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Abstract. We study water-in-oil microemulsion systems in the droplet phase and in the
vicinity of a percolation transition in the non-percolating region. We focus on the electrical
conductivity and permittivity, quantities that show large variations when approaching the
percolation threshold. The accepted model for the interpretation of the increasing conductivity—
very large compared to that of the bathing oil phase—is related to clustering of the microemulsion
droplets and migration of charges within the aggregates. Power laws have been used to interpret
the behaviour of the static dielectric properties and scaling functions proposed for the frequency-
dependent conductivity and permittivity. We review some relevant experiments in this field and
the proposed interpretations, and formulate a phenomenological model of conduction. It is based
on the physical picture of cluster formation due to attractive interactions among the constituent
water droplets, anomalous diffusion in the bulk of fractal aggregates and polydispersity of
the clusters. The model gives quantitative expressions for both conductivity and permittivity
over the entire frequency range of the percolative relaxation phenomena, including the static
behaviour. A closed expression is derived for the scaling function of a scaling variable which
involves frequency, the cut-off cluster size and the parameters of the bulk components. The
results are also expressed in the time domain in terms of the polarization time correlation
function. The latter exhibits a rather interesting behaviour, since it gradually evolves from an
exponential decay to a power-law decay and to a stretched exponential as time increases. The
time-scales of the different stages are obtained from the typical decay times of the single droplet
and the largest cluster. We have analysed many different sets of data obtained for different
microemulsion systems as functions of the composition of the dispersed phase, the temperature
and the frequency of the applied field, with a very good agreement with the model in all cases.

1. Introduction

In recent years complex liquid systems have become a rather rapidly developing field of
research, the aim being the understanding of the behaviour of supramolecular aggregates
and, at the same time, the use of them as model systems for the study of important statistical
mechanics phenomena, such as structure formation, critical point anomalies and percolative
transitions. In this paper we will be mainly interested in a particular type of supramolecular
liquid which is an excellent model system for the study of percolation, i.e. microemulsions.
In this case the system is made up of water droplets immersed in an oil bath where the
two immiscible components are separated by a surfactant layer. These surfactant-coated

0953-8984/96/SA0019+19$19.50c© 1996 IOP Publishing Ltd A19



A20 F Bordi et al

droplets interact via a short-ranged attractive potential and form a spanning cluster made
of water droplets for certain values of temperature and composition. We define as the
percolation line the locus of points that separates the plane of the thermodynamic variables
into a region where an infinite cluster is not present and one in which it appears. The
existence of a percolative phenomenon for the droplets has been demonstrated by a number
of experiments [1–8]. The crossing of the percolation line is accompanied by a large increase
of the system electrical conductivity. A small but finite conductivity exists in the system
even below the percolation threshold, related to the finite small conductivity of the oil. We
will study in particular the mechanism of conduction of the highly conducting water droplets
in the poorly conducting medium below the percolation threshold.

The problem of conductivity in percolating systems has been treated in the framework
of lattice models, the sites being randomly connected by circuit elements [9]. The general
theoretical result for the conductivity and the permittivity, on approaching the percolation
transition, is a scaling expression, valid for both the static and the dynamic case, and
the identification of the relevant indices for the corresponding power laws. A physical
interpretation [10–13] of this phenomenon in microemulsions has been given in terms of
anomalous diffusion of charge carriers, originating from the polar heads of the surfactant,
on the droplet fractal aggregates produced by the interdroplet potential.

An explicit expression for the scaling function for electrical conductivity and
permittivity, that can be compared with the experimental results, has never been derived, and
it is the main result of the present work. We will apply an effective-medium theory in order
to extract the correct dependence on the microemulsion components together with anansatz
for the relaxation amplitude and decay time of the polarization of a fractal cluster, obtained
from considerations on the anomalous diffusive motion of charges in the aggregates. The
final step is obtained taking into account the polydispersity of the microemulsion droplets.
The expressions that we obtained for the conductivity and the dielectric constant are in
very good agreement with the measured data for different systems and various experimental
conditions.

The paper is organized as follows. Section 2 will briefly summarize the experimental
results concerning both the conductivity and the permittivity of the microemulsions. We
will consider both the static behaviour, which led to the determination of the critical indices
relevant to this type of percolation, and the dynamic behaviour which shows a marked
relaxation phenomenon in the region from 1 to 10 MHz. Section 3 will report the detailed
calculation of the complex conductivity of the system. The scaling properties of the complex
conductivity are reviewed in section 4 where a complex scaling function of a complex scaling
variable is introduced in order to take into account the two measurable physical quantities,
conductivity and permittivity, and their dependence on the parameters of the materials and
the thermodynamic state of the system. Section 5 is devoted to the reformulation of the
results in the time domain, where a definite succession of behaviours, exponential, power-
law and stretched exponential, is clearly evident for the time correlation function of the
polarization of the microemulsion system. In section 6 we compare our analytical results
with a large variety of measurements. We draw our final conclusions in section 7.

2. Experimental results on conductivity and permittivity

The measurements of conductivity and permittivity of self-assembled complex liquids are
relatively recent. The overall picture that emerges from the experimental data consistently
indicates that the anomalous electric behaviour is closely related to the percolative
phenomena. All of these studies have in common the parametrization of the static behaviour
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of the conductivity of the microemulsions in terms of a characteristic power-law behaviour,
as a function of the distance from a percolation point and with associated percolation indices.
For the conductivityσ below percolation, when approaching the threshold in temperature
at constant composition(T < Tp),

σ = A(Tp − T )−s ′
(1)

whereA is the divergence amplitude ands ′ the index. Above percolation(T > Tp)

σ = B(T − Tp)t (2)

with amplitudeB and indext . These power laws are similarly valid when approaching
the percolation line in composition at constant temperature. In both cases the diverging
behaviour when approaching percolation from below, and the vanishing behaviour when
approaching from above are valid when close to the percolation line, but not in a narrow
region around it, where the conductivity reaches a finite value. As far as the static
permittivity is concerned, there is an apparent divergence from both sides of the percolation
threshold. The indices are difficult to extract, but are close tos ′.

The frequency-dependent conductivity measurements are parametrized as power laws in
frequency with an exponent denoted asu, the analogous permittivity data with the exponent
u − 1. In all cases the path of approach to the percolation threshold is a function of
temperature at constant composition or a function of composition at constant temperature.

The phenomenon of percolation in microemulsions was initially studied by Lagüeset al
[1] in the quaternary water-in-oil system water–cyclohexane–1-pentanol–sodium dodecyl-
sulphate. One of the first measurements which showed in a rather clear way the existence
of a maximum of the static permittivity in a microemulsion system made of water, AOT
(sodium diethyl-hexyl-sulphosuccinate) and iso-octane is due to van Dijk [2], who also
measured the dynamic indexu = 0.62± 0.02. Bhattacharyaet al [3] measured similarly
the static dielectric characteristics of a water–AOT–decane (WAD from now on) system
and found an anomalously large increase of the conductivity and the dielectric constant
on approaching percolation. They were able to measure the indicess ′ = 1.17 ± 0.05,
t = 1.68 ± 0.05 andu = 0.63 ± 0.04, and to test at the same time the validity of the
dynamical theory of percolation in microemulsions [10, 11]. A rather wide study on these
systems was also performed by the group of Boned and Peyrelasse (see [4]) who examined
various three- and four-component systems. Clarkson (see [5]) also carefully measured
the dielectric properties of a multicomponent microemulsion composed of toluene, brine,
sodium dodecyl-sulphate and butanol, and tried to interpret them in terms of classical models
of interfacial polarization [14]. A rather detailed study on the WAD system as a function
of temperature over a wide range of composition in static conditions was performed by our
group [6], with the resultss ′ = 1.2 ± 0.1 andt = 1.9 ± 0.1. We also measured dielectric
relaxation over a rather large frequency range [22], and obtainedu = 0.62± 0.10. More
recently Ponton and Bose (see [7]) measured the complex permittivity of a water–AOT–iso-
octane system and confirmed the validity of the dynamic percolation model. Their measured
power-law indices ares′ = 1.35, t = 1.80 andu = 0.61.

3. The independent-clusters approach

The calculation of the complex conductivity that we perform in this section is based on
the possibility of selecting clusters that can be considered independent of one another. We
start by considering the complex conductivity due to a single aggregate. At this stage we
take into account both (i) the correct dependence of the system complex conductivity from
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the electric parameters of the microemulsion components and (ii) the mechanism that, even
below percolation, gives rise to a finite conductivity for the entire system. The first step
is accomplished using an effective-medium approximation; the second one is based on the
physical mechanism of anomalous diffusion in the bulk of a fractal cluster, which grows
through the successive aggregation of microemulsion droplets. The result is a conductivity
for the single cluster which has the typical form of a single-relaxation phenomenon, where
the relaxational amplitude and time have the power-law dependence on cluster size typical
of systems with scaling properties. The final step consists in using the appropriate cluster
size distribution to account for the polydispersity of the system close to percolation.

Before starting the calculation, it is important to note that we are considering clusters
formed by nearest-neighbour droplets. We have to stress that the definition of percolation
depends in an essential way on the type of cluster that we consider, which in turn depends
on the physical quantity that is experimentally observed. For example, for light scattering
experiments [15], it has been recently shown by Coniglio and Klein [16], that in discrete
lattice models the independent clusters which lead to a correct definition of the space
correlation function are not the ones defined by the criterion of being nearest neighbours.
The proper procedure of definition of percolating clusters amounts to a type of dilution
of the bonds connecting the sites. Coniglio and Klein give an exact rule for partitioning
sites in clusters in such a way that the resulting independent clusters are the ones that are
effectively seen through light scattering.

3.1. The effective-medium approximation

Let us consider a matrix of oil, characterized by the conductivityσA and dielectric constant
εA, containing a single spherical droplet of volumev, the electrical parameters of which
are σB and εB . A uniform external frequency-dependent electric field is applied. The
resulting electric field potential can be easily derived in the far-field approximation by
solving the appropriate Laplace equation. The result is easily generalized to the case of many
independent particles and interpreted as being generated by a single homogeneous system
of total volumeV , with the electrical characteristics that generate the same electric field at
large distances. This procedure is referred to as the effective-medium approximation (EMA)
[17, 18]. We apply this method to the calculation of the conductivity and the permittivity of a
cluster containingk droplets,σk andεk respectively. We introduce the complex conductivity
of the cluster̃σk = σk + iωεk which is expressed in terms of the complex conductivities of
the medium̃σA = σA + iωεA and of the inclusions̃σB = σB + iωεB :

σ̃k = σ̃A

Akσ̃B + 2̃σA

σ̃B + Bkσ̃A

(3)

whereAk andBk are given by [18]

Ak = 1 + 2fk

1 − fk

Bk = 2 + fk

1 − fk

(4)

andfk = kv/V is the inclusions volume fraction. Note thatAk andBk do not depend on
the electrical properties of the materials. Equation (3) can be written in an equivalent way
in terms of the complex permittivitỹεk(ω) using the relations

σ̃k(ω) = iωε̃k(ω) = σk0 + iωεk∞ [1 + χ̃k(ω)] (5)

whereχ̃k(ω) is the dielectric susceptibility,σk0 the low-frequency conductivity andεk∞ the
high-frequency permittivity. From (3) and (5) we can deriveσk0 andεk∞:

σk0 = σA

AkσB + 2σA

σB + BkσA

εk∞ = εA

AkεB + 2εA

εB + BkεA

. (6)
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The susceptibilitỹχk(ω) is given by [18]

εk∞χ̃k(ω) = εA

1k

1 + iωτk

. (7)

It has the typical form of a single-relaxation process with amplitude1k and relaxation time
τk given by

1k = (AkBk − 2)(σBεA − σAεB)2

εA(σB + BkσA)2(εB + BkεA)
τk = εB + BkεA

σB + BkσA

. (8)

Note that while the parametersAk andBk are independent of the conductivity and dielectric
constant of the components, the two quantities1k andτk depend on the material’s electrical
parameters.

As we mentioned earlier, in general the EMA is applicable when the particles that
constitute the system are weakly interacting and therefore not in the case of a cluster where
the droplets are strictly bound. For this reason we assume that the EMA expressions are
still valid, but we do not specify the coefficientsAk andBk as in (4). We use the physical
mechanism of conduction below the percolation threshold in order to derive an expression
for the coefficients. Using the EMA expressions (3), but with a scaling assumption for
Ak andBk, we expect to retain the correct dependence of the complex conductivity of the
system on the electrical parameters of the two components as discussed above.

3.2. The resistor–capacitor (RC) case

It is well known that, when considering dielectric properties, the systems that we study
can also be considered as a set of electric circuit elements connecting lattice sites. If we
model the system only as resistive or capacitive bonds then this corresponds in our case
to discarding the oil conductivity and the droplet permittivity in the appropriate frequency
range according to

ωA = σA

εA

� ω ω � ωB = σB

εB

(9)

where we introduced the two frequencies

ωA = σA

εA

ωB = σB

εB

. (10)

We will call the approximation of conducting clusters in an ideal non-conducting medium
the RC model. In the case of the WAD system [6] we estimateσA ≈ 10−6 �−1 m−1,
εA ≈ 2ε0 and σB ≈ 10−2 �−1 m−1, εB ≈ 102ε0, with ε0 the vacuum permittivity, and
therefore we expect for the parametersωA ≈ 100 kHz andωB ≈ 1 GHz. In the frequency
rangeωA � ω � ωB the WAD system is close to theRC case. The amplitude and the
relaxation time for a relaxing cluster ofk particles become in theRC case

1RC
k = Ak − 2

Bk

τRC
k = εABk

σB

. (11)

3.3. Cluster relaxation

The two parametersAk and Bk must now be determined as a function of the number of
particlesk in a k-cluster. In order to do this, we must refer to a physical mechanism of
percolation in microemulsions below the percolation threshold. This mechanism, introduced
some time ago by Lag̈ueset al (see [10]) is known asstirred percolationand was studied
later on in a more detailed way by Grestet al [11] and nameddynamic percolation. The
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main idea is that once the microemulsion droplets aggregate to form clusters, the charge
carriers are capable of moving in the cluster, thus giving rise to conduction. The motion
of the charges in the aggregate is essentially anomalous diffusion on a fractal cluster. The
diffusive motion of the charge carriers in turn generates dipole moment fluctuations. The
complex frequency-dependent susceptibility of ak-cluster is in general related to the Laplace
transform time derivative of the total dipole moment fluctuation (δµ) time correlation
function 〈δµ(t)δµ(0)〉.

We start in theRC limit and, on the basis of (8), relate the relaxational amplitude1RC
k

to the static dipole moment correlation function〈(δµ(0))2〉 and the relaxation timeτRC
k

to its exponential decay constant.1k is related to the product of the mean square charge
fluctuations, and proportional to the cluster sizek, and the radius of gyration squaredR2

k ,
whereRk ∼ k1/D andD is the fractal dimension of the cluster. Consequently1RC

k will be
proportional as follows [19]:

1RC
k ≈ kR2

k . (12)

If the clusters were compact objectsτRC
k would be proportional toR2

k since the charge
carriers perform diffusive motion in the clusters. Since the motion is instead on a fractal
aggregate, it is governed by anomalous diffusion andτRC

k will be related to the radius of
gyration through a power which takes into account the anomaly, i.e. the ratioD/d̃:

τRC
k ≈ (R2

k )
D/d̃

(13)

whered̃ is the spectral exponent. This approximation gives the following simple expressions
for Ak andBk:

Ak =
(

A1 − 2

B1

)
k1+2/D + 2

Bk

Bk = B1k
2/d̃ . (14)

At this point, if we take into account the fact that both of these constants are independent
of the material’s electrical parameters, then the results given by the preceding equations,
derived in theRC case, are valid in general. The previous equation introduces the two
parametersA1 and B1 that can be related to microscopic physical quantities using (8) in
the case of a monomer, i.e. whenk = 1. ThereforeA1 andB1 are related to the monomer
amplitude11 and relaxation timeτ1 according to

A1 − 2

B1
= 11

(ωB − ωA)τ1

(ωBτ1 − 1)(1 − ωAτ1)2
B1 = εB

εA

(
ωBτ1 − 1

1 − ωAτ1

)
. (15)

Figure 1 shows thek-dependence of1k andτk:

1k = 11τ1k
1+2/D+2/d̃ (ωB − ωA)3

[ωB(1 − ωAτ1) + ωA(ωBτ1 − 1)k2/d̃ ]2[(1 − ωAτ1) + (ωBτ1 − 1)k2/d̃ ]
(16)

τk = (1 − ωAτ1) + (ωBτ1 − 1)k2/d̃

ωB(1 − ωAτ1) + ωA(ωBτ1 − 1)k2/d̃
(17)

corresponding to theAk- and Bk-expressions given in (14) and (15) for typical values of
the parameters. We show also the corresponding curves for the pureRC case, to highlight
the deviations from the power-law behaviour at small and high cluster sizes. Note that the
shortest time-scale is given by the minimum value of the cluster relaxation timeτ1, while
the longest time-scale isτ∞ = ω−1

A .
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Figure 1. 1k/11 and τk/τ1 for the RC case (dashed lines) and for one non-RC case
(ωA = 0.5 MHz, ωB = 2.8 GHz, τ1 = 0.42 ns, full lines). Note that in the non-RC case
the power-law behaviour ofτk and1k is observed only for a limited range ofk-values.

We conclude this section by writing out the final expression that we have obtained for
the complex conductivity of an isolated cluster:

σ̃k = σ̃A

σ̃B [(A1 − 2/B1)k
1+2/D + (2/B1)k

−2/d̃ ] + 2̃σA

σ̃B + σ̃AB1k2/d̃
. (18)

The preceding equation was derived using the EMA, in order to get the dependence on the
material’s parameters, and the dynamic model for conduction below percolation, in order
to get the dependence on the number of monomers in a cluster.

3.4. Polydispersity

It is well known that close to the threshold in random-bond percolation the number of
clusters of sizek is given by a typical scaling expression [20]

c(k) = Nk−τ e−k/kc

k2−τ
c 0(2 − τ, k−1

c )
(19)

characterized by a power-law behaviour with indexτ and a cut-off cluster sizekc which
diverges as the system approaches the percolation threshold.

0(a, z) =
∫ ∞

z

dx e−xxa−1

is the incomplete Gamma function andN is the initial number of monomers [21]. The
normalization ofc(k) is such that∫ ∞

1
dk kc(k) = N. (20)

In the limit whenkc is large, the following approximation holds:

c(k) ≈ N(τ − 2)k−τ e−k/kc . (21)
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We assume that a distribution similar to the one in (19) describes our case. We calculateσ̃

as a sum of independent contributionsσ̃k weighted with the distribution given by (19)

σ̃ (ω) =
∫ ∞

1
dk c(k)̃σA

Akσ̃B + 2̃σA

σ̃B + Bkσ̃A

(22)

whereAk andBk are given by (14). In terms of the cluster relaxation process we can write

σ̃ (ω) =
∫ ∞

1
dk c(k)

(
σk0 + iωεk∞ + iω

1k

1 + iωτk

)
(23)

whereσk0 andεk∞ are given in (6).
In order to evaluate the indices that we have introduced so far in terms of a limited

set of power-law exponents, we recall the definition ofν as the index for the divergence
of connectivity in bond percolation, when the bond probability approaches the threshold.
In three dimensionsν = 0.88, D = 2.52, d̃ = 1.36 are the accepted values [20]. We can
express the conductivity exponentss ′, t and u in terms of the setν, D and d̃ in d space
dimensions [20]:

s ′ =
(

1 − d − 2

D

)
Dν (24)

t = 2Dν

d̃
− s ′ =

(
2

d̃
+ d − 2

D
− 1

)
Dν (25)

u = t

s ′ + t
=

(
2

d̃
+ d − 2

D
− 1

)
d̃

2
(26)

while the cluster size distribution exponentτ obeys the relation

τ = 1 + d

D
. (27)

4. Scaling properties of the complex conductivity

In order to get an explicit expression for the complex conductivity, we substitute (14) into
(22). Since the system is close to the percolation threshold, we keep only terms to lowest
order ink−1

c to get

σ̃ (ω) = 6uσ̃BB1h̃

∫ ∞

1
dk

e−k/kck−1/D

1 + B1h̃k2/d̃
(28)

whereh̃ is the ratio of the complex conductivities of the two components:

h̃ = σ̃A

σ̃B

(29)

and the adimensional conductivity scale,6u, is given by

6u = N(τ − 2)

(
A1 − 2

B1

)
1

B1
. (30)

Using (15),6u can also be written as

6u = N(τ − 2)11
εA

εB

(1 − ωAτ1)(ωB − ωA)τ1

(ωBτ1 − 1)2
. (31)

Changing the variable in the integral we get

σ̃ (ω) = 6uσ̃Bk−t/Dν
c 8̃kc

(ζ ) (32)
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where8̃kc
(ζ ) is defined by

8̃kc
(ζ ) = ζ

∫ ∞

k−1
c

dz
e−zz−1/D

1 + ζz2/d̃
(33)

and is a complex function of the real variablekc and the complex variableζ :

ζ = B1h̃k2/d̃
c = ωBτ1 − 1

1 − ωAτ1

ωA + iω

ωB + iω
k2/d̃
c . (34)

While ζ has the typical properties of a scaling variable, the function8̃kc
(ζ ) is not a scaling

function because of the residual dependence onkc given by the lower limit of integration
in (33). ζ involves four parameters, namely the cut-off cluster sizekc which measures
the distance from the percolation threshold, the monomer relaxation timeτ1 and the two
frequenciesωA andωB referring to the electrical characteristics of the dispersed phase and
the medium respectively. In theRC limit ωA = 0 andωB = ∞, so

ζ = iωτ1k
2/d̃
c .

The complex conductivity that we derived depends on five parameters, the ones that we
listed above, i.e.ωA, ωB , τ1, kc, and the conductivity scale6u. The first four parameters
are necessary to define the two-component system, and can be, in an equivalent way,
expressed in terms ofσA, σB , εA andεB , the four material parameters of the two-component
system. The parameterkc is a physical quantity extracted from the experimental data by
the procedure of fitting to the frequency dependence of the conductivity and permittivity.
Note that any theory would need essentially the same number of parameters which are the
minimal set for describing the relaxation. Even the use of a simple interpolation formula
like Cole–Davidson’s needs five parameters, namely the zero-frequency conductivity and the
high-frequency permittivity, the relaxation amplitude and time, and the characteristic Cole–
Davidson exponent. Moreover these quantities would have a dependence on the distance
from percolation, which is obtained in our case by means ofkc.

4.1. Properties of the functioñ8kc
(ζ )

We will now study in a more detailed fashion the properties of the function8̃kc
(ζ ). A

series expansion aroundζ = 0 gives

8̃kc
(ζ ) ≈ 0

(
1 − 1

D
,

1

kc

)
ζ − 0

(
1 − 1

D
+ 2

d̃
,

1

kc

)
ζ 2 + · · · . (35)

For large values ofkc the incomplete Gamma functions tend to the usual Gamma functions
and (35) gives, to lowest order,

σ̃ (ω) ≈ 6uσ̃B0

(
1 − 1

D

)
B1h̃ks ′/Dν

c . (36)

In the static limitσ0 = limω→0σ̃ (ω) andε0 = limω→0ε̃(ω)

σ0 ≈ 6uσA0

(
1 − 1

D

)
B1k

s ′/Dν
c = ωAε0 (37)

and thus the expected power-law behaviour for the static conductivity and permittivity
is recovered. Figure 2 shows thekc-dependence ofσ0 and ε0 for typical values of the
parameters and for the pureRC case. It also shows the longest relaxation time in the
system,τc. Note that a power-law region is observed in the three quantities at intermediate
kc-values, with the exponentss ′/Dν for σ0 and ε0 and (t + s ′)/Dν = 2/d̃ for τc. The
deviations from theRC case produce finite values for the various quantities at largekc.
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Figure 2. Thekc-dependence ofσ0, ε0 andτc for the same parameters as in figure 1 (full lines).
The dashed line shows the corresponding case forRC systems. Note that in theRC caseσ0 is
zero below percolation.

The asymptotic behaviour of̃8kc
(ζ ) for large values ofζ can be easily obtained from

(33) when|ζ | � k
2/d̃
c . In this case the approximation is

8̃kc
(ζ ) ≈

∫ ∞

k−1
c

dz e−zz−1/D−2/d̃ = 0

(
− t

Dν
,

1

kc

)
≈ kt/Dν

c (38)

where we have used the properties of the incomplete Gamma function for small values
of the second argument. Therefore for large values of|ζ | the function8̃kc

(ζ ) becomes

constant. For large values of|ζ |, but |ζ | � k
2/d̃
c , we transform the integral of (33) as

8̃kc
(ζ ) = d̃

2
ζ u

∫ ∞

ζ/k
−2/d̃
c

dλ exp

[
−

(
λ

ζ

)d̃/2
]

λ−u

1 + λ
(39)

which for largekc reduces to

8̃kc
(ζ ) ≈ d̃

2

π

sin(πu)
ζ u (40)

and gives a power-law behaviour characterized by the exponentu. If we call |ζc| the
crossover point between the power-law behaviour and the constant value of8̃kc

(ζ ), we
realize that for|ζ | < |ζc| and large values ofkc, this function does not depend onkc and
the approximation

lim
kc→∞

8̃kc
= 8̃(ζ )

is used to define the true scaling functioñ8(ζ) of the scaling variableζ . This fact was
already hypothesized in the scaling theory of conduction in disordered systems [9, 11, 12].
We show here in addition that true scaling is valid only up to the crossover point|ζc| where

d̃

2

π

sin(πu)
|ζc|u ≈ kt/Dν

c . (41)
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The true scaling functioñ8(ζ) is a complex function of the complex variableζ ; therefore
its graphical representation is somewhat complex, as is shown in figure 3.

Figure 3. Surfaces representing the real and imaginary parts of the scaling function8̃ as a
function of the real and imaginary part of the scaling variableζ for kc = ∞ (top surface) and
kc = 25 (bottom surface). Points show experimental data (φ = 28 andT = 25 ◦C) from [22].

It represents in a three-dimensional plot the real and imaginary parts of8̃(ζ ) as functions
of the real and imaginary parts ofζ . It clearly shows the linear, power-law and constant
regions of the scaling function; a typical set of conductivity and permittivity data for the
WAD system [22] are also reported in order to relate the experiments to the theory. Figure 4
shows thek-dependence ofσ(ω) for typical values of the parameters. The left-hand part
showsε′′(ω), to highlight the progressive shift to lower frequencies of the relaxation process,
on approaching percolation. Note also the progressive increase in intensity. The right-hand
part of the figure shows theσ(ω)-data on a log–log scale to highlight the initial Debye-like
increase, followed by a power-law region inωu. The width in frequency of the power-law
region increases on approaching percolation.

4.2. The percolation threshold

At the percolation threshold, wherekc → ∞, σ̃ (ω) can be evaluated as

σ̃ (ω) = 6uσ̃B

Dν

t
2F1

(
1, u; 1 + u; − 1

B1h̃

)
(42)

where2F1 is a Gauss hypergeometric function defined by the relation∫ ∞

1
dx

xa

1 + zxb
= 1

z(b − a − 1)2
F1

(
1,

b − a − 1

b
; 1 + b − a − 1

b
; −1

z

)
. (43)

From the previous equations one can calculate the static conductivity and permittivity at
percolation forω = 0, i.e. usingh̃ = σA/σB . For intermediate frequencies

σ̃ (ω) ≈ 6uσ̃B

d̃

2

π

sin(πu)

(
1 − ωAτ1

1 − ωAτ

ωBτ − 1

ωBτ1 − 1

)u

(44)



A30 F Bordi et al

Figure 4. ε′′(ω) andσ(ω) for different values ofk (k = 2n, with n = 1, 10). The same data are
shown on a linear scale, as the imaginary part of the dielectric constant, on the left, and on a
log–log scale on the right. The two lines are power laws with exponent 2 (Debye) and exponent
u. The parameters are the same as for figure 1.

which in theRC case becomes

σ̃ (ω) ≈ 6uσB

d̃

2

π

sin(πu)
(iωτ1)

u (45)

and shows the typical power-law behaviour in frequency of both the conductivity and the
permittivity.

4.3. The relation to the Cole–Davidson formula

We can define the susceptibilitỹχ of the microemulsion through the relation

ε∞χ̃(ω) =
∫ ∞

1
dk c(k)εk∞χ̃k(ω) =

∫ ∞

1
dk c(k)

εA1k

1 + iωτk

(46)

that, using the cluster relaxation time as an integration variable, can be evaluated as

χ̃(ω)

χ̃(0)
= 1

N
∫ ω−1

A

τ1

dτ

τ

(
1 − ωAτ1

1 − ωAτ

)−u(
ωBτ − 1

ωBτ1 − 1

)1−u

× exp

[
− 1

kc

(
1 − ωAτ1

1 − ωAτ

ωBτ − 1

ωBτ1 − 1

)d̃/2
]

1

1 + iωτ
(47)

where the normalizationN is given by the same integral forω = 0. We can write the rather
complex expression of (47) in a simple fashion in theRC limit:

χ̃(ω)

χ̃(0)
= 1

N
∫ ∞

τ1

dτ

τ

(
τ

τ1

)1−u

exp

[
−

(
τ

τc

)d̃/2
]

1

1 + iωτ
(48)

whereτc, the relaxation time corresponding to the cut-off cluster sizekc, is for theRC case

τc = τ1k
2/d̃
c .
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This expression for̃χ(ω) is close to the well-known empirical Cole–Davidson relaxation
time distribution. In fact, in that case too, the relaxation time distribution is given by a
power law with a cut-off, substituted for in our case with an exponential function playing
the same role.

5. The time correlation function

The susceptibilityχ̃ of the microemulsion, according to linear response theory, is related
to the Laplace transform of the time derivative of the polarization time correlation function

ε∞χ̃(ω) = −
∫ ∞

0
dt e−iωt d

dt

[
V

kBT
〈µ(t)µ(0)〉

]
= −

∫ ∞

0
dt e−iωt d

dt

[∫ ∞

1
dk c(k)εA1ke−t/τk

]
(49)

from which we can derive the normalized polarization time correlation functionC(t):

C(t) = 〈µ(t)µ(0)〉
〈µ2(0)〉 = 1

N
∫ ∞

1
dk c(k)1ke−t/τk (50)

where the normalizationN is given by the same integral witht = 0. Data on complex
conductivity can then be transformed from frequency to time to give the normalized
correlation function. C(t) can also be written as the average of an exponential decay
over a relaxation time distribution:

C(t) = 1

N
∫ ω−1

A

τ1

dτ

τ

(
1 − ωAτ1

1 − ωAτ

)−u(
ωBτ − 1

ωBτ1 − 1

)1−u

× exp

[
− 1

kc

(
1 − ωAτ1

1 − ωAτ

ωBτ − 1

ωBτ1 − 1

)d̃/2

− t

τ

]
. (51)

In this case too we recover a simple expression in theRC limit:

C(t) = 1

N
∫ ∞

τ1

dτ

τ

(
τ

τ1

)1−u

exp

[
−

(
τ

τc

)d̃/2

− t

τ

]
(52)

the behaviour of which we examine in detail in the various time regions. We start by
evaluatingC(t) for short times, where

C(t) ≈ 1 − d̃/2u

0(2(1 − u)/d̃)

(
τ1

τc

)1−u
t

τ1
(53)

which is valid for t � τ1, while for t � τ1

C(t) ≈ 1 − d̃

2u(1 − u)

0(1 + u)

0(2(1 − u)/d̃)

(
t

τc

)1−u

(54)

valid up to t � τc, the longest cluster relaxation time. Fort � τc we find a stretched
exponential decay:

C(t) ≈ exp

[
−

(
t

β ′(1 − β ′)1/β ′−1τc

)β ′]
(55)

where the universal exponentβ ′ is related only tod̃:

β ′ = d̃

d̃ + 2
. (56)
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To summarize, the time behaviour of the time correlation function of dipole fluctuations
C(t) is dominated by two time-scalesτ1 and τc given by the monomer and largest cluster
relaxation time respectively. As shown in the left-hand part of figure 5,C(t) starts for short
times as an exponential and evolves to a power-law behaviour for long times. Finally, as
shown in the right-hand part of figure 5,C(t) behaves like a stretched exponential. Note
also that the size of the intermediate power-law region increases on approaching percolation.
It is interesting to note that a similar behaviour is experimentally observed in glassy systems
and predicted in part by mode-coupling theories [23].

Figure 5. The normalized polarization correlation functionC(t) as a function of time. In
this caseτ1 = 400 ps. The left-hand panel shows 1− C(t) in order to highlight the initial
exponential decay and the intermediate power law. The right-hand part shows the long-time
stretched exponential behaviour. Circles show the experimental data of [22].

6. Comparison with the experimental results

In this section we will mainly deal with multicomponent microemulsions, the phase diagram
of which has been studied in great detail. We will refer in particular to the WAD system
that has been analysed in a series of investigations [2, 3, 7, 24]. The phase diagram at
constant molar ratioX = [water]/[AOT] = 40.8 is characterized by a region of coexistence
of liquid microemulsion droplet phases bound by the binodal line and a critical point at
φ ≈ 0.1 andT ≈ 40 ◦C. A percolation line extends from very low volume fractions, close
to the critical point, up to very high volume fractionsφ ≈ 0.8 [24].

Before describing the comparison with the experimental results, we briefly discuss how
one can describe the phase diagram of the system. This situation can be modelled in terms
of a simple liquid-state theory via interacting spheres. In fact, the existence of a critical
point is an indication of the presence of an attractive interaction between the microemulsion
droplets. The interaction potential can be modelled in various ways, e.g. as a hard-sphere
repulsion and an attractive potential well [25, 26]. A particularly simple model stems from
the limiting case of a potential well, the range of which tends to zero, while its depth
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becomes increasingly negative. In this case a thermodynamic state is described by the
interaction strength and the system volume fraction. The model is then exactly soluble in
the Percus–Yevick approximation of the Ornstein–Zernike equation, as shown by Baxter
[25]. The attractive feature of this model, beyond the fact that it is analytically soluble
and capable therefore of giving in particular the coexistence curve and the critical point,
is the possibility of deriving from it the percolation locus as the set of points where the
average cluster size diverges [27]. The percolation line evaluated from the Baxter model
[28] reproduces in a rather good quantitative way the experimentally measured one [29].

In order to compare the experimental data with the theoretical predictions, we need to
introduce a mapping between the variables of the model and the physical parameters of the
microemulsion. In particular, we need to know the relationship betweenkc and |T − TP |
or |φ − φP |. In model bond percolation, the connectivity lengthξP depends on the bond
probability p and is characterized, close to the thresholdpP , by the power law

ξP = ξ0|p − pP |−ν (57)

with amplitudeξ0 and exponentν. On the other hand we can defineξP as

ξP = R1k
1/D
c . (58)

By comparison of (58) and (57) we derive the relation between the cut-off cluster size and
the distance from percolation:

kc =
(

ξ0

R1

)D

|p − pP |−νD (59)

which implies in our model thatσ0 ≈ |p − pP |s ′
. By postulating a linear dependence of

|p − pP | on |T − TP | we getσ0 ≈ |T − TP |s ′
. Such linear dependence is consistent with

an analytic relation betweenp andT .
Figure 6 shows the experimentally measured static conductivity as a function of

temperature for a WAD system in which water has been substituted for with brine (see
[30]). The solid curve is the theoretical expression of equation (32). Note that atTP , σ0

reaches a finite value, related to the finite conductivity of the oil phase. Thus the power-law
behaviourσ0 ≈ |T − TP |s ′

can be observed only in a finiteT -window, not too close toTP .
We now turn to the frequency dependence of the complex conductivity. Figure 7

comparesσ(ω) and ε(ω) for some data for microemulsion systems close to percolation
taken from the literature [2, 3, 7] with the theoretical expression of (32). Figure 8 compares
theory and experiment forε ′(ω) andε′′(ω) for two different volume fractions of the WAD
system close to the percolation line [22]. Figure 9 shows a set of values ofσ(ω) on
approaching percolation by increasing temperature.

In all cases, the conductivitỹσ(ω) describes very well, and with the same set of
parameters simultaneously, theω-dependence ofσ and ε of the samples, as well as their
limiting zero- and infinite-frequency values. It depends on the five parametersωA, ωB , τ1,
6u andkc. We findωA ≈ 0.1–0.5 MHz andωB ≈ 2–4 GHz for all systems, andτ1 ≈ 100–
500 ps. Thekc-values obtained from the fit increase monotonically on approaching the
transition, going from a few droplets far from percolation, to about 104 close to it. The
parametersτ1 and σu can also be related to the amplitude and the characteristic time of
the monomer relaxation, which in turn are connected to the electrical parameters of the
materials. We stress that these fitting parameters are the minimal set that one can use to
describe completely at a quantitative level the dielectric behaviour of a two-component
system.
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Figure 6. Static conductivity as a function ofT − TP for three different volume fractions of a
brine–AOT–decane system [30]. Solid lines show the theoretical expressions (32).

Figure 7. The complex conductivity in WAD systems. The data were taken from (©) [3], (tu)
[7], (♦) [2]. Solid lines show the theoretical expressions (32).

7. Summary and conclusions

Water-in-oil microemulsions, in the phase where an ionic surfactant separates water droplets
from the surrounding oil bath, constitute one of the few liquid systems where a percolation
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Figure 8. Real and complex permittivity in WAD systems [22], for two different volume
fractions approaching percolation. Solid lines show the theoretical expressions (32).

line can be clearly defined experimentally. Electrical conductivity measurements at low
frequencies can be used to define a percolation line in a plane of temperature and dispersed
phase composition. Percolation phenomena are in a sense defined by the type of probe
used to detect them, e.g. for electrical percolation one defines touching droplets as the basic
units of the clusters. It is well known that instead along the electrical percolation line the
scattered light intensity does not show any anomaly. Indeed the compressibility diverges
only at the critical point and along the spinodal line.

Once the percolation line for electrical conductivity is defined, one can phenomenolog-
ically parametrize the conductivity and permittivity in terms of power laws, which provide
evidence of the scaling character of the phenomenon. Power laws characterize the dy-
namic conductivity and dielectric constant too, with relaxation frequencies generally in the
MHz region. More generally a complete scaling behaviour, expressed as power laws and
associated scaling functions, is obtained for the behaviour of the complex conductivity.

In order to introduce a quantitative description of the anomalous electric behaviour due
to percolation below the threshold, we use a simple model where dynamic percolation is
the key ingredient. We assume that the charge carriers present, due to the ionic nature of
the surfactant, perform an anomalous diffusive motion in the bulk of the fractal clusters
formed by aggregation of the initial microemulsion droplets, and determine in this way
the relaxation amplitude and time of a single cluster. In order to do this analytically,
we use an effective-medium approximation which gives the corrected dependence of the
cluster conductivity on the electrical material parameters. The use of the scaling cluster size
distribution, to take into account the polydispersity of the microemulsion, gives the final
formula of our model.

We derive from the model frequency-dependent complex electrical conductivities that
are in very good quantitative agreement with measurements performed by many authors on
various systems. The distance from the percolation line inT of φ is measured by the cut-off
of the cluster size distributionkc. We also derive the full scaling behaviour of the complex
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Figure 9. The frequency dependence of the conductivity in a WAD system as a function of
temperature on approaching percolation. From bottom to top, the temperatures goes from 19◦C
to 24 ◦C. Solid lines show the theoretical expressions (32).

conductivity. From the latter we calculate via Laplace transformation the time correlation
function C(t) of the polarization fluctations, i.e. the quantity that one could measure with
experiments in the time domain, via time domain reflectometry for instance. It is worth
emphasizing the evolution in time ofC(t), which is very similar to that encountered for
glassy systems. After an initial exponential decay it shows a power law in time and then
evolves to a stretched exponential for very long times, with a universal exponent connected
to the spectral dimension. We finally determine the crossover times between the various
behaviours. They are essentially the relaxation timesτ1 for the initial monomers, typically
of the order of a few hundred nanoseconds, andτc for the largest cluster present in the
microemulsion, which diverges at the percolation threshold where the infinite clusters form.
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