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Instantaneous normal modes are classified by their one-dimensional potential energy pradijes,

into single well(SW), double well(DW), and shoulder potentigSH) modes. It is proposed that the
resulting three-flavor description replace the current two-flavor division into real or imaginary
frequency modes, and that the DW modes replace limtheories of diffusion. Calculations of the
three-flavor densities of states are presented for normal and supercooled ligyicar@Sthe
self-diffusion constant) (T), is related to the DW modes. Indicators of strength/fragility are given
based on the relative numbers of different mode types, and indicators of harmonicity are constructed
by comparison of simulated instantaneous normal modes properties with the predictions of the
harmonic approximation. It is found that the SW modes are harmonic in an intermediateaRge

20 ps 1>w>2.5ps !, and the anharmonicity at high and low is explained in terms of the
potential energy “landscape.” DW modes are remarkably harmonic over the full range ©f Im
The T dependence of the diffusion constant is also interpreted in terms of the landscape, as
manifested primarily in the properties of the energy barriers to diffusion. Diffusion is clearly
associated with the strongl-dependent crossing of barriers with~3 ps't. © 1998 American
Institute of Physicg.S0021-960808)50901-4

I. INTRODUCTION crucial to the properties of liquids. Several thedties L of
time correlation functions have employed the &enodes,

A new descriptiofi® of liquid state dynamics is based or, at short times, all the INM. The picture of interrupted
upon instantaneous normal mod@sM). The INM are the  harmonic oscillations is particularly well suited for systems
eigenfunctions of the Hessian, the matrix of second derivaof low fluidity, e.g., supercooled liquids. We have
tives of the potential energy), with respect to the mass- presenteti*?>*3theories of the averaged barrier crossing rate,
weighted atomic or molecular coordinates. The frequencieg), | in terms of{p,(w)). The lowest Imw modes must be
w, are the square roots of the eigenvalues, the density afxcluded in order to reproduce activated, exponefitiale-
states (dog for a single configuration isp(w)=28(w  pendence of the self-diffusion constanD(T). We
—w,) and the averaged dos {(w)). In a liquid, some proposed*?*3that such modes might represent anharmonici-
eigenvalues are negative, indicating downward curvature ofies unrelated to barriers. Bembenek and L4irchlculated
the potential surface and vyielding imaginary frequenciesthe one-dimensional potential energy profiles along the INM,
Im w are conventionally displayed as negativeand(p(®))  U(q), for Lennard-Jonef.J) and smooth spheres and found
becomes a sum of two distinct lobep(w))=(ps(®))  Im w profiles of two types, barrier crossing double wells
+{pu(®)), with the “stable” (s) Rew on the positive real (pw) and “shoulder” (SH) potentials, single wells with

 axis and the unstableif Im o on the negative. Reference shoulders. They gave the DW ddppw(w)), which indeed
to a positivew for an Imw mode indicatego|. The termi-  yanishes fofw|<w,, wherew, is a cutoff.

nology indicates that Re harmonic modes are stable oscil- It has always been cleaf? that some “false-barrier”
Igtors[cos@ut)], while Im & modes exhibit unstable exponen- |m , modes do not contribute tB(T), since they persist
tial growth (coshwt). while D vanishes aly. In Ref. 7, we simply subtracted the

Separate treatment of the Reand Imw modes leads 10 modes remaining af, . Use of the DW is more systematic,
a two-flavor INM formalism. A simple idealizatidris that hardly the last word. Vijayadamodar and NitZimtro-
the Rew modes are finite-lifetime harmonic oscillations gy ced “zero force” modes, which exclude the SH and re-
about the local minima af, in the wells or basins, while the - gyjre that the system is very close to the barrier top. Bem-
Im » modes are representative of the tops of the barriergenek and Lairf proposed that diffusion requires extended
crossed in activated hopping of the system from basin tgw modes, meaning that the participation ratio exceeds a
basin. Consequently INM fits very well with the idethat  threshold value. Gezeltet al. have note®f that the configu-
the topology of the potential energy surface, or landscape, igtions from both sides of the barrier for some DW in LJ can
guench to the same local minima of tNebody U, suggest-
3E|ectronic mail: keyes@chem.bu.edu ing another criterion for false barriers. On the other hand, in
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water, one of us and Tartagliaecently found that the frac- the frequency at the bottom of the SW aag,, is the actual
tion, fpy of DW modes[area of(ppw(w))] vs T extrapo-  frequency. For a harmonic well, the ratio equals unity. In
lates to zero at the ideal kinetic glass transitionsupercooled and normal liquid water, it isqual to unity for
temperaturé! T.. Relative to molecular liquids, atomic lig- «>40 cmi'l, and rises sharply for lowew. Thus one may
uids have much higher total fractions of knmodesf,,, of  say that the modes of water are harmonic o 40 cm .
DW modes and of false-barrier DW modes. The DW are ane will investigate the harmonicity of GSn similar fash-
good approximation to the barrier modes for water and weon.
suggest, in %eneral, f8 strong liquids. In Angell's
categquzatloﬁ,_ atomic liquids are frag|le and water is I SIMULATION AND THREE-FLAVOR DENSITIES
strong; we believe that a large fraction of DW modes is a
signature of fragility. Water may not conventionally be con-  Liquid CS, is simulated aP=1 atm, with the intermo-
sidered strong, due to the observed wdakiependence of lecular potential of atom-atom LJ interactions givedbwil-
viscosity, but Angef® has argued that characteristic Arrhen- desley and Madden. Harmonic bond stretch and bend poten-
ius T dependence would be seen if experimental coolingials plug! a harmonic coupling of the two stretches are also
rates were high enough to avoid crystallization and achievéncluded. The intramolecular force constants are adjusted to
sufficiently low T. obtain the correct bend, symmetric stretch, and antisymmet-
In molecular liquids, diffusion must be calculafédom ric stretch frequencies of an isolated molecule. Although the
translationalbarrier-crossing INM, given to first approxima- model includes molecular vibration, the subjects of this ar-
tion by the translational DW modes. Translational and rotaticle are the intermolecular INM. The molecular dynamics
tional dos, denoted tr and rot, have been constrdctéy  algorithm is our synthesi$ of the multiple time step
weighting the contribution of each mode by the translationamethod® and the Hoover—Evans constant kinetic energy
or rotational projection of its eigenfunction. Recerliywe ~ schemé® applied to center-of-mass motion at constant vol-
calculated a “pure translation(TR) dos for CS from the  ume. The intermolecular time step is 0.75 fs with 10 short
Hessian of derivatives with respect to the molecular centersteps/intermolecular step for the intramolecular forces. Con-
of-mass coordinates, and found that thedrifR modes van- stant center-of-mass kinetic energy approximates con$tant
ished afT, while’ the tr do not. Thus, we believe that false- and avoids temperature echoes during quenches. For each
barrier modes in molecular liquids are primarily caused bytemperature, the correct density is used, with supercooled
rotation which is not removed by the projection method. Thedensities obtainddby extrapolation from the normal liquid.
issue does not arise in water because hydrogen bonding sug/ith basic time and distance units as picoseconds and ang-
presses the I rot. strom, we choosea mass unit, denoted, such that energy
With the Imw modes divided into DW and SH, the comes out in degrees Kelvip;=0.8315 amu.
single well(SW) harmonic oscillations complete the picture, A hot (T=600 K) liquid is equilibrated for 75 ps at the
a three-flavor INM formalism. The SW all have Reand, desired density, quenched to fhef interest in one step, and
except for very few SH modes, all Remodes are SW; SW first equilibrated for 5.2 ps while the intramolecular tempera-
and Rew are essentially interchangeable. The first article tature is forced to equal the intermolecularevery long time
present this viewpoint in full is Ref. 9. The terminology em- step. Having achieved intermolecular-intramolecular equilib-
ployed therein, also used by Bembenek and L&lid,stable  rium, the system is equilibrated normally for 30 ps. At least
and unstable for SW and DW, conflicting with our prior 200 configurations were sampled in the data gathering pe-
usage. Consistent use of Re, Im, SW, DW, and SH with naiod, saved every 1.5 ps. The time-dependent potential en-
reference to stable and unstable is unambiguous, and thatgy and pair distribution function are monitored for evi-
will now be our convention. dence of solidification. CSis encouragingly resistant to
We report results on GSat P=1 atm andT spanning  solidification but some runs show a slight downward drift of
the normal and supercooled liquid range, 298K the potential energy and we discard them. Standard numeri-
>100 K. The melting point iF,,= 165 K, and we estimate a cal eigenanalysis is applied to the Hessian, and for each
glass transitionT,~ 100 K. We will discuss general proper- mode, we obtaiJ(q). Starting at a configuratioR,, U is
ties of the three-flavor dos and their relation to diffusion andevaluated at 1100 configurations in both directions along the
to strength/fragility. Considerable information, such as themode;q points are spaced by 0.024A. The profile is first
distribution of energy barrier heights, and the mean squarehecked for the number of minima; with two it is a DW, with
displacement{q?), along a normal coordinate may simply one SW or SH. The single-minimum modes are separated by
be read off from theéJ(q). These data are of fundamental the behavior ofU”(q), which has no zeros for a SW and
interest, reveal properties of the landscape, and are also reice-versa. Typical(q) at 165 K are in Fig. 1.

quired as components of INM-based theories, G& be- The three dos at the normal melting point, 165 K, are
tween LJ and water on the strong/fragile scale, providing alisplayed in Fig. 2. On the I side, a DW cutoff is visible
test of our ideas about INM and strength/fragility. and the SH modes dominate at laythe DW at highw. To

The harmonicity of liquids may be probed by comparinga good approximation, all of the Re INM are SW, but a
harmonic expressions for INM properties with results fromtiny SH lobe exists. Figures 3 and 4 show the SW and DW
simulation. In Ref. 9, the ratio, i, /wi,m) 2, Was proposed densities afry=100, T,,= 165, 224, and 298 K. Away from
as a measure of harmonicity of the SW/INM, whesg;, is  the lowestw, the SW dos equals the Redos; we charac-
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terized the latter in Ref. 7. With increasifig the peak shifts
to lower w due to the decrease in density at consBnivhile
the highw wing extends due to more hard, close molecular
interactions. These effects combine to create an isobestic
point atw~ 27 ps 1, with { psu( @) ) increasing with increas-
ing T for w>27 ps ! and vice-versa for intermediate

The DW (Fig. 4) clearly show the cutofiv, which in-
creases with decreasinp, varying from ~0.4ps?t at T
=298 Kto~1.2 pstatT=100 K. In Ref. 7, the IMw lobe
was seen to consist of a strongliydependent translational
low-w spike, which governs diffusion, sitting upon a weakly
T-dependent broad rotational background. The DW dos also
shows this structure, with the translational spike |af
~3.2 ps'! exhibiting strongT dependence fof >T,,. Fig-
ure 5 is a blowup of the lows region at 298 K. The Re
and Ime densities are linear ifw| at low , in contrast to
the Debyew? behavior. Despite the small amplitude of the
SH dos, removing it from the Re dos yields a SW dos with
some curvature at low, and the DW dos is not at all linear.
The highest Re» at which a SH can be found is roughly
equal tow., a symmetry which we have propogéalse-
where. All the dos are identically zero at=0, and the ap-
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FIG. 5. Blow up of low Rew region at 298 K showing DW with cutoff
(solid), SH with small Rew lobe (large dash and SW.
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parent nonzero value dps(w=0)) is an artifact of finite

bin size. Minimal further discussion will be given of SH D=c(wAf" )
modes insofar as they, unlike SW and DW, do not yet have : :
clear physical interpretations. was seen to work very well, where is a constant and

Temperature dependent tr DW d@sg. 6) resemble the denotes the type of mode chosen to approximate the barriers.
unprojected DW dos, except the spike is stronger, and thén Ref. 7i=Im, (o) is the averaged tr Imv frequency,
broad background is smaller, as it should be with rotatiorand the Imw tr modes remaining af, are removed via
projected out. It will be shown in the next section that theAf|[ (T)="f{(T)—fir(Ty); fin(Ty) is an estimate of the
tr DW modes have a strongdr dependence than do the fraction of false-barrier tr Inw modes. These modes are pri-
tr SH or all the tr Imw modes. The background persisting at marily the broad background that persists in the tr fog.
low T corresponds, we belieVé to the aforementioned ro- 6) at 100 K. If the DW modes are a better approximation to
tational influence on the projected tr spectra. The rot DWthe barrier-crossing modes than are all thedmodes, then
dos, Fig. 7 has relatively weakdependence, with the lows-  the choicei =DW should lead to a smaller subtraction.
spike reduced to a low-amplitude shoulder. At highand Mode fractionsf,n, fif,, fiw, andfg, vs T are shown
high T, the rot DW dos appear to be reaching ain Fig. 8; tr fractions are out of all tr modes, whifg, is a
T-independent shape resembling the wings of the tr DW dodraction of all intermolecular modes. The total infraction,
in agreement with the idea that, even in the tr densities, thé,,, has a weakl dependence both because of the rotations

wing is basically rotational. and the SH. The tr DW fractiofiy, has a strongeF depen-
dence than doe&,, or f|l., and has the smallest remnant at
IIl. DIFEUSION Tq4, confirming our expectation. The differefitdependences

can be seen more clearly in Fig. 9, where the fractions are

H 7,12,13 H H
We have given several theories, of varying cOm- given relative to their value aff=298K. Not only

plexity, for diffusion. In our initial two-flavor studyof CS,,
the formula,
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FIG. 7. As Fig. 4 for rotational DW. (dotted, andf‘er(smaII dash relative to their values af=298 K.

J. Chem. Phys., Vol. 108, No. 1, 1 January 1998



256 Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism

0.45 . . , our methods to LJ for this comparison, and the water data
were obtained as indicated in Ref. 9. The link between S1
and S2 and strength is confirmed. Variation of (Re/Im) is
much less than for S1 and S2, because (Re/lm)
=S1(1+S2, and for large S1 and S2, their increase with
strength cancels in (Re/Im). A three-flavor description is es-
sential for construction of the most sensitive probes of
strength/fragility, although the trends can still be seen in
(Re/lm). The small fraction of Ina in water was noted Iy
Choet al, and® Ladanyi and Stratt pointed out that the frac-
tion was smaller in pola¢strongey acetonitrile than in non-
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polar CG.
. 55 T =5 0 The dimensions ob arel?t~!; what are the INM DW
T quantities, for a mode with frequeney, with these dimen-

sions? Clearlyw fills the bill for t™1. An INM 12 is acces-
sible viaU(q). Just as an ordinary harmonic oscillator or
SW mode has a characteristic mean-square distance from the
bottom of the wellm~%(g?)sw (q is mass weighted ar is

does f{},,(T) have the strongest variation, it has the mostthe effective massa DW has a mean-square distance from
curvature, resembling that @ (T). Comparison of Eq(1)  the barrier top,m™(qg)ow. Evaluation of (qg)ow from

with i =DW and simulateti®® D(T) is in Fig. 10; the value U(Q) is straightforward. We have for every DW mode the
of the adjustable parameter=0.50 A2, compared toc  Position of the barrier top and the position of the system, that
=0.17 A? determined previously, becauséyy<f,,. Both IS, 0. Dimensional analysis then suggests that we try the
the current theory and Ref. 7 exhibit nearly perfect agreeformula,

FIG. 10. Comparison of simulatdd(T) (small dashin CS, with predic-
tions of Egs.(1) (large dashand(2) (solid).

ment with simulated throughout the supercooled range and )

up to 190 and 180 K, respectively. At high&r deviations DZC'f do(ppuf @) o(q2)pw, 2
set in, with the theory based upon DW showing the better

performance. where for simplicity we just let’ be a constant and do not

For CS (Fig. 8), fi,,~f%,, and it is also true thaftpy, treatw-dependent effective masses. Equafi®ns compared
~fgy. Bembenek and Laird fourilif o> fy in LJ, while’ with simulatedD in Fig. 10, with remarkable agreement up
fow<fsy in water. LJ is a fragile liquid and water is strong, t0 the highestT=298 K; ¢’ =0-25.M7_1- For normal and
with CS, somewhere in between; the ratio S2g/fp fol-  higher-temperature supercooled liquids, £2).is quantita-
lows the strength of the liquid. Thus we propose INM-basedively accurate. At the lowest, where Eq.(2) predicts too
probes of strength and fragility. In Sokolov's pictéfteof much diffusion, further removal of false-barrier modes could
supercooled liquids, the excitations responsible foreasily be included. The strorgdependence of E¢2) com-
intermediate-time dynamics are “quasilocal harmonic oscil-Pared to that of the different mode fractions demonstrates

lations” and “two level systems of a relaxational charac- that INM theories ofD depend on more than the number of

ter.” In INM, these excitations obviously correspond to Sw barrier-crossing modes. The contribution of each mode to

and DW. Sokolov suggefsthat strong liquids have a rela- IS @ nontrivial quantity. In Eq(2), (q2)pw, notfpy, domi-

tively large fraction of harmonic modes, in which case anhates thel dependence.

measure of strength should be Sig,/fpy. In a super-

cooled liquid with fs,y close to unity andfpy small and },, ARMONIC AND ANHARMONIC PROPERTIES OF

strongly T dependent, it is plausible that both S1 and SZLIQUIDS

measure strength. A related ratio, that of the number ocbRe

to Im w modes, is denoted (Re/Im). The U(q) contain a large amount of information about
The ratios depend of, so one reasonable point of com- liquids. An important caveat is that the INM eigenfunctions

parison is the melting temperature. Table | compareshange as the particles move, while théq) are calculated

S1(T,), S2(T,), and (Re/Im){,,) for LJ at reduced density With eigenfunctions from the initial configuration. In future

of 0.85, and for CSand water aP= 1 atm. We have applied work, we wil*** follow the changing eigenfunctions, but
much can be learned about the landscape with the current

o _ _ _ version. A ubiquitous quantity in INM theories is the fre-
TtABLE I.OStIr‘engC:h indicators for fragilgLJ), intermediate(CS,), and quency dependent mean squared normal coordinate fluctua-
strong (HO) liquids. tion, (g2), which in a classical, harmonic, Resystem has
LJ (p=0.85) CS,(P=1atm) HO (P=1 atm the valueT/w?. We can calculate the tru@?)sy, SW be-
Rem " s oa ing the mode type most _resemk;llng a harmon_|c osm_llator,
SI=(SW/DW) E 3 8.4 30 with the me_thod just a}pplled 697 ) ow - Compi';mson with
S2=(SH/DW) 0.26 0.88 22 the harmonic expression at 165 K far=3 ps ! and for
5psi=w=1ps?!is in Figs. 11 and 12. The value of
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o

FIG. 11. Simulated(q2)sw (solid) and harmonic predictio/w? vs w FIG. 13. Harmonicity indicatoH ,=[T/(@*(g2)sw)], VS o at 100(solid),
(ps™Y) at 165 K. 165 (large dash 244 (small dash, and 298 K(dotted.

Anharmonicity increases witil in the intermediatew
regime due to the weak increase (@f ) s just mentioned.
The idea that only the lower part of the true potential yields
a SW is useful here also. Asincreases, the new parts of the
landscape visited are less likely to yield SW, dug)sy is
almostT independent at high. At >20ps?, (q2)sw is

(92)sw falls below the harmonic formula at the lowest is

in good agreement at intermediate and exceeds the har-

monic formula at larges. The same general behavior holds
for all T, aIthough(qi)SW does not increase as strongly as
~T at intermediatew and the agreement deteriorates with

mcreAasmg;ural “harmonicit indicator” is H systematically underestimated by the harmonic formida (
—T/(w¥(02)sn), shown fory four T in FEi 1§ <1). A possible explanation can be found in the noticeably
= oHy)sw), M9 23 anharmonic and asymmetri¢(q) prevalent at higho. The
Three frequency ranges are clearly distinguishable I o . : .

1 1 -1 1 potential in Fig. 14 will yield higheo for negativeq, but is
w<25ps-, 20ps >w>25ps-, and w>20ps . For . 2 .
20 ps 1>w>2.5ps?, which includes almost all the Sw 'V soft, with{d,)sw enhanced, for positive. TheseU(q)

y ' resemble the LJ potential, in accord with the itlethat the

modes, the liquid is approiulmately harmonic, W'.th>E|.q high-o modes consist of strongly interacting atomic pairs.
>0.8 for all T. Below 2.5 pS~, H, rises sharply, signaling The indicato? H — (@il @n)?) i shown in Fig. 15
0] min nm. . .

an overestlmgte .o¢qw>5y\, by the harmonlg approximation. Encouragingly, the general behavior is the same as that of
The explanation is that in a harmonic oscillatpcan extend , .
Hq, with the same three frequency ranges. The lovise,

without limit asw— 0, while in the liquid a largey will lead . .
. . corresponding to a softening ef;,,,, and the absence df
to the anharmonic region away from the well bottom, the : ) . . .
dependence in the intermediaterange agree with what is

tr?iggtee\?glg nZ(; lonqre;uipvsgzgréoinbgcioi\jlvv’vi;ngg}”lgcgt ;:) dn_'observea for water. On the other hant, is T dependent at
9o/ sw- ' 9 intermediatew in CS,, and no highw anharmonicity is

ing a strong lowe anharmonicity, except that we would say found in water. The presence of LI-liki{q) at highe can

CS, is anharmonic fore<2.5 ps?, while water is anhar- : . . -
monic for <7 ps L. also explain whyH , is less than unity. For thg(q) in Fig.

180

160k

140

g
U(a)

-6 T = ) 3 ) 5

0 5 2 25 3 35 4 45 5 q
®
FIG. 14. U(q) for a highw SW mode, demonstrating similarity to
FIG. 12. Loww region of Fig. 11. Lennard—Jones potential; units as Fig. 1.
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<q?>
=3

FIG. 15. As Fig. 13 for harmonicity indicatoH ,= (wmin/@mm)2 SW FIG. 16. Simulated mean-square deviation from barrier top for DW modes,
modes. (02)pw, iIn A2u, vs w at 100(solid), 165 (large dash 244 (small dash
and 298 K(dotted.

14,H,<1 at negativeg despite the softening at positivp

that increaseéq?)sy . Different indicators and different sub- evant extremum, which need not be the minimum. For DW

stances need not display identical behavior; the similaritiethat extremum is the barrier top artdl, = ((wp/ @inm)?).

are more striking than the differences. We are only just beshowing in Fig. 17 al-independent decrease frdth,~1 at

ginning, via INM, to pose and answer the question “how high|w| to H,~0.8 asw—0. While the SW modes soften,

harmonic is a liquid?.” evidently the DW “harden” asv— 0. Nonetheless, the INM
The low-w behavior of(q?)sw is significant for future frequency is an excellent indicator of the frequency at the

INM development. Integrals arise in some INM theoriesbarrier top for allw. This supports the use of INM to calcu-

wheré? the integrand is the product dp(w)) and(g2);  late barrier crossing rates, since theories require the fre-
the linear lowes behavior of(p{(w)) and use of the har- quency at the top.
monic(q?)=T/w? lead to a divergent integrand at law It Barrier heightdmeasured from the lower minimyrare

appears that use of the SW dos with the nondivergehts,,  €asily read off from DWU(q). The distribution of DW bar-
will remedy this difficulty. All modifications of the harmonic rier heights,g(E,T), a crucial quantity for diffusion in lig-
formula will affect the time dependence of correlation func-uids, is displayed at fouF in Fig. 18. It is our sampling that
tions calculated via INM. makesg(E, T) depend oril. We only see the barriers which

Turning to the DW modes, the quami@li)ow has al- the system visits, i.e., the distribution has the Boltzmann
ready been introduced with E(2). While there exists a har- factor folded in and is not a pure landscape property. Barriers
monic approximation to start with for SW, almost nothing is With E>T are missed in, while those witB<T should be
known abOUt(Qibw, although brief discussions have beenWwell described. The distributions are normalized so there is
given by Choetal® and by Bembenek and Laifd.Of  an apparent change at Idwasg(E,T) extends to higheE
course, if the system were literally harmonic with negativewith increasingT. Notable is the vanishing of(E,T) as
curvature,(g2)pw Would be divergent. In our case, we sim- E—0. This is a consequence of the cutaff; with no DW
ply ask what is(g2) given that the mode profile is a DW. If modes beloww., and withE and w correlated, the lovE
g gets large, the potential changes—the true system is not
harmonic—and it is no longer a DW. Results fa>)pw at
severalT are in Fig. 16. At highw, the curves are nearly T
independent and are well fit byg?)pw~40]w|?, strong ‘
growth with T sets in forT>165K and|w|<6 ps?, and 098
(92)pw falls off for the lowes{ w| due to the cutofiv,. The
latter two effects combine to generate a peak |at
~2.8ps’?, close to the DW translational spike at 3.2 ps
Thus forT=T,,, as fluidity increases in the normal liquid,
the low-w tr DW modes grow strongly both in number and
in displacement from the barrier top. Theindependence at
high @ is most likely, again, a signature of rotations. The
DW (¢ fluctuations are always much less than those for SW at
the samew, which might support neglect of I modes in
theories of time correlation functions.

The harmonicity indicatoH , may be generalized by the
definition H,=((weyx/ ®inm)?), Where ext denotes the rel- FIG. 17. As Fig. 15 for DW modes ,=(wop/wmm) %
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FIG. 18. Distribution of DW barriersy(E), vs E at 100(solid), 165 (large
dash), 244 (small dash, and 298 K(dotted; E in K.

barriers are depleted. Prior two-flavor studfesf g(E)
based uponp,(w)), with no cutoff, yield a maximum at
E=0. In our view, the scarcity of lovE barriers causé$*®
exponentialT dependence dD(T).

The relation betweeR andw is illustrated in Fig. 19 via
the averagedy-dependent DW energy{E(w))pw, at sev-
eralT. The increase ofE(w))pw With w has the elementary

interpretation that higher barriers have larger curvature at th
top12131n a now familiar patternT dependence is weak at

high w, while a peak ato~ 3.6 ps ! grows in forT>T,,; the
high-w functional form, governed by rotation, {€(w))pw
~w.

The peak position is close to that-@.2 ps'Y) in the tr

DW dos and it makes sense that the growth in tr DW mode
is associated with visiting of higher energy barriers. The dat
support the idea of am-dependent minimum barrier energy.

For T<Ejn(®), Emin Will dominate the average an¢E)
~Emin- FOr T>E;in(w), an increase il will allow the sys-
tem access to higher barriers affel) can grow withT. As

an elementary demonstration of these arguments, note tha

1200

FIG. 19. Average barrier energy for DW modd£(w)), vs  at 100
(solid), 165(large dash 244 (small dash, and 298 K(dotted; E in K, w in
ps L.

259

horizontal line on Fig. 19 af =298 K, our highesT, strikes

all the data atw~6 ps %, the boundary between strong and
weak T dependence. One might ask why the peak does not
begin at lowerT and lowerw, whereE,,(w) is lower. The
answer, most likely, is that there are simply not enough
modes available as—0.

V. DISCUSSION

Analysis ofU(q) naturally leads to a three-flavor INM
description of liquids. SW modes take the role of local,
finite-lifetime harmonic oscillations, replacing the Re
modes from prior versions. DW modes replace theadm
modes as barrier-crossing “relaxational” excitatidfisThe
physical significance of the SH modes remains to be discov-
ered.

This article is a first step. We have presented the three
flavor dos and discussed diffusion, strength/fragility, the har-
monicity of liquids, the fluctuations of the INM, and the
energy barriers to diffusion. An INM-based assessment of
the harmonicity of Cgas a function of frequency demon-
strates an intermediate- harmonic range  of
20 ps 1>w>2.5 ps'%, with harmonicity at high and loww.

Several of the results combine to firm up the INM pic-
ture of diffusion. Diffusion in normal and supercooled liquid

S, has previously been connected with a strongly
-dependent translational peak at &m-3.2 ps't, which we
now see in the DW dos. In addition, we find almost identical
peaks in(q%)pw (2.8 psY) and(E(w))(3.6 psY). We may
therefore say that diffusion in GSs governed by barriers
with w~3 ps L. At eachw, there is a minimum barrier en-
£ray, andE (3 ps Y is the lowest minimum energy for
hich there are also an appreciable concentration of barriers.
s T is increased sufficiently abovE,,(3 ps 1), which is
approximately equal tdy, higher energy barriers with the
samew are crossed(E(w~3 psl)) increases, and so too
does(q*(w~3 ps ))pw. The increase is slow initially and
[bgcomes obvious foF>T,,. Thus INM illuminates the con-
nection between diffusion and the potential energy landscape
in unprecedented detail.
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