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Instantaneous normal modes are classified by their one-dimensional potential energy profiles,U(q),
into single well~SW!, double well~DW!, and shoulder potential~SH! modes. It is proposed that the
resulting three-flavor description replace the current two-flavor division into real or imaginary
frequency modes, and that the DW modes replace Imv in theories of diffusion. Calculations of the
three-flavor densities of states are presented for normal and supercooled liquid CS2, and the
self-diffusion constant,D(T), is related to the DW modes. Indicators of strength/fragility are given
based on the relative numbers of different mode types, and indicators of harmonicity are constructed
by comparison of simulated instantaneous normal modes properties with the predictions of the
harmonic approximation. It is found that the SW modes are harmonic in an intermediate Rev range
20 ps21.v.2.5 ps21, and the anharmonicity at high and lowv is explained in terms of the
potential energy ‘‘landscape.’’ DW modes are remarkably harmonic over the full range of Imv.
The T dependence of the diffusion constant is also interpreted in terms of the landscape, as
manifested primarily in the properties of the energy barriers to diffusion. Diffusion is clearly
associated with the stronglyT-dependent crossing of barriers withv;3 ps21. © 1998 American
Institute of Physics.@S0021-9606~98!50901-4#
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I. INTRODUCTION

A new description1–3 of liquid state dynamics is base
upon instantaneous normal modes~INM !. The INM are the
eigenfunctions of the Hessian, the matrix of second der
tives of the potential energy,U, with respect to the mass
weighted atomic or molecular coordinates. The frequenc
va are the square roots of the eigenvalues, the densit
states ~dos! for a single configuration isr(v)5Sd(v
2va) and the averaged dos is^r(v)&. In a liquid, some
eigenvalues are negative, indicating downward curvature
the potential surface and yielding imaginary frequenci
Im v are conventionally displayed as negativev, and^r(v)&
becomes a sum of two distinct lobes,^r(v)&5^rs(v)&
1^ru(v)&, with the ‘‘stable’’ (s) Rev on the positive real
v axis and the unstable (u) Im v on the negative. Referenc
to a positivev for an Imv mode indicatesuvu. The termi-
nology indicates that Rev harmonic modes are stable osc
lators@cos(vt)#, while Im v modes exhibit unstable expone
tial growth (coshvt).

Separate treatment of the Rev and Imv modes leads to
a two-flavor INM formalism. A simple idealization3 is that
the Rev modes are finite-lifetime harmonic oscillation
about the local minima ofU, in the wells or basins, while the
Im v modes are representative of the tops of the barr
crossed in activated hopping of the system from basin
basin. Consequently INM fits very well with the idea4 that
the topology of the potential energy surface, or landscape

a!Electronic mail: keyes@chem.bu.edu
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crucial to the properties of liquids. Several theories2,3,5–11of
time correlation functions have employed the Rev modes,
or, at short times, all the INM. The picture of interrupte
harmonic oscillations is particularly well suited for system
of low fluidity, e.g., supercooled liquids. We hav
presented3,12,13theories of the averaged barrier crossing ra
vh , in terms of^ru(v)&. The lowest Imv modes must be
excluded in order to reproduce activated, exponentialT de-
pendence of the self-diffusion constant,D(T). We
proposed3,12,13that such modes might represent anharmon
ties unrelated to barriers. Bembenek and Laird14 calculated
the one-dimensional potential energy profiles along the IN
U(q), for Lennard-Jones~LJ! and smooth spheres and foun
Im v profiles of two types, barrier crossing double we
~DW! and ‘‘shoulder’’ ~SH! potentials, single wells with
shoulders. They gave the DW dos,^rDW(v)&, which indeed
vanishes foruvu,vc , wherevc is a cutoff.

It has always been clear3,7,12 that some ‘‘false-barrier’’
Im v modes do not contribute toD(T), since they persist
while D vanishes atTg . In Ref. 7, we simply subtracted th
modes remaining atTg . Use of the DW is more systematic
but hardly the last word. Vijayadamodar and Nitzan15 intro-
duced ‘‘zero force’’ modes, which exclude the SH and r
quire that the system is very close to the barrier top. Be
benek and Laird14 proposed that diffusion requires extend
DW modes, meaning that the participation ratio exceed
threshold value. Gezelteret al.have noted16 that the configu-
rations from both sides of the barrier for some DW in LJ c
quench to the same local minima of theN-bodyU, suggest-
ing another criterion for false barriers. On the other hand
8/108(1)/252/9/$15.00 © 1998 American Institute of Physics
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253Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
water, one of us and Tartaglia9 recently found that the frac
tion, f DW of DW modes@area of^rDW(v)&# vs T extrapo-
lates to zero at the ideal kinetic glass transiti
temperature,17 Tc . Relative to molecular liquids, atomic liq
uids have much higher total fractions of Imv modes,f Im , of
DW modes and of false-barrier DW modes. The DW ar
good approximation to the barrier modes for water and
suggest, in general, for18 strong liquids. In Angell’s
categorization,18 atomic liquids are fragile and water i
strong; we believe that a large fraction of DW modes is
signature of fragility. Water may not conventionally be co
sidered strong, due to the observed weakT dependence o
viscosity, but Angell18 has argued that characteristic Arrhe
ius T dependence would be seen if experimental cool
rates were high enough to avoid crystallization and achi
sufficiently low T.

In molecular liquids, diffusion must be calculated7 from
translationalbarrier-crossing INM, given to first approxima
tion by the translational DW modes. Translational and ro
tional dos, denoted tr and rot, have been constructed2,5 by
weighting the contribution of each mode by the translatio
or rotational projection of its eigenfunction. Recently,19 we
calculated a ‘‘pure translation’’~TR! dos for CS2 from the
Hessian of derivatives with respect to the molecular cen
of-mass coordinates, and found that the Imv TR modes van-
ished atTg , while7 the tr do not. Thus, we believe that fals
barrier modes in molecular liquids are primarily caused
rotation which is not removed by the projection method. T
issue does not arise in water because hydrogen bonding
presses the Imv rot.

With the Imv modes divided into DW and SH, th
single well~SW! harmonic oscillations complete the pictur
a three-flavor INM formalism. The SW all have Rev and,
except for very few SH modes, all Rev modes are SW; SW
and Rev are essentially interchangeable. The first article
present this viewpoint in full is Ref. 9. The terminology em
ployed therein, also used by Bembenek and Laird,14 is stable
and unstable for SW and DW, conflicting with our prio
usage. Consistent use of Re, Im, SW, DW, and SH with
reference to stable and unstable is unambiguous, and
will now be our convention.

We report results on CS2 at P51 atm andT spanning
the normal and supercooled liquid range, 298 K.T
.100 K. The melting point isTm5165 K, and we estimate a
glass transitionTg;100 K. We will discuss general prope
ties of the three-flavor dos and their relation to diffusion a
to strength/fragility. Considerable information, such as
distribution of energy barrier heights, and the mean squ
displacement,̂ q2&, along a normal coordinate may simp
be read off from theU(q). These data are of fundament
interest, reveal properties of the landscape, and are als
quired as components of INM-based theories, CS2 lies be-
tween LJ and water on the strong/fragile scale, providin
test of our ideas about INM and strength/fragility.

The harmonicity of liquids may be probed by compari
harmonic expressions for INM properties with results fro
simulation. In Ref. 9, the ratio, (vmin /vinm)2, was proposed
as a measure of harmonicity of the SW/INM, wherevmin is
J. Chem. Phys., Vol. 108,
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the frequency at the bottom of the SW andv inm is the actual
frequency. For a harmonic well, the ratio equals unity.
supercooled and normal liquid water, it is9 equal to unity for
v.40 cm21, and rises sharply for lowerv. Thus one may
say that the modes of water are harmonic forv.40 cm21.
We will investigate the harmonicity of CS2 in similar fash-
ion.

II. SIMULATION AND THREE-FLAVOR DENSITIES

Liquid CS2 is simulated atP51 atm, with the intermo-
lecular potential of atom-atom LJ interactions given by20 Til-
desley and Madden. Harmonic bond stretch and bend po
tials plus21 a harmonic coupling of the two stretches are a
included. The intramolecular force constants are adjuste
obtain the correct bend, symmetric stretch, and antisymm
ric stretch frequencies of an isolated molecule. Although
model includes molecular vibration, the subjects of this
ticle are the intermolecular INM. The molecular dynami
algorithm is our synthesis12 of the multiple time step
method22 and the Hoover–Evans constant kinetic ener
scheme23 applied to center-of-mass motion at constant v
ume. The intermolecular time step is 0.75 fs with 10 sh
steps/intermolecular step for the intramolecular forces. C
stant center-of-mass kinetic energy approximates constaT
and avoids temperature echoes during quenches. For
temperature, the correct density is used, with supercoo
densities obtained7 by extrapolation from the normal liquid
With basic time and distance units as picoseconds and
strom, we choose7 a mass unit, denotedm, such that energy
comes out in degrees Kelvin;m50.8315 amu.

A hot (T5600 K) liquid is equilibrated for 75 ps at th
desired density, quenched to theT of interest in one step, and
first equilibrated for 5.2 ps while the intramolecular tempe
ture is forced to equal the intermolecularT every long time
step. Having achieved intermolecular-intramolecular equi
rium, the system is equilibrated normally for 30 ps. At lea
200 configurations were sampled in the data gathering
riod, saved every 1.5 ps. The time-dependent potential
ergy and pair distribution function are monitored for ev
dence of solidification. CS2 is encouragingly resistant to
solidification but some runs show a slight downward drift
the potential energy and we discard them. Standard num
cal eigenanalysis is applied to the Hessian, and for e
mode, we obtainU(q). Starting at a configurationR0 , U is
evaluated at 1100 configurations in both directions along
mode;q points are spaced by 0.024AmÅ. The profile is first
checked for the number of minima; with two it is a DW, wit
one SW or SH. The single-minimum modes are separated
the behavior ofU9(q), which has no zeros for a SW an
vice-versa. TypicalU(q) at 165 K are in Fig. 1.

The three dos at the normal melting point, 165 K, a
displayed in Fig. 2. On the Imv side, a DW cutoff is visible
and the SH modes dominate at lowv, the DW at highv. To
a good approximation, all of the Rev INM are SW, but a
tiny SH lobe exists. Figures 3 and 4 show the SW and D
densities atTg5100,Tm5165, 224, and 298 K. Away from
the lowestv, the SW dos equals the Rev dos; we charac-
No. 1, 1 January 1998
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254 Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
FIG. 1. Representative SW~solid line!, DW ~large dash!, and SH potential
energy profilesU(q); U in N* T, N number molecules~108!, T temperature
in K ~165 K!.

FIG. 2. SW~positivev!, DW ~solid!, and SH densities at 165 K;v in ps21.

FIG. 3. SW density at 100~solid!, 165 ~large dash!, and 298 K;v in ps21.
J. Chem. Phys., Vol. 108,
terized the latter in Ref. 7. With increasingT, the peak shifts
to lowerv due to the decrease in density at constantP, while
the high-v wing extends due to more hard, close molecu
interactions. These effects combine to create an isobe
point atv;27 ps21, with ^rSW(v)& increasing with increas-
ing T for v.27 ps21 and vice-versa for intermediatev.

The DW ~Fig. 4! clearly show the cutoffvc which in-
creases with decreasingT, varying from ;0.4 ps21 at T
5298 K to;1.2 ps21 at T5100 K. In Ref. 7, the IMv lobe
was seen to consist of a stronglyT-dependent translationa
low-v spike, which governs diffusion, sitting upon a weak
T-dependent broad rotational background. The DW dos a
shows this structure, with the translational spike atuvu
;3.2 ps21 exhibiting strongT dependence forT.Tm . Fig-
ure 5 is a blowup of the low-v region at 298 K. The Rev
and Imv densities are linear inuvu at low v, in contrast to
the Debyev2 behavior. Despite the small amplitude of th
SH dos, removing it from the Rev dos yields a SW dos with
some curvature at lowv, and the DW dos is not at all linear
The highest Rev at which a SH can be found is roughl
equal tovc , a symmetry which we have proposed24 else-
where. All the dos are identically zero atv50, and the ap-

FIG. 4. DW density at 100~solid!, 165 ~large dash!, 244 ~small dash!, and
298 K; v in ps21.

FIG. 5. Blow up of low Rev region at 298 K showing DW with cutoff
~solid!, SH with small Rev lobe ~large dash!, and SW.
No. 1, 1 January 1998
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255Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
parent nonzero value of^rSH(v50)& is an artifact of finite
bin size. Minimal further discussion will be given of S
modes insofar as they, unlike SW and DW, do not yet h
clear physical interpretations.

Temperature dependent tr DW dos~Fig. 6! resemble the
unprojected DW dos, except the spike is stronger, and
broad background is smaller, as it should be with rotat
projected out. It will be shown in the next section that t
tr DW modes have a strongerT dependence than do th
tr SH or all the tr Imv modes. The background persisting
low T corresponds, we believe,19 to the aforementioned ro
tational influence on the projected tr spectra. The rot D
dos, Fig. 7 has relatively weakT dependence, with the low-v
spike reduced to a low-amplitude shoulder. At highv and
high T, the rot DW dos appear to be reaching
T-independent shape resembling the wings of the tr DW d
in agreement with the idea that, even in the tr densities,
wing is basically rotational.

III. DIFFUSION

We have given3,7,12,13several theories, of varying com
plexity, for diffusion. In our initial two-flavor study7 of CS2,
the formula,

FIG. 6. As Fig. 4 for translational DW.

FIG. 7. As Fig. 4 for rotational DW.
J. Chem. Phys., Vol. 108,
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D5c^v i
tr&D f i

tr ~1!

was seen to work very well, wherec is a constant andi
denotes the type of mode chosen to approximate the barr
In Ref. 7 i 5Im, ^v Im

tr & is the averaged tr Imv frequency,
and the Imv tr modes remaining atTg are removed via
D f Im

tr (T)5 f Im
tr (T)2 f Im

tr (Tg); f Im
tr (Tg) is an estimate of the

fraction of false-barrier tr Imv modes. These modes are pr
marily the broad background that persists in the tr dos~Fig.
6! at 100 K. If the DW modes are a better approximation
the barrier-crossing modes than are all the Imv modes, then
the choicei 5DW should lead to a smaller subtraction.

Mode fractionsf Im , f Im
tr , f DW

tr , and f SH
tr vs T are shown

in Fig. 8; tr fractions are out of all tr modes, whilef Im is a
fraction of all intermolecular modes. The total Imv fraction,
f Im has a weakT dependence both because of the rotatio
and the SH. The tr DW fractionf DW

tr has a strongerT depen-
dence than doesf SH

tr or f Im
tr , and has the smallest remnant

Tg , confirming our expectation. The differentT dependences
can be seen more clearly in Fig. 9, where the fractions
given relative to their value atT5298 K. Not only

FIG. 8. T dependence of the fractionsf Im ~solid!, f Im
tr ~large dash!, f DW

tr

~dotted!, and f SH
tr ~small dash!.

FIG. 9. T dependence of the fractionsf Im ~solid!, f Im
tr ~large dash!, f DW

tr

~dotted!, and f SH
tr ~small dash!, relative to their values atT5298 K.
No. 1, 1 January 1998
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256 Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
does f DW
tr (T) have the strongest variation, it has the mo

curvature, resembling that ofD(T). Comparison of Eq.~1!
with i 5DW and simulated7,25 D(T) is in Fig. 10; the value
of the adjustable parameterc50.50 Å2, compared toc
50.17 Å2 determined7 previously, becausef DW, f Im . Both
the current theory and Ref. 7 exhibit nearly perfect agr
ment with simulatedD throughout the supercooled range a
up to 190 and 180 K, respectively. At higherT, deviations
set in, with the theory based upon DW showing the be
performance.

For CS2 ~Fig. 8!, f DW
tr ; f SH

tr , and it is also true thatf DW

; f SH. Bembenek and Laird found14 f DW@ f SH in LJ, while9

f DW! f SH in water. LJ is a fragile liquid and water is stron
with CS2 somewhere in between; the ratio S25 f SH/ f DW fol-
lows the strength of the liquid. Thus we propose INM-bas
probes of strength and fragility. In Sokolov’s picture26 of
supercooled liquids, the excitations responsible
intermediate-time dynamics are ‘‘quasilocal harmonic os
lations’’ and ‘‘two level systems of a relaxational chara
ter.’’ In INM, these excitations obviously correspond to S
and DW. Sokolov suggests26 that strong liquids have a rela
tively large fraction of harmonic modes, in which case
measure of strength should be S15 f SW/ f DW . In a super-
cooled liquid with f SW close to unity andf DW small and
strongly T dependent, it is plausible that both S1 and
measure strength. A related ratio, that of the number of Rv
to Im v modes, is denoted (Re/Im).

The ratios depend onT, so one reasonable point of com
parison is the melting temperature. Table I compa
S1(Tm), S2(Tm), and (Re/Im)(Tm) for LJ at reduced density
of 0.85, and for CS2 and water atP51 atm. We have applied

FIG. 10. Comparison of simulatedD(T) ~small dash! in CS2 with predic-
tions of Eqs.~1! ~large dash! and ~2! ~solid!.

TABLE I. Strength indicators for fragile~LJ!, intermediate~CS2!, and
strong (H2O) liquids.

LJ (r50.85) CS2 (P51 atm) H2O ~P51 atm!

~Re/Im! 4.2 4.5 9.4
S1[~SW/DW! 5.3 8.4 30
S2[~SH/DW! 0.26 0.88 2.2
J. Chem. Phys., Vol. 108,
t
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r
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our methods to LJ for this comparison, and the water d
were obtained as indicated in Ref. 9. The link between
and S2 and strength is confirmed. Variation of (Re/Im)
much less than for S1 and S2, because (Re/
5S1/~11S2!, and for large S1 and S2, their increase w
strength cancels in (Re/Im). A three-flavor description is
sential for construction of the most sensitive probes
strength/fragility, although the trends can still be seen
(Re/Im). The small fraction of Imv in water was noted by6

Cho et al., and8 Ladanyi and Stratt pointed out that the fra
tion was smaller in polar~stronger! acetonitrile than in non-
polar CO2.

The dimensions ofD are l 2t21; what are the INM DW
quantities, for a mode with frequencyv, with these dimen-
sions? Clearly,v fills the bill for t21. An INM l 2 is acces-
sible via U(q). Just as an ordinary harmonic oscillator
SW mode has a characteristic mean-square distance from
bottom of the well,m21^qv

2 &SW ~q is mass weighted andm is
the effective mass!, a DW has a mean-square distance fro
the barrier top,m21^qv

2 &DW . Evaluation of ^qv
2 &DW from

U(q) is straightforward. We have for every DW mode th
position of the barrier top and the position of the system, t
is, q. Dimensional analysis then suggests that we try
formula,

D5c8E dv^rDW
tr ~v!&v^qv

2 &DW , ~2!

where for simplicity we just letc8 be a constant and do no
treatv-dependent effective masses. Equation~2! is compared
with simulatedD in Fig. 10, with remarkable agreement u
to the highestT5298 K; c850.25m21. For normal and
higher-temperature supercooled liquids, Eq.~2! is quantita-
tively accurate. At the lowestT, where Eq.~2! predicts too
much diffusion, further removal of false-barrier modes cou
easily be included. The strongT dependence of Eq.~2! com-
pared to that of the different mode fractions demonstra
that INM theories ofD depend on more than the number
barrier-crossing modes. The contribution of each mode toD
is a nontrivial quantity. In Eq.~2!, ^qv

2 &DW , not f DW , domi-
nates theT dependence.

IV. HARMONIC AND ANHARMONIC PROPERTIES OF
LIQUIDS

The U(q) contain a large amount of information abo
liquids. An important caveat is that the INM eigenfunctio
change as the particles move, while theU(q) are calculated
with eigenfunctions from the initial configuration. In futur
work, we will3,11 follow the changing eigenfunctions, bu
much can be learned about the landscape with the cur
version. A ubiquitous quantity in INM theories is the fre
quency dependent mean squared normal coordinate fluc
tion, ^qv

2 &, which in a classical, harmonic, Rev system has
the valueT/v2. We can calculate the truêqv

2 &SW, SW be-
ing the mode type most resembling a harmonic oscilla
with the method just applied tôqv

2 &DW . Comparison with
the harmonic expression at 165 K forv>3 ps21 and for
5 ps21>v>1 ps21 is in Figs. 11 and 12. The value o
No. 1, 1 January 1998
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257Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
^qv
2 &SW falls below the harmonic formula at the lowestv, is

in good agreement at intermediatev, and exceeds the har
monic formula at largev. The same general behavior hold
for all T, although^qv

2 &SW does not increase as strongly
;T at intermediatev and the agreement deteriorates w
increasingT.

A natural ‘‘harmonicity indicator’’ is Hq

[T/(v2^qv
2 &SW), shown for four T in Fig. 13.

Three frequency ranges are clearly distinguishab
v,2.5 ps21, 20 ps21.v.2.5 ps21, and v.20 ps21. For
20 ps21.v.2.5 ps21, which includes almost all the SW
modes, the liquid is approximately harmonic, with 2.Hq

.0.8 for all T. Below 2.5 ps21, Hq rises sharply, signaling
an overestimate of̂qv

2 &SW by the harmonic approximation
The explanation is that in a harmonic oscillatorq can extend
without limit asv→0, while in the liquid a largeq will lead
to the anharmonic region away from the well bottom, t
mode will no longer appear to be a SW, and will not co
tribute to^qv

2 &SW. Thus we are in accord with Ref. 9 regar
ing a strong low-v anharmonicity, except that we would sa
CS2 is anharmonic forv,2.5 ps21, while water is anhar-
monic for v,7 ps21.

FIG. 11. Simulated̂ qv
2 &SW ~solid! and harmonic predictionT/v2 vs v

(ps21) at 165 K.

FIG. 12. Low-v region of Fig. 11.
J. Chem. Phys., Vol. 108,
,

-

Anharmonicity increases withT in the intermediatev
regime due to the weak increase of^qv

2 &SW just mentioned.
The idea that only the lower part of the true potential yie
a SW is useful here also. AsT increases, the new parts of th
landscape visited are less likely to yield SW, and^qv

2 &SW is
almostT independent at highT. At v.20 ps21, ^qv

2 &SW is
systematically underestimated by the harmonic formulaH
,1). A possible explanation can be found in the noticea
anharmonic and asymmetricU(q) prevalent at highv. The
potential in Fig. 14 will yield highv for negativeq, but is
very soft, with^qv

2 &SW enhanced, for positiveq. TheseU(q)
resemble the LJ potential, in accord with the idea27 that the
high-v modes consist of strongly interacting atomic pairs

The indicator9 Hv[^(vmin /vinm)2& is shown in Fig. 15.
Encouragingly, the general behavior is the same as tha
Hq , with the same three frequency ranges. The low-v rise,
corresponding to a softening ofv inm , and the absence ofT
dependence in the intermediate-v range agree with what is
observed9 for water. On the other hand,Hq is T dependent at
intermediatev in CS2, and9 no high-v anharmonicity is
found in water. The presence of LJ-likeU(q) at highv can
also explain whyHv is less than unity. For theU(q) in Fig.

FIG. 13. Harmonicity indicatorHq[@T/(v2^qv
2 &SW)#, vs v at 100~solid!,

165 ~large dash!, 244 ~small dash!, and 298 K~dotted!.

FIG. 14. U(q) for a high-v SW mode, demonstrating similarity to
Lennard–Jones potential; units as Fig. 1.
No. 1, 1 January 1998



-
tie
be
w

es

-

c

-
is

en

ive
-

f
n

,
d
t
he

e
l-

W

,

the
-
fre-

t
h
nn
iers

is

es,

258 Li, Keyes, and Sciortino: 3-flavor instantaneous normal mode formalism
14, Hv!1 at negativeq despite the softening at positiveq
that increaseŝqv

2 &SW. Different indicators and different sub
stances need not display identical behavior; the similari
are more striking than the differences. We are only just
ginning, via INM, to pose and answer the question ‘‘ho
harmonic is a liquid?.’’

The low-v behavior of^qv
2 &SW is significant for future

INM development. Integrals arise in some INM theori
where2,3 the integrand is the product of^rs(v)& and ^qv

2 &;
the linear low-v behavior of ^rs(v)& and use of the har
monic ^qv

2 &5T/v2 lead to a divergent integrand at lowv. It
appears that use of the SW dos with the nondivergent^qv

2 &SW

will remedy this difficulty. All modifications of the harmonic
formula will affect the time dependence of correlation fun
tions calculated via INM.

Turning to the DW modes, the quantity^qv
2 &DW has al-

ready been introduced with Eq.~2!. While there exists a har
monic approximation to start with for SW, almost nothing
known about̂ qv

2 &DW , although brief discussions have be
given by Cho et al.6 and by Bembenek and Laird.14 Of
course, if the system were literally harmonic with negat
curvature,̂ qv

2 &DW would be divergent. In our case, we sim
ply ask what iŝ qv

2 & given that the mode profile is a DW. I
q gets large, the potential changes—the true system is
harmonic—and it is no longer a DW. Results for^qv

2 &DW at
severalT are in Fig. 16. At highv, the curves are nearlyT
independent and are well fit bŷqv

2 &DW;40/uvu2, strong
growth with T sets in forT.165 K and uvu,6 ps21, and
^qv

2 &DW falls off for the lowestuvu due to the cutoffvc . The
latter two effects combine to generate a peak atuvu
;2.8 ps21, close to the DW translational spike at 3.2 ps21.
Thus for T>Tm , as fluidity increases in the normal liquid
the low-v tr DW modes grow strongly both in number an
in displacement from the barrier top. TheT independence a
high v is most likely, again, a signature of rotations. T
DW q fluctuations are always much less than those for SW
the samev, which might support neglect of Imv modes in
theories of time correlation functions.

The harmonicity indicatorHv may be generalized by th
definition Hv[^(vext/v inm)2&, where ext denotes the re

FIG. 15. As Fig. 13 for harmonicity indicatorHv[(vmin /vINM)2, SW
modes.
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evant extremum, which need not be the minimum. For D
that extremum is the barrier top andHv5^(v top/v inm)2&,
showing in Fig. 17 aT-independent decrease fromHv;1 at
high uvu to Hv;0.8 asv→0. While the SW modes soften
evidently the DW ‘‘harden’’ asv→0. Nonetheless, the INM
frequency is an excellent indicator of the frequency at
barrier top for allv. This supports the use of INM to calcu
late barrier crossing rates, since theories require the
quency at the top.

Barrier heights~measured from the lower minimum! are
easily read off from DWU(q). The distribution of DW bar-
rier heights,g(E,T), a crucial quantity for diffusion in liq-
uids, is displayed at fourT in Fig. 18. It is our sampling tha
makesg(E,T) depend onT. We only see the barriers whic
the system visits, i.e., the distribution has the Boltzma
factor folded in and is not a pure landscape property. Barr
with E@T are missed in, while those withE!T should be
well described. The distributions are normalized so there
an apparent change at lowE asg(E,T) extends to higherE
with increasingT. Notable is the vanishing ofg(E,T) as
E→0. This is a consequence of the cutoffvc ; with no DW
modes belowvc , and with E and v correlated, the low-E

FIG. 16. Simulated mean-square deviation from barrier top for DW mod
^qv

2 &DW , in Å2m, vs v at 100~solid!, 165 ~large dash!, 244 ~small dash!,
and 298 K~dotted!.

FIG. 17. As Fig. 15 for DW modes,Hv[(v top /vINM)2.
No. 1, 1 January 1998
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barriers are depleted. Prior two-flavor studies12 of g(E)
based upon̂ ru(v)&, with no cutoff, yield a maximum a
E50. In our view, the scarcity of low-E barriers causes12,13

exponentialT dependence ofD(T).
The relation betweenE andv is illustrated in Fig. 19 via

the averagedv-dependent DW energy,̂E(v)&DW , at sev-
eralT. The increase of̂E(v)&DW with v has the elementary
interpretation that higher barriers have larger curvature at
top.12,13 In a now familiar pattern,T dependence is weak a
high v, while a peak atv;3.6 ps21 grows in forT.Tm ; the
high-v functional form, governed by rotation, iŝE(v)&DW

;v.
The peak position is close to that (;3.2 ps21) in the tr

DW dos and it makes sense that the growth in tr DW mo
is associated with visiting of higher energy barriers. The d
support the idea of anv-dependent minimum barrier energ
For T!Emin(v), Emin will dominate the average and̂E&
;Emin . For T.Emin(v), an increase inT will allow the sys-
tem access to higher barriers and^E& can grow withT. As
an elementary demonstration of these arguments, note t

FIG. 19. Average barrier energy for DW modes,^E(v)&, vs v at 100
~solid!, 165~large dash!, 244~small dash!, and 298 K~dotted!; E in K, v in
ps21.

FIG. 18. Distribution of DW barriers,g(E), vs E at 100~solid!, 165 ~large
dash!, 244 ~small dash!, and 298 K~dotted!; E in K.
J. Chem. Phys., Vol. 108,
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horizontal line on Fig. 19 atT5298 K, our highestT, strikes
all the data atv;6 ps21, the boundary between strong an
weakT dependence. One might ask why the peak does
begin at lowerT and lowerv, whereEmin(v) is lower. The
answer, most likely, is that there are simply not enou
modes available asv→0.

V. DISCUSSION

Analysis of U(q) naturally leads to a three-flavor INM
description of liquids. SW modes take the role of loc
finite-lifetime harmonic oscillations, replacing the Rev
modes from prior versions. DW modes replace the Imv
modes as barrier-crossing ‘‘relaxational’’ excitations.26 The
physical significance of the SH modes remains to be disc
ered.

This article is a first step. We have presented the th
flavor dos and discussed diffusion, strength/fragility, the h
monicity of liquids, the fluctuations of the INMq, and the
energy barriers to diffusion. An INM-based assessment
the harmonicity of CS2 as a function of frequency demon
strates an intermediate-v harmonic range of
20 ps21.v.2.5 ps21, with harmonicity at high and lowv.

Several of the results combine to firm up the INM pi
ture of diffusion. Diffusion in normal and supercooled liqu
CS2 has previously7 been connected with a strongl
T-dependent translational peak at Imv;3.2 ps21, which we
now see in the DW dos. In addition, we find almost identic
peaks in̂ qv

2 &DW (2.8 ps21) and^E(v)&(3.6 ps21). We may
therefore say that diffusion in CS2 is governed by barriers
with v;3 ps21. At eachv, there is a minimum barrier en
ergy, andEmin(3 ps21! is the lowest minimum energy fo
which there are also an appreciable concentration of barr
As T is increased sufficiently aboveEmin(3 ps21!, which is
approximately equal toTg , higher energy barriers with the
samev are crossed,̂E(v;3 ps21)& increases, and so to
does^q2(v;3 ps21)&DW . The increase is slow initially and
becomes obvious forT.Tm . Thus INM illuminates the con-
nection between diffusion and the potential energy landsc
in unprecedented detail.
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