquid state, and the rela- 
tion of these limits to the line of density maxima-topics 
that have not been addressed sufficiently in previous lattice 
model studies. We showed that the liquid-gas spinodal is 
reentrant, and the line of density maxima meets the spin- 
odal at the point of reentrance (as required by thermody- 
namic consistency). We found that the me&table liquid 
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state is bounded by a spinodal at positive pressures as well 
as negative pressures. However, in the present model, the 
positive pressure spinodal is the limit of stability with re- 
spect to the solid state. The two spinodals form a contin- 
uous locus, but the %itical” properties of these two spin- 
odals are quite different. While the response functions 
(specific heat, compressibility) diverge at liquid-gas spin- 
odal, at the liquid-solid spinodal they do not, even though 
they tend to higher values in the same fashion as occurs 
near a liquid-gas spinodal. 

To our knowledge, the present model exhibits the first 
example of a liquid-gas spinodal that extends to positive 
pressures. We emphasize, however, that the physically rel- 
evant instability of the liquid upon supercooling is the 
liquid-solid spinodal. Thus, the supercooling instability in 
the present model, while consistent with known experi- 
mental results, is qualitatively different from those insta- 
bilities for which divergences in response functions are pre- 
dicted.4 

The present model explicitly demonstrates an intimate 
relation between the reentrant spinodal and density maxi- 
mum behavior. Both originate from the contribution of 
orientational degrees of freedom to the thermodynamics of 
the system. The present model also takes into account 
many essential microscopic features of water. By system- 
atic improvement, it should be possible to achieve better 
accuracy of description. We have studied this model as a 
first step toward understanding the interrelation between 
the microscopic mechanisms leading to anomalous behav- 
ior and the associated thermodynamic anomalies. 

In particular, the transition at high pressures to high 
density forms of ice should be reproducible within the 
framework introduced here. It is conceivable that such 
transitions would be present as ordering transitions of the 
orientational degrees of freedom in a modified model with 
interactions between orientational variables. Such a transi- 
tion has been observed in a previous model, but the tran- 
sition was found to be of second order.8 In future studies, 
we intend to address this and related questions pertaining 
to quantitative comparisons with water. 

In order to further test the utility of the present ap- 
proach, we will perform simulations of the full Hamil- 
tonian, including orientational degrees of freedom, to study 
the dynamics of the system. The properties that can be 
investigated with such simulations are (i) the lifetimes of 
hydrogen bonds and the restructuring of the hydrogen 
bond network,32 (ii) the diffusional behavior, both trans- 
lational and rotational (these can be studied through the 
calculation of time correlations of appropriate quanti- 
ties),33 and (iii) the fluctuations in energy.‘2,34 

An important connection that can be made through a 
further study of this model is with the percolation picture 
of anomalous behavior. 15735 The liquid-solid limit of stabil- 
ity occurs with respect to crystalline ordering. This corre- 
sponds to an increase in clusters of four-coordinated sites15 
as the spinodal is approached, suggesting that there would 
indeed be a percolation transition at the liquid-solid spin- 
odal. The clarifications made earlier regarding the diver- 
gent behavior of response functions at the liquid-solid 

spinodal would then apply to a percolation picture of 
anomalies as well, independently of the particular model 
presented here. 
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