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Experimental and simulation studies of sound propagation in water have observed, at large wave 
vectors k (k > 0.25 A-‘), a longitudinal sound mode with a velocity of about 3500 m/s, more 
than twice the hydrodynamic sound velocity. The relation between the hydrodynamic sound 
mode and the high frequency mode has been the center of contrasting interpretations. In this 
paper, we report extensive molecular dynamics simulations designed ad hoc to explore the 
intermediate and low k part of the collective spectrum. We calculate the dispersion relations for 
longitudinal and transverse collective modes from 0.026 to 1 A-’ for a range of temperatures. 
At all temperatures studied, the sound velocity increases with k. At the highest studied tem- 
perature, the sound velocity changes from values comparable to hydrodynamic sound velocity to 
ones observed by neutron scattering experiments. We show that the viscoelastic approximation 
describes the data satisfactorily. We also perform normal mode analysis of quenched liquid 
configurations to obtain further information about the behavior observed at intermediate fre- 
quencies (Xl-100 cm-‘). We find further positive dispersion of the sound branch at these 
frequencies and indications which suggest the interaction of the sound branch with localized 
modes as the origin of such dispersion. 

I. INTRODUCTION 

The propagation of the sound in liquid water has re- 
ceived a lot of attention in recent years.‘-’ In particular, 
the dispersion relation at large wave vector k has been the 
subject of contrasting interpretations and is still a contro- 
versial topic. In the region of k>0.25 A-‘, both experi- 
ments and simulations observe a sound mode with a veloc- 
ity of about 3500 m/s, a velocity more than twice the 
hydrodynamic sound velocity. 

It has been suggested that this high frequency mode is 
a manifestation of collective excitations in patches of hy- 
drogen bonded molecules.’ According to this interpreta- 
tion, such excitations are distinct from the collective exci- 
tations observed at low frequencies and thus constitute a 
novel phenomenon arising from the hydrogen bonded net- 
work topology in liquid water. The ordinary sound mode is 
not observed in this region due to increased damping on 
increasing the frequency. The similarity in the values of the 
high k sound velocity and the sound velocity in ice has 
been offered as supporting evidence for this interpretation. 

An alternative interpretation has been proposed based 
on generalized hydrodynamic theory.2*6*7 In this interpre- 
tation, the behavior seen in water can be understood within 
the framework developed for normal liquids. The high 
sound velocity observed is seen as the result of a continu- 
ous positive dispersion in the region that is not observable 
either by neutron or by light scattering. The behavior of 
the system changes smoothly from the one characteristic of 
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viscous fluids to that of elastic materials. According to this 
interpretation, there is at most one sound peak in the dy- 
namic structure factor, with a damping related to the mag- 
nitude of the dispersion. The change by a factor of 2 in the 
value of the sound velocity in going from the hydrody- 
namic regime to k > 0.25 A-’ that is seen in water is un- 
usual, but can be related to the peculiar interaction be- 
tween water molecules, the hydrogen bonds. Support for 
this interpretation comes from the extrapolation to inter- 
mediate k of data extracted by molecular dynamics (MD) 
simulations. 

The two interpretations predict a completely different 
behavior in the region not accessible to experiments. The 
wavelengths of light and of neutrons do not allow direct 
observation in the relevant part of the (w,k) plane. 

MD simulations have been a powerful tool for analyz- 
ing collective excitations. In fact, the high frequency mode 
was observed first in a MD simulation with the ST28 po- 
tential and was confirmed by experiments only a few years 
later. One expects that the previously described interpreta- 
tions could be tested by MD simulations with some repre- 
sentative potential. Such efforts have been limited by the 
difficulty of simulating large systems (i.e., small k) for very 
long times (i.e., low frequencies). Previous MD simula- 
tions with up to 500 molecules have confirmed the capa- 
bility of many model potentials to reproduce the experi- 
mental high velocity branch, but have not been able to 
distinguish convincingly between the two interpreta- 
tions *-4,8,9 

In this paper, we describe an extensive set of MD sim- 
ulations designed ad hoc to explore the low k part of the 
collective spectrum. We calculate longitudinal and trans- 
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verse collective modes in the range 0.026 to 1 A-‘, a range 
extending to k values more than ten times smaller than 
previously reported analyses. By studying a rectangular 
box containing 2988 water molecules at five different tem- 
peratures for times of about 400 ps each, we are able to 
cover the region where the sound velocity changes. To 
obtain more information about behavior observed at inter- 
mediate frequencies (50-100 cm-‘; 1 cm-‘=0.03 THz 
=0.1885 ps-‘), we also perform normal mode analysis of 
quenched liquid configurations. 

The results we obtain suggest that the viscoelastic ap- 
proximation (VA) describes the transverse collective exci- 
tations very well, excitations whose peaks are confined be- 
low 50 cm-‘. The collective longitudinal excitations are 
also well described by the viscoelastic approximation for 
small k, when the propagation peaks are again below 50 
cm-‘. Between 50 and 100 cm-‘, the frequency range in 
which the G-G-G bending mode has previously been re- 
ported,’ normal mode analysis of quenched configurations 
suggests that localized modes present in the liquid may 
produce additional dispersion and be relevant to under- 
standing sound propagation in this frequency range. 

II. COMPUTATION DETAILS AND DEFINITIONS 

Simulations are performed at five different tempera- 
tures for a system composed of 2988 molecules in a rect- 
angular box of dimension 234X 19.5 X 19.5 A. The density 
is fixed at 0.998 g/cm3 for all the simulations. Molecules 
interact via the TIP4P potential,” a two body rigid model 
that was previously used to study the region with k > 0.3 
A-1.3 Simulations were performed in the constant number 
of molecules, volume, and energy (NVE) ensemble. The 
integration time step was 1 fs and the reaction field tech- 
nique was applied to take long range interactions into ac- 
count. For each temperature, two or three simulations 
were performed to improve the statistical accuracy. After 
the equilibration period, configurations were saved on disk 
every 0.075 ps. This time interval fixes the upper limit on 
the frequencies that can be studied and is chosen as a com- 
promise between the need of storing velocities and coordi- 
nates of the molecules and the need of performing long (up 
to 400 ps) simulations. The memory required to save about 
300 ps with a 0.075 ps interval between configurations is 
about 1 GB, the size of the hard disk mounted on the IBM 
590 RISC 6000 workstation on which these simulations 
were performed. Each run required about two months of 
central processing unit (CPU) time. 

The collective properties are most conveniently studied 
in terms of Fourier components of the density and current 
correlation functions.“*‘* In a system with N molecules, 
the number density p and the current j at time t are given 
by 

p(d) =+ iz, S[r-ri(t)l9 (2.1) 

jW> =f iz, Vi(t)S[r-ri(t)l, (2.2) 

where ri( t)and Vi(t) are the center of mass (c.m. ) position 
and the velocity of molecule i and the subscript a indicates 
the Cartesian components of jk and vi. The corresponding 
Fourier transforms are 

nk(t) =f js, eiksricr), 
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(2.3) 

jdf) =f jzN %(t)e lk’ri(t)- 

The power spectrum of nk( t), 

(2.4) 

S(b) = ( Idm) I *>, (2.5) 

is the dynamic structure factor, the quantity most com- 
monly reported in neutron and light scattering experi- 
ments, as it is proportional to the measured differential 
scattering cross section. The integral over o of S(k,w) 
gives the static structure factor S(k), which in the limit for 
k-0 yields the isothermal compressibility. From the fre- 
quency spectra of j, and j, one defines 

J&w) = ( I&(a)i~(w) 1). (2.6) 

From J&k,w), the longitudinal JI and a transverse J, cur- 
rent correlation functions are obtained using 

Ja,y=+$J,(k,w)+(Scg-F)J,(k,w). (2.7) 

The longitudinal component J[(k,w) is related to S(k,w) 
via the rigorous expression 

JI( k,o) =a*,!?( k,o)/#. (2.8) 
The transverse current gives information about the trans- 
verse collective excitations. In a viscous liquid, the trans- 
verse current fluctuations will dissipate through diffusive 
processes [i.e., a single peak centered at w=O in J,(k,w)], 
the rate of dissipation being governed by the shear viscosity 
coefficient. In viscoelastic fluids, the onset of elastic behav- 
ior at large k is associated with the appearance of peaks at 
finite w values in the transverse current power spectrum. 

The data presented in this article are obtained by cal- 
culating the longitudinal and transverse components of 
jkcl( t), i.e., with (r parallel and orthogonal to k, directly 
from the MD trajectories. Then the power spectrum of the 
selected quantities is evaluated numerically using the max- 
imum entropy method.13 To ensure that the features ob- 
served are not spurious, these spectra are studied in con- 
junction with straightforward calculations using the 
Wiener-Khinchin theorem. Spherical k averages have been 
used, where possible, to improve the quality of the data. 

Ill. THERMODYNAMIC DATA 

In this section, we report some basic bulk quantities 
calculated from the MD trajectories. Such a comparison 
with available experimental data allows a better framing 
(in the P-T plane) of the simulated data. 

In Fig. 1, the simulated data ( +‘s) are compared with 
the corresponding values (full lines) as given by the Haar, 
Gallagher, and Kell (HGK) equation of state.14 In Fig. 
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FIG. 1. A comparison of thermodynamic quantities obtained from the TIP4P simulation with values from the HGK equation of state at a constant 
density of 1 g/cm’. The simulation data are represented by +‘s, while the HGK values are shown as continuous lines. (a) Pressure along the isochore; 
(b) the constant volume specific heat; (c) the isothermal compressibility; and (d) the hydrodynamic sound velocity. 

1 (a), the temperature dependence of the pressure P is 
shown. Interestingly enough, the TIP4P potential does 
show a temperature of maximum density (TMD) [or a 
minimum of P(T) along an isochore] around T=250 K, 
about 27” below the experimental minimum. The increase 
in P for temperatures higher than the TMD is related to 
the increased probability for molecules to probe the repul- 
sive part of the potential due to increased kinetic energy. 
The increase in P for temperatures lower than the TMD is 
instead due to the progressive formation of strong linear 
hydrogen bonds (HBs) and the formation of regions of 
tetrahedrally coordinated molecules with low local den- 
sity.” In Fig. 1 (b), the temperature dependence of the 
constant volume specific heat C, is shown (calculated ac- 
cording to Ref. 16). In Fig. 1 (c), the temperature depen- 
dence of the isothermal compressibility K~ is shown, cal- 
culated from the low k limit of the structure factor. Note 
that the simulation data (as well as the HGK values) do 
not show the well-known minimum of K~ at 46 “C since our 
simulations are performed at constant volume and nor con- 
stant pressure. In the range investigated, K= along an iso- 
chore is a monotonic function of temperature, increasing 
with decreasing temperature. Last, in Fig. 1 (d) , the adia- 
batic sound speed obtained from the combination of K~, 

C,, and the thermal pressure coefficient r,{ = (dP/dT) “} 
is shown. The calculation of yU and C, by fitting the tem- 
perature dependence of the pressure and the total energy 
are consistent with the values obtained from the analysis of 
the corresponding fluctuations. The simulation values for 
the sound velocity show the correct (qualitative) temper- 
ature dependence. 

For all the quantities shown in Fig. 1, a qualitative 
agreement with the corresponding experimental quantities 
is observed, but with a less pronounced change on super- 
cooling. Indeed, while in real water the structuring of the 
HB network overcomes the normal thermal expansion be- 
low 4 “C (as evidenced by the decrease of density on cool- 
ing ), in TIP4P, such equilibrium is found at about - 23 “C. 
Moreover, the curvature of the P-T isochore on the low T 
side and the amount of increase in compressibility on low- 
ering the temperature show that anomalous behavior is un- 
derestimated in TIP4P. As a first approximation, the ex- 
istence of the temperature shift has to be taken into 
account in comparing experimental and calculated data, in 
particular, if the comparison involves quantities related to 
the underlying HB network.” If the temperature axis for 
the simulation data is shifted so that the simulation TMD 
coincides with the experimental TMD [see Fig. 1 (a)], con- 
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FIG. 2. The static structure factor measured from the TIP4P simulations. 
The temperature values are shown on the graphs. 

siderably better quantitative agreement between experi- 
mental and simulation data is obtained. In summary, the 
comparison of thermodynamic data indicates that the sim- 
ulations are reliable regarding the qualitative trends in be- 
havior, but good quantitative agreement is not found. Ac- 
cordingly, we do not base any statements below that 
require strict quantitative agreement of simulation data 
with experimental results. 

In Fig. 2, the static structure factor at five different 
temperatures are shown. Comparing these results with the 
experimentally measured structure factor at low k is by 
itself particularly important. From a small angle x-ray 
scattering study for k > 0.15 A-‘, Bosio et al. 18*19 esti- 
mated that density fluctuations with a length scale of 8 A 
were present in supercooled water. A more recent study by 
Xie et aI.” to lower k values (k > 0.05 A-‘) indicates that 
correlation lengths are considerably smaller than reported 
by Bosio et al, and furthermore, the variation with tem- 
perature is also small. Since this measurement has impor- 
tant implications to the understanding of supercooled be- 
havior, a comparable MD study is very desirable. Indeed, 
no comparison between simulations and experiments have 
been ever performed due to the small k-vector required. 
Although performed at constant volume, the present sim- 
ulations confirm that at high temperature, S(k) is almost 
flat in the region below 0.4 A-’ and that a very weak 
minimum in the static structure factor develops when the 
temperature is much smaller than the TMD value. Com- 
pared to the experimental data in Ref. 18, the minimum is 
much less pronounced. This difference could be due par- 
tially to the isochoric path of the simulated systems that 
produces an increase in pressure below the TMD and the 
associated decrease of the compressibility. While the data 
presented here are not accurate enough to make reliable 
estimates of the low k line shape and correlation lengths, a 
reliable estimate of the intercept at k=O can be extracted 
and used to estimate the compressibility and the hydrody- 
namic sound speed. 

IV. GENERAL OVERVIEW 

Before entering a formal discussion of the k and w 
behavior of longitudinal and transverse excitations, data at 

5 15 ” 5 15 

frequency (cm-‘) 

PIG. 3. Transverse and longitudinal current correlation functions J,( $0) 
and J,(k,o) for various temperatures at a low k value /c,,=O.O537 A-‘. 
J;s are shown in the left column and J,‘s are shown in the right column. 
The vertical lines in the right column indicate the position of the peak 
expected if there is no positive dispersion, given by the product of k, and 
the hydrodynamic sound velocity shown in Fig. 1 (d) . The frequencies are 
given in cm -’ (1 cm-‘=0.03 THx=0.1885 ps-I). 

one fixed small k value are presented to get a broad view of 
the physical processes occurring in the liquid. In the same 
spirit, the frequencies for characteristic molecular modes 
are mentioned. 

Figure 3 shows the longitudinal and transv:rse com- 
ponent at different temperatures for k=Od0536 A-‘, cor- 
responding to a wavelength of about 120 A. For JI at each 
temperature, a vertical line denotes the peak position that 
would be expected, for the TIP4P potential, if no positive 
dispersion were present. 

It is seen that on decreasing the temperature, the mag- 
nitude of the dispersion for the longitudinal mode (as in- 
dicated by the distance between the line and the peak) 
increases strongly. The transverse currents display behav- 
ior consistent with the longitudinal currents. The width of 
the J,(k,w) peak increases significantly on lowering the 
temperature and develops below 270 K into a peak cen- 
tered at a nonzero frequency. Thus, even at a length scale 
of 120 A, collective transverse excitations are observed in 
the simulation, indicating an elastic component in the gen- 
eralized viscosity. 

Figure 4 shows the dispersion relations obtained from 
the peak positions in JI( k,w) . The velocities obtained from 
dividing the frequencies by the corresponding wave num- 
bers are shown in Fig. 5. It is clear from these figures that 
a continuous change in velocities is observed in the studied 
range of k values, and the velocity values span a wide 
range, reaching values comparable to the hydrodynamic 
velocity at the smallest k values. Thus, the data presented 
in these figures offer very clear evidence that there is indeed 
only one propagating longitudinal mode, suggesting fur- 
ther that the origin of the high velocities observed is vis- 
coelasticity. Experimentally, the longitudinal velocity mea- 
sured using Brillouin scattering at - 10 “C! is found to be 
higher than the velocity obtained at ultrasonic frequen- 
cies,21 corroborating the simulation results. From the ve- 
locities at lower k values [since they are higher than the 
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FIG. 4. Dispersion relations for longitudinal sound obtained from the 
peak position of J,(k,o) for T=225 (0); 240 (Cl); 270 (A); 320 (0); 
and 370 K (crosses). The same notation for the temperatures will be used 
in all the following pictures when data for different temperatures are 
shown together. 

FIG. 6. Transverse current correlation functions J,(k,o) from the MD 
simulations (solid lines) for T= 240 K. The fits obtainfd from Eqs. ( 5.1) 
and Eq. (5.3) are shown as dotted lines. b=O.O268 A-‘. 

hydrodynamic sound velocities shown in Fig. 1 (d), espe- 
cially for the lower temperatures], it may be inferred that 
positive dispersion has begun to occur at lower k values 
than the ones studied here. This, however, does not dilute 
the evidence presented, since positive dispersion continues 
well into the k regime studied. Thus, a viscoelastic analysis 
of the data is in order, which is taken up next. 

It is also worth noting, in anticipation of the discussion 
in the following sections, that the frequency region shown 
in Fig. 3 is below the frequencies corresponding to the 
lowest o peak in the density of states (DOS) (see, e.g., 
Figs. 12 and 13 in Ref. 22). This peak, centered - 60 
cm -‘, is usually associated with the O-O-O bending 
modes.23 It has also been interpreted (controversially) in 
terms of transverse acoustic modes propagating in hydro- 
gen bonded patches of water molecules.24925 Higher w 
peaks, centered at 180 and 250 cm-‘, have been associated 
with O-O stretching modes. These modes are the main 
“localized” modes that shall be of interest in the following 
discussion. Below 60 cm-‘, no interference between the 
acoustic modes (longitudinal and transverse) with local 

molecular modes of O-O-O bending or O-O stretching 
can be invoked to explain the positive dispersion previously 
discussed. 

On the basis of the data reported in Figs. 3 and 4 and 
the considerations discussed, we try to apply viscoelastic 
theory to the data extracted from our simulations. 

V. CURRENT CORRELATION FUNCTION-THE 
TRANSVERSE O-50 cm-’ 

Figures 6 and 7 show the transverse current function 
J,( k,o) for selected k vectors at two selected temperatures 
T = 240 and 320 K (full lines). J,( t,w)‘s for k larger than 
a temperature dependent k value display a peak at finite 
frequency. The presence of such a peak is a clear indication 
of the propagation of shear waves in the medium. The 
dispersion relation for the transverse propagating modes is 
shown in Fig. 8. It is observed that at very low tempera- 
ture, transverse modes exist down to the smallest k vector 
accessible in the present simulation. Thus, liquid water be- 

5 75 25 75 25 75 25 75 25 75 25 75 

frequency (cm-‘) 

FIG. 7. Transverse current correlation functions J,(k,o) from the MD 
simulations (solid lines) for T= 320 K. The fits obtained from Eqs. (5.1) 
and (5.3) are shown as dotted lines. &=0.0268 A-‘. 

FIG. 5. Velocities obtained by dividing the peak frequency values in Fig. 
4 by k. The velocities change continuously for all temperatures shown. 
Symbols are the same as in Fig. 4. 
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FIG. 8. The dispersion relations for the transverse sound modes at dif- 
ferent temperatures. At high temperatures, no propagating mode exists at 
low k values. Symbols are the same as in Fig. 4. 

haves like a viscoelastic solid on length scales of 100 or 
more A at low T (240 K). In experiments, the transverse 
mode is not seen even though CP-Cy, making such an 
observation favorable. From our data, at the lowest T 
(which is 25” below the simulation TMD), the transverse 
peak appears for k-O.04 A;-‘, which is a much larger k 
than is spanned in light scattering experiments. On increas- 
ing the temperature, the average length over which trans- 
verse excitations are able to propagate decreases, reaching 
about 10 A at 370 K. The transverse velocity at small k, as 
measured from the slope of the dispersion relation, is found 
about 1300 m/s for all the temperatures, and decreases on 
increasing the wave vector. The value 1300 m/s for the 
transverse velocity is to be compared with the value 1900 
m/s found in polycrystalline hexagonal ice for the propa- 
gation of transverse modes.26 It is worth noting that the 
sound speed for the transverse acoustic branch calculated 
from simulations of ice I,, using TIP4P along the crystal- 
lographic directions (OOOl), (llzO), and (0170) is very 
close to the experimental values.27 

The observed behaviors of J,(k,t) and v,(k) are ana- 
lyzed below in terms of generalized hydrodynamics. On 
going from the hydrodynamic limit to the finite k and w 
regions, the kinematic viscosity coefficient V, which in the 
hydrodynamic limit controls the damping of the nonprop- 
agating transverse excitations, becomes a function of k and 
o. Following the conventional treatment for normal liq- 
uids,” J,( k,w) in the acoustic region is expressed as 

J,(k,w) =2u; 
k+W,d 

[O+k2K:‘(k,0)12+[k2K:(k,o)12’ 
(5.1) 

where the unknown k and o dependence of the kinematic 
viscosity is transferred to the K’ and K” functions. The 
correct hydrodynamic limit is ensured by the condition 

lim lim K:(k,w) =Y. 
o-0 k-0 

(5.2) 

10 

wove vector (A-‘) 

FIG. 9. Values of wl,( k) obtained from the fits of J,( k,o). Unlike the 
peak frequencies shown in Fig. 8, o10 values do not show appreciable 
change with temperature. Symbols are the same as in Fig. 4. 

It can be shown that K’ and K” are the real and imaginary 
parts of the memory function K that controls the evolution 
of J,(k,w). The simplest approximation for K(k,t) is a 
single exponential decay 

K(k,t)=K(k,O)exp[ -t/Tt(k)]. (5.3) 

For atomic liquids, initial conditions require the t = 0 value 
of the memory function to be 

K(k,O) =&(k)/k4, (5.4) 

where w:=(k) is the second frequency moment of the cur- 
rent correlation function J,( k,w). In an atomic system, 
wt,( k)/k can be thought of as the velocity of propagation 
of transverse excitation if the damping due to viscosity is 
negligible (wr> 1) . Roughly speaking, the finite frequency 
peak position is an indication of elastic behavior, while the 
distance between the peak position of the transverse exci- 
tation and wt,( k) is an indication of the presence of viscous 
effects. 

In a molecular liquid, modes present at frequencies 
higher than the frequency range of the sound propagation 
contribute to the formal expression of the second frequency 
moment of the current correlation function. Thus, even to 
the extent that it is valid for atomic liquids, the one expo- 
nential functional form for the memory function K in Eq. 
(5.4) is not a good approximation for a molecular liquid. 
Hence, in the following discussion, we consider wta as the 
normalized second frequency moment of the acoustic part 
of Jt and retain the subscript a on eta as a reminder. 

The numerically calculated J,‘s are fitted to the above 
expression in the range O-100 cm-’ by finding the least 
square minimum in the parameter space defined by rt and 
K(k,t=O). The curves obtained by the fit are shown su- 
perimposed on the numerical data in Figs. 6 and 7. The 
quality of the fit is very good, even though there is room for 
further improvement. 

The fitted values of w,(k) and rl( k) are shown in 
Figs. 9 and 10. Note that the o,(k) values at small k are 
temperature independent over a large k range. The velocity 
obtained from the slopes in Fig. 9 is - 1450 m/s, which has 
to be compared with the - 1900 m/s value observed in ice. 
The fact that the fitted w,(k) values are temperature in- 
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FIG. 10. Values of relaxation or decay times r,(k) obtained from fitting 
J,( k,w). The 7, values increase on decreasing k and T. The continuous 
lines are drawn as a guide for the eye. Symbols are the same as in Fig. 4. 

dependent strengthens the validity of the fit as well as the 
interpretation of w,(k)/k in terms of the velocity of prop- 
agation of high frequency transverse excitations. The fitted 
values for rt( k) (which is a measure of the inverse width of 
Jt) are a decreasing function of k and T, in agreement with 
the interpretation of T,(k) as the lifetime of the collective 
excitation.* 

Before concluding this section, we note that a better 
approximation for K(k,t) is to express it in terms of two 
exponentials.7V28 Such a form does indeed give better fits to 
the data and further avoids the need for treating the acous- 
tic part of J(k,o) separately. However, we find that very 
different sets of fitting parameters produce fits of the same 
quality. Hence, we prefer to present only the simpler and 
less ambiguous single exponential fit. We stress, however, 
that the single exponential approximation has to be con- 
sidered as the first approximation to K(k,t). 

VI. LONGITUDINAL CURRENT CORRELATION 
FUNCTION 

The description of longitudinal fluctuations in a liquid 
is more involved than that of transverse fluctuations. Even 
at the hydrodynamic level, the longitudinal modes are 
more complex than the transverse ones. Ad hoc assump- 
tions are often needed to get a reasonable agreement be- 
tween calculated and measured dynamic structure factors, 
even for simple liquids. As done for J,( k,w ), JI( k,o) is also 
expressed in terms of the single exponential memory func- 
tion to clarify the meaning of the computed quantities. 
Requiring the correct limit for the hydrodynamic regime 
and the correct sum rules, JI( k,o) can be written as 

J’(k’w)=u : 
w2#D’ (k,w) 

[w2- [ (ku,,)2/S(k)]+o#D”(k,w)]2+ [wk2D’(k,o)]2’ (6.1) 

where D’ and D” are functions which determine, respec- 
tively, the damping and dispersion in the longitudinal cur- 
rent fluctuations. The k and CO dependencies of the trans- 
port coefficient which controls JI is transferred in the 
unknown D’ and D” functions. The simplest approxima- 
tion for D’ and D” are derived from assuming a single 
exponential function for the shear relaxation mode. In this 
approximation, we have 

D’(b) =(~~::v~+02~~k2)~+~~(k,0) & I 
(6.2) 

and 

D”(k,w) = -(;+;;” w2+ (;Tk2)2 

o<(k) 
-af(k90) G&p) 

with 

DEW Wk,O) =--& . 

I 

quency moment of the acoustic part of JI( k,w). 01~ is pro- 
portional to the high frequency elastic constant c,,(k).” 

The associated dispersion relation is given by 

(kvo)’ 
a2--++Wk2D”(k,w) =O. 

S(k) 
(6.5) 

By standard algebra, this expression can be written in the 
limit w> DTk2 as 

dW2=coW2+ [c, (k)2-co(k>21 [ 1 +o2+ckj 1 (6.6) 

with 

(6.7) 

(6.3) and 

2 

r,(k)‘=y . (6.8) 

(6.4) 

Here, D, is the thermal diffusivity, y is the ratio of the 
specific heats, and &(k) is the normalized second fre- 

Here, c,(k) is the generalization at finite k of the ordinary 
sound velocity and c, is the high frequency sound speed. 
Again, c, is the sound velocity that would be observed if 
the viscous contribution is negligible (WT) 1). 
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frequency (cm-‘) 

FIG. 11. Longitudinal current correlation functions J,(k,w) from the 
MD simulations (solid lines) for T=240 K. The fits obtained from Eqs. 
(6.1) and (6.4) are shown as dotted lines. ke=0.0268 A-‘. 

The numerical data for J, are fitted to the form de- 
scribed with & and rz as the fitting parameters. The fitted 
curves for Jl are shown superimposed on the numerical 
data in Figs. 11 and 12 for two temperatures T= 240 and 
320 K. The fitted values of w,(k) and q(k) are shown in 
Figs. 13 and 14. It is seen that T[(k) increases as k de- 
creases and further increases in amplitude as the tempera- 
ture is lowered. This is well in accordance with the ex- 
pected behavior. As in the case of the transverse current 
correlations, the value of wfa from the fit is temperature 
independent in the small k range. At higher k, cola seems to 
become temperature dependent. This temperature depen- 
dence could reflect the differences between local structures 
of the liquid at different temperatures, differences which 
become amplified when k becomes comparable to the short 
range order, or it could be due to the breaking of the single 
exponential fit approximation. 

From the data presented in the foregoing sections, it is 
seen that the viscoelastic approximation describes fairly 
adequately the behavior of both longitudinal and trans- 
verse sound propagation. It is seen that for the studied k 
values, which span a wide range of propagation velocities, 

k-3kO k-;&a 

-11 

<=*lko k=24kO 

,o 150 50 1% 

k=Ska k-12kO k 1 Sk.2 

E 

k=27ka k-30ko !s=33to 

50 150 50 150 50 1x 

frequency (cm-‘) 

wave vector (A-‘) 

FIG. 13. Values of o,,( k) obtained from fitting J,( k,o). cola values do not 
show appreciable change with temperature except at high k. Symbols are 
the same as in Fig. 4. 

only one longitudinal sound mode is present. Furthermore, 
the k-0 limits of wl,/k and w,/k give satisfactory values 
for the high frequency sound velocity. 

In the previous discussion, we have pointed out that 
wla and o, are the second moments of the acoustic part of 
JI and Jt. Indeed, in a molecular solid, Jl and Jr have 
contributions also from the presence of excitations different 
from the acoustic ones, i.e., from the localized (“optical”) 
excitations. These modes, although they are characterized 
by a very low intensity, are amplified by the w2 factor on 
calculating the second moment and thus add their own 
contribution to the total 0: and w: (see Appendix A). As 
a result, wl(k)/k and w/(k)/k cannot be thought of as 
velocities of propagation for the longitudinal and trans- 
verse acoustic modes, as in simple liquids, and have to be 
replaced in the first approximation (i.e., neglecting cou- 
pling between acoustic and other modes) by their acoustic 
part. For a molecular liquid with pair additive interactions, 
w,(k) and wI( k) are given in terms of the pair distribution 
functions g&r) and the pair potentials u,@(‘)~ as 

-1 k=36ta 
50 150 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

wave vector (A-‘) 

FIG. 12. Longitudinal current correlation functions J,(k,w) from the FIG. 14. Values of relaxation or decay times r,(k) obtained from fitting 
MD simulations (solid lines) for T= 320 K. The fits obtained from Eqs. 
(6.1) and (6.4) are shown as dotted lines. k,,=O.O268 I%-‘. 

J,(k,o). The r, values increase on decreasing k and T. Symbols are the 
same as in Fig. 4. 
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FIG. 15. o,(k) and w,(k) at different temperatures. Symbols for the 
different temperatures are the same as in Fig. 4. 

o;(k) =3kzu;+; c 
aB s 

d3rg&) 

d2Q?(‘) 
x t&$--cos(~) 17 

and 

The study of structural and dynamical properties of 
liquids through the study of quenched configurations or 
“inherent structures” is based on the following intuitive 
picture of the liquid state: The liquid at any instant resides 
in an approximately harmonic potential energy minimum 
(in configuration space) and the microscopic motion may 
roughly be described on short time scales as being oscilla- 
tory. Such oscillatory motion is periodically interrupted by 
jumps from one minimum of the potential energy hyper- 
surface to another. Stillinger and Weber30-32 tested this 
intuitive picture of liquid dynamics in simulations where 
quenched structures were obtained from successive config- 
urations in a MD simulation of the liquid. The time evo- 
lution of the potential energy minimum values they found 
showed evidence for the phase point describing the system 
moving in the manner described above. On the basis of this 
simulation work, Zwanzig33 formulated a simple argument 
for obtaining the diffusion constant and the velocity auto- 
correlation function in terms of the vibrational frequencies 
around the minima and hopping frequencies over barriers. 
More recently, calculations have been performed to relate 

(6.10) the diffusive behavior in the liquid to the imaginary fre- 
quencies obtained in the normal mode analysis of instan- 
taneous liquid configurations.34’35 The study of quenched 
configurations has been applied to the case of water to 
study in detail the harmonic dynamics3’ and the local mo- 
lecular structure.36 

Here n is the number density, iU is the molecular mass, U: 
is the thermal velocity (u$= k,T/M), kB is the Boltz- 
mann’s constant, and a and /3 indicate the interacting sites 
of the water molecule. In the TIP4P model potential, these 
are the positions of the three atoms and of the virtual site 
on the HOH angle bisector. 

The e$ and c$ values, calculated according to the pre- 
vious equations and shown in Fig. 15, are significantly 
larger than the c& and w’, values derived from the fit. 
Thus, care has to be taken in interpreting the significant 
positive sound speed dispersion in terms of UT and ~f.~ 

VII. NORMAL MODE ANALYSlS OF QUENCHED 
CONFIGURATIONS 

Although the viscoelastic approximation seems to de- 
scribe the overall behavior well, other effects have to be 
considered when studying molecular liquids and particu- 
larly associated liquids.29 Indeed, in a previous paper,’ we 
showed that in the region around w-60 cm-‘, the longi- 
tudinal sound mode meets the k independent O-O-O 
bending mode.5 

aCAm> 

To study this issue further, we analyze the sound prop- 
agation via the technique of normal mode analysis of 
quenched configurations (described in Appendix B) with 
the aim of suppressing viscous effects without modifying 
the structure of the system. From the simulation of the 
liquid, a  quenched configuration is obtained by an instan- 
taneous quench, which is implemented by a rapid resealing 
of the velocities or by a minimization of the potential en- 

k*rAt)=krAO)+k z M’/2t,,,, (7.1) 

where rl(O) is the equilibrium c.m. position of the molecule 
I, and Ml/2 in the second term accounts for the fact that 
a(l,m)‘s are normalized coordinates. Similarly, we write 

k -pp(t)= g-gi~. (7.2) 

Substituting the above expressions in Eq. (2.4), we obtain 
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ergy starting with the coordinates of the initial liquid con- 
figuration in the 6N dimensional space of coordinates for a 
system of N molecules. Since the quenched configuration is 
a potential energy minimum, many standard techniques of 
normal mode analysis in solids can be applied to study the 
quenched system, although the simplifications arising from 
translational symmetry cannot be exploited. 

An attempt is made here to augment the approaches of 
using configurational information (as in Refs. 31 and 36) 
and the density of states (DOS) information (as in Refs. 
34 and 35), by using in addition the normal modes as tools 
to study dynamics in the liquid state. In this spirit, we 
calculate the longitudinal current correlation function [for 
the center of mass (c.m.> coordinates] for an harmonic 
system. We  denote the mth normal mode by f,,, and the 
displacement of the Zth molecule’s cm. along wave vector 
k for the mode m  by a( Z,m ) . Then 
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Q(b) rAO)+ 7 F t,,(t) II . (7.3) 

The longitudinal current correlation function JJ k, t ) 
z(j,(O)jX(t)) is then given by 

J&t)=& 7 F 2 5 Cexpiktr~(O)--r~f(O)l} m 

Xa(Z,m)a(Z’,m’> i,i,,(t) 
( 

I 
ik 2 

[a(l,n)t,-a(l’,n)t,(t)l 
xexp 

n M”2 

(7.4) 
Since the Hamiltonian of the system %‘= Z,$$&+$t’, is 
quadratic in t, and i,, we have, 

ik 1 a(Z,n)t,,-a(Z’,n)t, I) = (i,i,t ) n 

(i,i,t) =Smmt/3-‘COS(Omt), 
and 

(7.6) 

ik c a(Z,n)t,-a(Z’,n)t,(t) 
n I> 

=exp - 
I 

CL 
n 2W3~, 

[a(Z,n)t,-a(Z’,n)t,(t)]2 

Here, fl is the inverse temperature, and the time depen- 
dence of tm is shown explicitly only in the expression for 
(i,&). The Fourier transform of J/(k,t) in the low tem- 
perature of one-phonon approximation (which corre- 
sponds to setting expC-8,[IZ/(2MBo,)l[a(l,n)t, 
-a(Z’,n)t,(t)12) to 1) is then given by 

*= *o km0 k=3b k-4*0 

z 
22 

2 

~~~~ 

k=Sk0 k=&o k-7*0 *-a*0 

50 150 50 150 50 150 50 150 

frequency (cm-‘) 

FIG. 16. J,(k,o) obtained from the normal modes of the quenched con- 
figuration. J,( k,o) obtained this way changes with T only by the Debye- 
Waller factor. %=0.112 A-‘. 
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FIG. 17. The dispersion relation for the quenched configuration obtained 
from the peak positions of J,(k,o) in Fig. 16. 

JdZw,d=$ 7 9 u(Z,mMZ’,m) 

Xexp{ik[q(O)-r,,(O)]}. (7.8) 

J[(k,w) obtained by this procedure are shown in Fig. 
16. From the peak positions of Jl, one may obtain the 
dispersion relation for the quenched system. This is shown 
in Fig. 17. We see that there is significant dispersion in the 
frequency range of 50-100 cm-’ for the quenched system. 
Moreover, the system being elastic the dispersion in Fig. 17 
is due completely to structural effects and cannot be attrib- 
uted to the transition from viscous to elastic behavior. 

In order to obtain some indication of qualitative dif- 
ference between oscillations below and above the frequency 
range under investigation, the normal mode analysis is car- 
ried out disregarding the off-diagonal blocks of the Hessian 
matrix. These blocks contain terms coupling the c.m. and 
rotational coordinates. The full DOS and the DOS ob- 
tained for c.m. coordinates neglecting their coupling to 
rotational coordinates are compared in Fig. 18. The signif- 
icant feature seen is that while below O- 100 cm-’ the 
c.m. frequencies show a considerable shift to higher values, 
a very small shift is seen above this frequency range. This 

0 0 

frequency (cm-‘) 

FIG. 18. Density of states obtained from the quenched configurations by 
normal mode analysis. The full lines are from diagonalizing the entire 
Hessian matrix [see Eq. (B2)]. The dotted line below 400 cm-’ is from 
diagonalizing the block containing center of mass coordinates only. The 
dotted line mostly above 400 cm-’ is from diagonalizing the block con- 
taining the rotational coordinates only. 
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frequency (cm-‘) 

FIG. 19. The average amplitude of 0-O stretching motion in the 
quenched system. Note the pronounced dip in the 50-100 cm-’ range. 

indicates that while the modes in the frequency range be- 
low o-100 cm-’ couple cm. and rotational degrees of 
freedom significantly, modes above this range are purely 
c.m. modes. Thus, modes in the region commonly ascribed 
to the O-O-O bending are softened significantly by the 
coupling with rotational modes. Also shown in Fig. 18 is 
the DOS obtained by diagonalizing only the block contain- 
ing rotational coordinates. It is seen that the frequencies 
obtained from this block are almost all in the range above 
400 cm-’ and that there is no change in the DOS com- 
pared to the full diagonalization. 

To further support this observation we show in Fig. 19 
the amplitude of oscillations along the nearest neighbor 
oxygen-oxygen line for each mode, averaged over all the 
nearest neighbor oxygen-oxygen pairs. The averaging is 
done by exciting each mode with an energy of :kT. The 
nearest neighbors are clearly defined for a quenched con- 
figuration since the first minimum in the radial distribution 
function is very sharply defined.32736 We  clearly see that the 
O-O stretching amplitude has a dip in the region between 
50 and 100 cm-‘. 

Results shown in Figs. 18 and 19 suggest that while the 
collective excitations in liquid water at very small frequen- 
cies (hydrodynamic region) are due predominantly to c.m. 
motion, between 50 and 100 cm-’ there is a significant 
mixing with the rotational (O-O-O bending) modes. The 
purely translational (stretching) character is restored 
above 100 cm-‘. This mixing is revealed in the dispersion 
relations as additional dispersion, independent of the one 
caused by viscoelastic effects. 

VIII. CONCLUSIONS 

In summary, the MD and normal mode analysis stud- 
ies presented in this paper lead to the following conclu- 
sions: 

(a) Below 50 cm-‘, the sound propagation in water 
can be described adequately by formal viscoelastic analysis. 
This conclusion is supported by the following: 

(i) the direct observation of positive dispersion for the 
longitudinal sound (such a direct observation is made pos- 
sible, for the first time, by the large simulated system size); 

(ii) the temperature dependence of such a dispersion 
(at the smallest studied k vector, the sound velocity rise, 
compared to the hydrodynamic value, is a decreasing func- 
tion of the temperature); 

(iii) the existence of propagating transverse modes and 
by their k and T  dependence; 

(iv) the agreement between calculated and theoretical 
expressions for the longitudinal and transverse currents 
(we stress that the one exponential expression used to com- 
pare theoretical predictions and calculated data has to be 
considered a first order approximation). 

(b) Between 50 and 100 cm-‘, the “interference” of 
the O-O-G bending mode in the frequency range of - 50- 
100 cm-’ leads to new interesting features in the longitu- 
dinal sound dispersion. Such features are superimposed on 
the viscoelastic behavior. We  expect such behavior to be 
characteristic of molecular liquids, in particular, associated 
liquids. Other molecular liquids whose crystalline states 
display intersecting acoustic and optical branches may ex- 
hibit similar behavior. However, further study is necessary 
to obtain a better understanding of this phenomenon in 
water and to clarify the role of the network topology in 
influencing the propagation of sound in the frequency 
range, where the intersection of the acoustic and the bend- 
ing mode takes place. We  expect that a more detailed study 
of the sound propagation in quenched structures produced 
by quenching the liquid from different temperatures could 
furnish new interesting results. 

(c) Only one collective acoustic excitation is present at 
each k. The sound speed moves from the hydrodynamic 
value to the large k value due mainly to the transition from 
viscous behavior to elastic behavior. The sound mode can 
be observed at large k (Ref. 1) since the normal sound 
attenuation is diminished on passing from the viscous to 
the elastic regime. 

No clear connection to the hydrogen bond network 
emerges from this study, while the specific details of mo- 
lecular excitations seem to play a significant role. While 
strong evidence against a novel excitation propagating on 
the hydrogen bond network is obtained, the role of the 
network topology in influencing the propagation of the sin- 
gle sound branch remains to be delineated with clarity. 
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APPENDIX A 

In this section, we derive the expression for w: for an 
harmonic system. We  then calculate ~7 for a simple quasi- 
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two dimensional system to show the presence of optical 
contributions to 0;. Analogous results can be obtained for 

2 
64. 

Starting from the frequency sum rules for Jl, it is easy 
to show that for a system of N molecules of mass A4 (see 
Ref. 11) 

a2u 
of(k) =@vi+-& s (G etbut). , 

Here U is the total potential energy and zllt is the distance 
along z between the c.m. of molecules I and I’. In the 
normal mode representation, indicating the ith eigenvector 
with ti, its eigenvalue with Of and the displacement of the 
c.m. of the molecule 1 along the z direction in the eigen- 
mode i with a( i,l), we have 

(A21 

and 

ei~~~‘=e’@~‘Co)exp( ik? [a(i,Z)-n(i,Z’)r,]/~). 

(-44) 
By performing the thermodynamic average over the nor- 
mal modes ti (which in an harmonic system is equivalent 
to calculating averages over a Gaussian distribution func- 
tion), one obtains the exact expression 

Figure 20 shows, for the four smallest k vectors, the 
running integration of 02Jl(k,w) [w$.,,~(w)], i.e., the con- 
tribution to w:(k) of all the modes with frequency less 
than a prefixed w value. From Fig. 20, we clearly see that 
both the acoustic and optical modes contribute to w2( k). 
Above the acoustic branch, o&,(w) reaches a plateau 
which gives the acoustic contribution to w:, namely, c&. 
Only when the running argument w has crossed the optical 
branch completely does ~f,,( w) coincide with the second 
moment of J/(k,o). &/k’coincides with the longitudinal 
sound velocity of the chain. In such a simple system, where 
the acoustic and the optical branches are clearly separated, 
0: can be separated into contributions arising from the 
acoustic and optical branches. 

o:(k) =3#vi+b c z w~a(i,l)a(i,l’)eik”rrfco) 
i II’ 

~jbW) -WJ’) I2 
2lupi$ - 1 

(A5) 

The configurational contribution to of(k) (the second APPENDIX B 
term in the previous expression) is thus written as a sum 
over all the normal modes. If a clear separation among 
acoustic, optical, and librational modes exists, w:(k) can 
also be separated in its acoustic, optical, and librational 
contributions. The acoustic part of wl(k) will retain the 
relation with the sound propagation as observed in simple 
liquids. 

In this appendix, we describe briefly the procedure for 
obtaining the normal modes. Such procedure has been ap- 
plied to a system of 634 water molecules interacting with a 
TIP4P potential. 

Starting from an equilibrated liquid configuration, the 
closest potential energy minimum configuration is obtained 
by a steepest descents procedure. For the configuration 
obtained, we can expand the potential energy as In the limit of T -0, the exponential at the end of the 

above expression is equal to one. In this limit, the meaning 
of 0: as the normalized second moment of J[(k,o), as 
given in Eq. (7.8) becomes evident. 

Next we calculate w: for a simple harmonic system 
composed of water molecules interacting via the TIP4P 
potential. We study a periodic two dimensional chain com- 
posed of 40 water molecules arranged in such a way that 
each water molecule participates in two hydrogen bonds, 
such that there are two molecules in the unit cell. A slight 
positional disorder introduced in the starting configuration 
is preserved by the minimization procedure. This system 
shows three well-resolved branches-an acoustic branch 
(below 50 cm- ’ ) , an optical branch (between 150 and 300 
cm-‘), and a librational band. 
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200 400 

frequency (cm-‘) 

FIG. 20. Running integration of o*Jl(k,~) calculated for a harmonic two 
dimensional chain of water molecules. The four smallest k vectors are 
shown. The limiting value of o,!,,,,~~ for o--t w is 0;. 

a2u 
-= 7 ofa(i,Z)a(i,Z’)M, az3zlt (A3) 

1 a2v 
v(xi* + ‘xN) = V(&Ji’ ’ ‘XON) +z 

( ) 
ax, ax, X$j + . ’ ’ 9 I I n 

(Bl) 
where the subscript 0 refers to the minimum positions of 
all the coordinates xi. To obtain the normal modes, one 
diagonalizes the Hessian matrix of second derivatives 

/ PPV \ 
032) 

For the present calculations, the Hessian matrix is de- 
fined for the set of 6N coordinates of the N water mole- 
cules, with 3N of the coordinates being center of mass 
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coordinates and 3N coordinates being rotational coordi- 
nates. In the expression above, the coordinates xi are given 
in terms of actual coordinates as follows: 

x;,“, = (M) (1/2)R, Ia 

for center of mass coordinates, where R, is the ath com- 
ponent of the c.m. position of the ith molecule with respect 
to its equilibrium position. Similarly, 

xg= (Iap2’xja U34) 

for rotational coordinates, where Xi, is the angular posi- 
tion with respect to the ath principal axis and 1, is the 
momentum of inertia for that principal axis. The principal 
axes for the TIP4P water molecule are (i) perpendicular to 
the plane of the molecule; (ii) the bisector of the H-O-H 
angle; and (iii) the axis perpendicular to the first two. The 
Hessian matrix is calculated numerically by making small 
displacements along each of the coordinates. The matrix 
thus obtained is diagonalized using a standard numerical 
diagonalization package. 

The Hessian matrix is composed of four large blocks. 
One block contains only c.m. coordinates and thus de- 
scribes dynamics arising from purely c.m. interactions. The 
other block contains only rotational coordinates, while the 
last two blocks describe the coupling between c.m. and 
rotational coordinates. 
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