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We develop a dynamical model for phase separation in a system with two disparate energy scales.
Monte Carlo computer simulations of this model reveal a “pinning” of the structure factor during
spinodal decomposition that obeys new scaling relations. We propose a mechanism for the pinning
which allows us to predict exact values for the pinning exponents. Finally, we discuss our model in

light of recent experiments.

PACS numbers: 64.60.Ak

Considerable recent interest has focused on spinodal
decomposition in a wide variety of physical systems. The-
oretical efforts thus far have mainly concentrated on un-
derstanding the behavior of models such as the Ising
lattice gas model [1], time-dependent Ginzburg-Landau
models [2], and, most recently, cell dynamical models [3].
These models have proven successful in elucidating the
basic spinodal decomposition process and have paved the
way for applications of these types of models to systems
with more complex interactions. Many experiments have
recently focused on systems where such interactions give
rise to phenomena that significantly alter the kinetics
of phase separation from the usual kinetics of spinodal
decomposition [4,5]. One example of a system that illus-
trates this principle is a solution of polymer chains that
are simultaneously cross-linking and phase separating in
poor solvent [5]. In the absence of cross-linking, the spin-
odal decomposition process is well understood, but phase
separation in the presence of cross-linking gives rise to
novel behavior. Here we develop a model for phase sepa-
ration in systems with two different interaction energies,
and show that a large difference between these energies
leads to a “pinning” of the time-dependent structure fac-
tor and simple scaling properties.

The model contains monomers and solvent molecules
on a lattice, with the key feature that nearest-neighbor
monomers can interact with two different energies [6]. We
assume that there are 2 “weak” bonding configurations
between monomers with interaction energy —J, and one
“strong” bonding configuration with interaction energy
—E. At any given time, each nearest-neighbor monomer-
monomer pair must independently be in one of these 241
possible bonding configurations.

During the course of the simulation, each bond is
updated according to the standard Metropolis Monte
Carlo (MC) scheme [7], by randomly choosing one of the
€1 4- 1 configurations and calculating the Boltzmann fac-
tor exp (—Ae/kpT), where Ac is the difference between
the final bonding energy and the initial bonding energy
of the pair. One MC step (MCS) includes an update
of all monomer-monomer pair interactions, as well as an
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attempted exchange of every nearest-neighbor monomer
and solvent pair via Kawasaki dynamics [7,8].

In the infinite time limit, this model recovers the equi-
librium properties of a model originally introduced to
describe weak gels [9], and in the limit Q — oo, where no
strong bonds ever form, recovers the kinetic properties
of an Ising lattice gas [1,10]. All of the simulations were
performed on a two-dimensional square lattice with 50%
of the sites occupied by monomers; this is the critical
concentration for this model.

The fraction of strong bonds present in the system in
equilibrium at a temperature T is

eE/kBT
eE/ksT +QeJ/kBT' (1)

np (T) =

We are interested in the regime E >» J and E > kgT,
where, for the duration of the simulation, a strong bond
rarely breaks. In this limit, the transition probability to
go from one of the J bonding configurations to the E
bonding configuration can be approximated by 1/, and
the probability to go from the E configuration to one of
the J configurations by zero. Thus, on the time scale
of our simulations, we are essentially placing bonds of
infinite strength between monomers at a rate 1/Q. At
T =oco,ny? =1/(1+ ) ~ 0 for large Q. Thus, following
a quench from T = co to T' = Ty, we expect (and verify
numericaily) that the fraction of strong bonds increases
with time as

np(t) = np}(To)(L — e/, 2

One probe in phase separation experiments is the dy-
namic structure factor, S{k,t), which contains informa-
tion on the time evolution of the various length scales
k~1. In ordinary spinodal decomposition, the character-
istic wave vector moves to smaller values of k following
a quench to the unstable region. One measure of this
characteristic wave vector is the first moment of S(k),
k1 =5, kS(K)/ 3, S(k) [10].

We performed quenches from T = co to a temperature
Tq = 0.88TFC, where kgT® = 0.567J is the critical
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temperature for an Ising lattice gas with J interactions
only. Figure 1(a) shows, for J =1, E = 10 and different
values of Q, the time dependence of k;. Note from Eq. (1)
that n;*(Tq) ~ 1 for all finite values of Q considered.

For the 1 = oo case, which describes the Ising lattice
gas since no strong bonds ever form, spinodal decompo-
sition proceeds in the usual manner, and we find that
for large £, k1 ~ t~® with & = 0.25 [1,11). However,
when (2 is finite, in the limit F > J where strong bonds
rarely break, we find that the phase separation process
separates into two distinct time regimes and

b~ (3)
1 const ,
where £« is the crossover time that separates these two

regimes [12]. For t < tx phase separation is indistin-
guishable from phase separation in the Ising lattice gas,

t<<tx ]
t> 1ty ,
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since very few strong bonds are present in the system.
For ¢ » ty, Fig. 1(b) shows that for large £2, the “frozen”
wave vector behaves as

krp ~ Q7% 4)
with ¢ = 0.17+0.01. Note that we expect to find scaling
of kp with Q only when 2 is large enough that phase
separation has reached the scaling regime before pinning
occurs.

Figure 1(c) shows that for large

tx ~ Q¢, (5)
with ¢ = 0.70 & 0.03.
Our results are consistent with the scaling form
ky ~ (), (6

2.0
15 |
i
~
10 1
0s |
T TS 10°
Q
50 [ . . : —
(d) a 3x1o:
. <>5X10‘
P N & 7X10
a0 o 10°
ao®,
g o°
9@ noOA
~10 | Sop
~
Sy
®
DSOO
s,
o%oqj o o
5 i k.
10* 10" 10° 10" 10°
Q¥

FIG. 1. (a) Double logarithmic plot of the first moment k; of S(k) against time for various values of 2, following a critical

quench to T = 0.887FC. The line through the @ = co data has slope 1/4. Each set of data is an average obtained from
independent MC simulations of five 256 x 256 lattices, spherically averaged. (b) Double logarithmic plot of k# vs Q [obtained
from (a)]. The line has slope 0.17. (c) Double logarithmic plot of x vs 2 [obtained from (a)]. The line has slope 0.70. (d)

Scaling plot of the data in (a), where k; is scaled by 2%, with ¢ = 0.17, and time t is scaled by 0¥, with ¢ = 0.70.
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with

__ ] const, tLty,
fa={2 15k ™

Note that this scaling form implies

¢ =va. (8)

Equation (6) also predicts that k; ~ Q~%g(t/Q¥), so
that the data of Fig. 1(a) should collapse if k; is scaled
by 7%, and ¢t is scaled by QY. Figure 1(d) shows that
all of the data with Q > 10* indeed collapse onto a. single
universal curve.

To understand the mechanism governing the pinning
as well as to predict the pinning exponents ¢ and 1, we
propose that the pinning of a typical growing domain of
weakly bonded monomers will occur when the radius £(t)
of the domain becomes of the order of the average spacing
between the strong bonds. If the bonds are randomly
distributed, the average spacing between them is of order
[ns(t)]~1/4. Thus at the crossover time,

[ro (£ )] 71/% ~ €(tx), (9)

where np(tyx) is the fraction of bonds in the system at
tx, &(tx) is the characteristic domain size at the crossover
time, and d is the system dimension. Since £ ~ k! ~ t2,
Eq. (9) implies that ny(tx) ~ tx*%. For large ©, Eq. (2)
implies that ny(tx) ~ tx /. Hence tx ~ Q¥, with

1
Y=1tod (10)
For a = 1/4 and d = 2, Eq. (10) predicts
Y =2/3, (11)

which agrees with the value ¢ = 0.70 4+ 0.03 found in
our simulations. Moreover, with ¢ = 2/3 and a = 1/4,
Eq. (8) predicts

¢=1/6,

which compares well with the simulation value ¢ = 0.17+
0.01.

The proposed mechanism is reminiscent of behavior
observed in systems with quenched disorder, where the
presence of quenched impurities affects the phase separa-
tion of the system [13]. The strongly bonded monomers
in our case act as quenched impurities since pairs of
monomers are not moved by Kawasaki dynamics [7]. We
propose that this idea can be used to explain pinning
phenomena recently observed in polymer gels. In one
experiment [5], phase separation and gelation occur si-
multaneously due to the different interaction energies
present in the system—one associated with the interac-
tion driving the phase separation of the polymer chains
from the solvent (van der Waals interactions) and a sec-

(12)

FIG. 2. Schematic representing the pinning criterion of
Eq. (9); the crosses represent strongly bonded monomers. The
onset of pinning occurs at the crossover time ¢t = ¢« when
the average spacing between these monomers, n, 1/d (which
is decreasing with time), becomes comparable to the average
domain size, £(t) (which is increasing with time).

ond, stronger, energy associated with the interactions
controlling the cross-linking (e.g., hydrogen bonding) be-
tween chains. This competition produces a pinning of the
phase-separating mixture because the formation of cross-
links between polymer chains arrests the phase separa-
tion of the chains from the solvent. In this experiment,
the gelation time at which a cross-linked network appears
precedes the crossover time at which the pinning occurs.
We suggest, therefore, that since the cross-linked polymer
chains belong to an infinite network, the cross-links are
immobile and act as quenched impurities with respect to
the chains. Additional phase separation beyond the gel
time should be limited by the mesh size of the gel which
in our model is the average spacing between “quenched”
or strongly bonded monomers (Fig. 2). These monomers
play the role of cross-links which in a gel are part of the
infinite network.

In conclusion, we have developed a dynamical model
of a system with two energy scales, and found that when
one energy is sufficiently strong, a pinning of the struc-
ture factor occurs during spinodal decomposition. This
pinning obeys new scaling relations and we have devel-
oped theoretical arguments that explain the nature of
this scaling. In subsequent work, we will explore the
generality of this model by applying it to a variety of
physical systems.
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