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Coniglio-Klein mapping in the metastable region
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We explicitly calculate the connectivity in the percolation problem defined by the Coniglio-Klein mapping
of the Ising model on the Bethe lattice. We study the relation between thermal correlations and connectivity in
the (T,H) region where the system is metastable, with the aim of interpreting the mean-field spinodal line with
a percolation line of the same sort. We find that the extension of the mapping to the metastable region is
characterized by a nontrivial feature, i.e., the simultaneous presence of two infinite percolating clusters of
opposite spin. This feature destroys the usual equivalence between correlation and connectivity. A different
relation between thermal and percolative quantities, which reduces to the know relation in the stable region,
can be obtained if the cross correlation between the two infinite clusters is taken into account.
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[. INTRODUCTION nected spins. Using this bond definition, the probability for

each spin to belong to the infinite cluster exactly maps onto

The geometric description of thermal quantities, initiatedthe magnetization and so does the probability of two spins to
by Fortuin and Kasteleyfil] and developed by Coniglio and Pelong to the same clustéhe connectivity with the thermal

Klein [2] and many otherE3—6], has contributed to a deeper Correlation. . - .
understanding of critical phenomena. Thermal variables Based on such a geometric description, a cluster dynamics

for the thermal Ising model has been introduced by Swend-

such as magnetization and correlation functions, have beef), -4 Wang6] and recently optimizefi7]. In this dynam-

shown to be equivalent to percolative quantities, such as th@q 4| spins belonging to the same cluster are flipped with
strength of the infinite network and the pair connectivity. propability 1/2, while spins in the infinite cluster never flip.
With a suitable choice of the percolation model, the criticalSych artificial dynamics dramatically reduces the critical
point has been exactly mapped onto a percolation point. Usslowing down near the critical point for Monte Carlo simu-
ing such a mapping, the critical exponents have been showlations. More recently{8—11,7, the same formalism has
to coincide with the percolation ones. been analytically extended to frustrated systems.

The mapping between thermal and percolative quantities In mean-field models the correlation length diverges not
allows one to identify(and visualiz¢ the paths through only at the critical point, but also along the spinodal line,
which correlations propagate in the system. The suitably dewhich delimits the region of metastability in the phase dia-
fined percolation clusters act as independent units, comfdfam. According to the previously discussed mapping, in the
pletely uncorrelated among each other. Instead, the clustépean field one would expect to be able to associate the spin-
elements are infinitely strongly correlated. Under such map@dal line with a percolation line. The equivalence between
ping, the thermal correlation length is connected to the aver€ thermal correlation length and connectivity in the meta-
age cluster size. The divergence of the correlation length table rerg]uon IS tr?e main point of this ?‘”'ﬁ'e- Ray anIdI.KIeln
the critical point is equivalent to the formation of a spanningl2:13 SI tc_>we|cj t 6.‘: in order to matmtalr& tf_e sré)rl]noga éne a;_
cluster. According to the mapping, the critical point is the & Percolation ine 1t 1s necessary 1o redetine the bond pro

. N : ~ ability as 1— e 2AY1~M) 'whereM is the magnetization. In
only percolation point in the region where the system is » ;
stable. Indeed, with the exclusion of the critical isochore, th the present paper we consider the consequences of using the

- ) i e E‘Coniglio—KIein mapping, i.e., we retain the definition pf,
system can Ige partitioned in a coIIectlor_1 of finite (_:Iu_st_ersand Gox. We study the Ising model on the Cayley tree to
plus one infinite cluster, the latter accounting for the infinite-

. . _ implement directly into the model the mean-field approach.
range correlation associated with the presence of a nonze{Re find that in extending the mapping to the metastable
order parameter. _ _ _ region, an additional nontrivial feature that destroys the
In the Ising model with coupling constadt the equiva-  equivalence between the correlation and connectivity shows
lence between thermal and percolative quantities is achievegh. The thermal correlation and connectivity are not equal
when nearest-neighbor parallel spins are connected by ranymore due to the anticorrelation that develops in the pres-
dom bonds with probabilityp,,=1—e 2" [2], where ence of two distinct infinite clusters. One is formed by span-
B=1/kgT. In the presence of an external magnetic field  ning parallel spins and the other by isolated clusters of spins
visualized as an external spirfnamed ghost spn  of opposite sign connected through the ghost site. This result
sqh=H/|H| parallel toH, spins are connected witly, with  is particularly interesting for its analogies to the similar
probability g¢,=1—e~2#M. Clusters are defined by con- structure of the correlation and connectivity that develops in
spin glasse§14].
To explicitly calculate the connectivity in the metastable
*Present address: Department of Brain and Cognitive Sciencesegion we first derivgSec. 1) the expressions for the con-
MIT, Cambridge, MA 02139. nectivity on the Cayley tree for a very general model of
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of the model, i.e., on the calculation of the probability for
two sites,n—1 sites apart, to belong to the same cluster.
We solve the model on the Cayley tree of coordinatjon
(i.e., y branches originate from each git&€ach site can be
either? or |. The distribution of sites in the lattice is defined
by the quantitiesP(7) and P(7|1), from which one can
calculate any conditional probabiliy,( | ) using the recur-
sive relations

Pa(T[1)=Pa_1(TIT)P1(T[1) +Pr_a(LIDP1(T[]) (D)

and the completeness equations
Pa(LIT)=1=Pu(1[1),
P(TPa(LIT)=P(L)Pa(T]]). v

Let 7 be the probability of two parallel NN sites to be
connected andr, (o) the probability of an ugdown) site
to be connected with the u@own ghost. The probability
P°T° for a single site, labeled 0, to belong to the infinite up

cluster is
FIG. 1. Connectivity of a CSRB model generally defined with

two ghosts: Bonds are present within the lattice between NN paral- P =P(1)[1-(1-0¢,)Q], 3
lel sites with probabilityr (full lines) and between siteg (|) and ! [l

th host h ith babilit dashed li | - _
e § ghas) wih probabilty oy {dashed lnaslo, dong 1-Q,=P(|N[1-(1-0)Q? 1] @

correlated-site—random-bondCSRB percolation in the Qi can be interpreted as the probability that one branch,
presence of two external ghosts sites. The extension of th@enerated from an up site, is not connected to the up ghost.
known CSRB model to the case where two external ghost4n analogous expression can be obtainedHor. For every
sites are simultaneously present is required in the modeling EQ- (4) has a unique solution that satisfi@s<1.

the peculiar structure of the spin system in the metastable We now calculate the generalized connectivity, de-
region, where two infinite clusters of opposite sign coexistfined as the probability for two sites, separatechbyl other

[4]. The reader interested only in the mapping between thedattice sites, to belong to the same cluster. The two sites can
mal and percolation quantities in the stable and metastablee connected either via a continuous path of bonds in the
regions can start from Sec. Ill, where the general expressiorigttice [F,(T) or F,(1)], or through the ghosfG,(T) or

for the connectivity derived in Sec. Il are specialized to theGn(1)] [29]. ThusC,, is the sum of four contributions
Coniglio-Klein (CK) mapping case and compared with the

corresponding thermal quantities. Ch=Fn(1)+Fn(L)+Gn(T)+Gn(l). )
II. CONNECTIVITY IN THE CSRB MODEL The expreSSionS fd'l_‘n(T) anan(l) are Straightforward;
WITH TWO GHOSTS we have
The calculation of percolative quantities such as the per- Fa(T)=P(MIPTIT)Pcid", (6)

colation line, connectivity, mean cluster size, and critical ex-
ponents on a Cayley tree is largely available in the literatureaind analogously foF,(]).
for the random-site—random-bond mofi&b, 16, in the pres- The calculation ofG,(1) andG,(]) requires more care.
ence of a ghodtl,17-2Q, and in the correlated case without et us start withG,(1) by considering the path connecting
a ghost[19,21-27. For a very complete review sd@8].  site 0 with siten. We defineP,, ¢, as the probability of the
Using Essam’s formalism we calculate the order parametesite configuration in which sites Q, ,s are up, sites+1 is
and the connectivity of a generic CSRB percolation modebown, sitet— 1 is down, and sites . .. ,n are up(see Fig. 2
with two ghosts(see Fig. 1 with t>s. P, ¢ is

The CSRB model with two ghosts may be generally de-
fined on a lattice where the sites may be of two types, dis- Pn,s,tzP(T)P(T|T)S+n7tp(l|T)Ptf(s+2)(l|l)P(Hl)-
tributed according to an assigned probability distribution.
Bonds are thrown between nearest-neighbi) sites of the
same type, with a random probability. Two external sites, The probability of the configuration with exactilyup sites
one for each site type, are also defined and bonds are throwound to the origin in the direction-0On (and thus <s) and
between lattice sites and the external site of the same typexactlyn—j up sites bound to sita (so thatj=t) is
with random probabilityr. Clusters are thus defined as con- _ .
nected spins. We will focus our interest on the connectivity Postij=Pnsim(1— m) ¥ (1— )", 8



s =1t .. j..n

FIG. 2. In this configuration sites 0,.,s—1 areT, sitess and
t—1 are| (t>s), and sited, ... ,n are]. Sites 0, .. ,i are bound
by bonds within the lattice, as well as sitgs . . ,n. y—2 branches
(other than the NN present in the figureriginate from each site
1,... n—1, while y—1 branches originate from sites O amdThe
probability of this configurationwith no consideration of bonds
with the ghost sitgis Py s, -

where ¢=1-6; s and y=1—¢; ; take into account the oc-
currence of =s andj =t casegwe use the functiod, ,,=1
if I=m and zero otherwige

We now evaluate the probability of sites 0 ando be
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The complete expressions of the coefficiefis,. . . ,Ag,
which are rational function oP(7),P(1[1),Q;,q;,, are
reported in the Appendix.

The calculation ofG,(|) exactly parallels the one for
G,(T). The final result foiG,(]) is an expression similar to
Eq. (12), with the exchange of the symbadjsand |. We call
B4, ... ,Bg the properly defined coefficients f@,(]).

Summing the two term&,(T) and G, (]) with the two
termsF.(7) and F,(]) [see Eqg.(6)], we obtain the final
result for the connectivity:

Cn=A1Pn(T[1)+ALP1(T[T)]"+[Ag+P(DI[PL(T[1)7]"
+AJLPL(TIN) 7 1"+ A[P1(T] 1) 7q;]"n+ Ag
+B1Pn(L[1)+Bo[P1(L|)]"+[Bs+P(])]

X[P1(L[ )]+ B[ P1(L][1)mq,]"

+Bg[P1(1]1)7q;]"n+Bs. (13

connected to each other through the ghost in the configura-

tion Py, 51 j - Site O is connected with the ghost in one of the

following casesli) directly, (ii) through one of its bounded
NNSs, or(iii ) if at least one of thei(+1)(y—2)+1 branches
originating from sites Q,. . ,i goes to the ghost. If we define
the quantitqu=(1—oT)Q%‘2, the probability of site 0 not
to be connected with the gho§te., none of the previous
conditions occurringis
(1_O_T)i+1Q(Ti+l)('y*2)+1:qiT+lQT' (9)
If exactly i sites in the line 0,..,n are bound to site 0

andn—j to siten, the probability of both O andh being
connected to the ghost is

Gnstij=Pnstij(1=07Q(A—a!71Q)). (10)

In order to obtairG,(1) we sum the previous expressions

over all the possible values of the variablegs,t. We also

take into account the configuration in which all the sites i
the line 0,..,n are up, but not all the bonds are present. W

thus obtain

n—2 n S

Gu=2 > >

n
.2 Gn,s,t,i,i
s=0 t=s+2 i=0 j=t

-1

+P(T)P(T|T)”i20

n
> w(1—m)2 G,
g

11

e

IIl. CONIGLIO-KLEIN MAPPING IN THE STABLE
AND METASTABLE REGIONS

The mean-field approximation for the Ising model, with
the Hamiltonian H=JZ\\SiSj+HZ;s;, may be stated
[30,37 through the Bethe-Peierls equations

z(zy+1)

Pty DTy 49
zy
Pl(+|+):zy+l’
zy+1\771
z=f(2)=pn 2Ty : (15

wherey is the coordination number of the latticg= e(?49,

n/,e=e(2/3H), P(+) is the probability of a single spin to be in

thes= +1 state, andP,(+]|+) is the conditional probability
of a spin to be in thes= +1 state, knowing that one of its
NNSs is in thes= +1 state.

Equations(14) and (15) are exact on they Cayley tree
since the mean-field approximation is equivalent to neglect-
ing the correlation loops present in a generic lattice. As is
known for the van der Waals and Curie-Weiss equations, Eq.
(15) has one or three solutions, according to the values of the
variablesH and T. When three solutions are available they
are respectively identified with stable, unstable, and meta-
stable states of the system. The critical point is found by
imposing the collapse of the three solutions, i.e., through the

The factor (1)~ %+1i in the second term states that only conditionsH=0 andf’(1)=1. The spinodal line, i.e., the

one bond is absent wher-1=j.
The calculation of the two terms in E€L1) is derived in

limit of existence of a metastable state, is defined by the
identity of two of the three solutions of EqL5) or through

the Appendix. We report here only the final expression forthe condition of diverging susceptibility.

Gn(1):

Gn(T)=A1Pa(TI1)+ALP1(T[T)]"+ Ag[ P (T]1) 7]"

+AJLPL(TID) 1"+ As[P1(T]1)7q;1"n+ As.
(12

The magnetizationM and the spin-spin correlation
S,=(spS,) can be generally written as
M=(sp)=P(+)—P(-), (16)

$y=2P(+)Py(+]+)+2P(-)Py(~|-) 1. (17)
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The isomorphism between the thermal Ising model and The breakdown of the equivalence betwe&krandC, in
the percolative CSRB model under the Coniglio-Klein map-the metastable region appears already in the relation connect-

ping can be stated through the equivalences ing M and the strength of the infinite cluster. Indeed, as can
be derived under the mappiri§8), in the metastable region

=+, l== mopasl-e P=1-y7h
M=P7—-PZ, (20)
o Qu=1-e #M=1-p"1 H>0 . y e
where P is the probability that the spin is in a infinite
o, =0, H>0, cluster.
In the limit of n—ow, S,=M?=P%2+P*2-2pP% P>
0,=0, H<00 —qu=1-e #H=1—4 H<O. [where we have used E0)]. Because only infinite clusters

(18) can give contributions to the connectivity for-o, we ex-
pect to find, together with the connectivity of the cluster of
Note that since in the thermal model only one ghost isspin + (the Pf_z term) and the cluster of- spins(the P*?
presento; or o, is always zero. term), an additionaknticorrelationresulting from the differ-
The equivalence between thermal and percolative propekent signs of the spins between the two infinite clusténs
tiesin the stable regioras been extensively discussed in the—2p% P” term.

past[2,6,3,9. We briefly discuss here these well-known re- By using the mapping in Eq18) we now show that the

sults USing the formalism of Sec. II. - correct relation betweeﬁn and Cn is
When bonds are thrown between parallel NN pairs of
spins s;s; and s;sy,, With probabilities pe, and ggy, two S,=C,—2G,(*), (21

types of clusters are formed) finite clusters of+ and — _ - . _
spins andii) an infinite cluster of+ spins(for a positiveH) ~ Where Gn(+) is the probability of two spinsn—1 sites
connected to the ghost site. The infinite cluster is percolatingPart, to belong to different infinite clusters. Using the for-
within the lattice viap., bonds(i.e., independently of the Malism of Sec. Il and the results derived in the Appendix,
presence ofq., bond3 if the condition P(+|+)pey G, (=) can be explicitly calculated. This computation leads,
—1)>1 is satisfied. once the mapping is considered, to the expression

Under the mappin®! coincides withP? , as can be veri- LR — o= n
fied by substituting in Eq€3) and(4) the thermal expression Gn(+)=C1Pn(+[+) +Co[ P(+[+)]"+ C4[P(—|~)]
for o,P(1), P(1]1), and#. SinceM = P? , the contribution SEIP(+ |+ N EIP(4 |4+ n
of + and — finite-size clusters to the magnetization is zero lP(+1+)Pa. ] s[P(+]+)peg. 1™
because their size distributions are identiegb]. Under the +Cs, (22)
CK mapping, thermal correlations, as measuredshy co-
incide with the connectivity, as measured®y. Indeed, the ith C,, ... ,Cq properly defined in the following equations

connectivity expressiofi3) coincides with the thermal cor- j, the metastable region under the CK mappliEgs. (18)]:
relation expressiofil7) once the values of the coefficients in

Eqg. (13) are evaluated under the CK mappitteps. (18)], A +P(+)/P(—)By+Cy=4P(+), (23
Al:ZP(T)’ ’/&2"‘62:0,
Bl:zp(l)’ §2+E3=0,
As=—P(1), ~
As+P(+)=0,
) . 3t P(+) (23
=P, (19 B3+ P(—)=0,
A6+ Bezl, —~ ~ ~
A4+ BA+C4:0,

A,=A,=A;=B,=B,=Bs=0, o
As+Bs+ Cs5=0,
and substituted into Eq13).
We now discuss the CK mapping in the metastable region ~ Ag+Bg+ Cq+By[1—P(+)/P(—)]=3—4P(+).
(H<0, M>0). It has already been arguéd] that in the _ _
metastable region two infinite clusters #fand — spins are A, ...,Bq,... are thevalues of the coefficients of Eq.
present: one infinite cluster of spins connected to the (13) obtained by substituting the mapping in the metastable
ghost and one infinite cluster of spins connected vip.,  region. By substituting Eq(22) into Eg. (21) and using the
bonds through the lattice. Here we show that the presence oélations of Eq(23), we recover Eq(17) [32].
two infinite clusters produces an additional effect that de- Equation(21), the main result of this paper, implies that
stroys the equivalence between the connectivity and thermdhe spinodal line, along which the susceptivity diverges, is
correlation and forces one to take into account the anticorrerot a percolation line due to the presence of theG, (=)
lation between the two infinite clusters. term. The thermal correlation in the metastable region can be
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10 ‘ . ferent relation between thermal and percolative quantities,
S which reduces to the known relation in the stable region, can
\\" be obtained if the cross correlation between the two infinite
w0 L \ 1 cluster is taken into account.
E®.FEE e From a heuristic point of view, finite clusters can be
I thought of as independent units of infinitely strongly corre-
10" //G +) . lated spins of the same sign that may stay in either of the two
! \\\ states {+ and —) with equal probability. The contribution to
- the magnetization arising from finite clusters averages to
0t ,//ﬁ ] zero. Instead, infinite clusters are responsible for the finite

magnetization of the sample and remain always in the same
spin state. An analogous qualitative argument can be put

G (_") forth for the spin-spin correlatioss;; . Spins belonging to
" different clusters do not contribute &; because they con-
"t , ‘ ‘ tribute with plus ond(+,+) (—,—)] or with minus on€(+,
0 5 10 15 20 —) (—,+)] with equal probability. This argument holds in
n the stable region even when one of the two clusters is the

infinite cluster, in which case the two possible states are
FIG. 3. Thermal correlation lengtts, in the metastable again equiprobable. In the metastable region, the case of two
region M>0H<0). S, is the sum of finite connectivity never flipping infinite clusters arises. The correlation be-
[Fa(+),Fa(—)], infinite cluster connectivitf G,(+)], and con-  tween spins belonging to these two infinite clusters of oppo-
nectivity through the ghostG,(—)], minus the anticorrelation  sjte spin never averages out sirf§eis always equal to- 1.
term[Gn(*)]. This (negative contribution to the thermal correlation has to
be added to the single cluster connectivity, as expressed by
seen as propagating via the finite clustesboth plus and the —G. term in Eq.(21).
minus sping and via the two infinite clusters of opposite  The relation between the connectivity and correlation in
sign. At the same time, an anticorrelation develops betweethe metastable region, is similar to the situation encountered
spins belonging to the two infinite clusters, destroying thein the percolative study of frustrated systems, such as spin
equivalence betwee®, andC,,. An example of all the con- glasses. In that case, the strongly correlated clusters are com-
nectivity contributions to the correlation function close to theposed of spins of opposite sign. The presence of spins of
spinodal line is shown in Fig. 3. both sign in the same cluster introduces, like in the case of
two infinite clusters in the metastable region, an anticorrela-
tion within the same cluster. This anticorrelation breaks
IV. CONCLUSIONS down, even in the spin-glass case, the equivalence between

In this article we have discussed the extension of the mapi€ correlation and connectivity. Indeed, Hg1) matches
ping between thermal and percolative quantities to the metdh® more general context of the Ising spin-glass méa4]
stable region in an Ising model, trying to interpret the spin-Vhere the correlation function is given by
odal line in terms of geometrical quantities. Indeed, in mean-
field models, where the concept of spinodal line is well
defined, the scattered intensity diverges not only at the criti-
cal point but also along the spinodal line, the limit of ther-

modynamic stability. The divergence of the scattered '”te”WherePl (Pl) is the probability that spina—1 sites apart

sity signals the development of an infinite-range correlation, parallel (antiparalle) and belong to the same cluster.

in the system, which in the percolative approach is usually-qsiqering the two infinite clusters present in the meta-

interpreted in terms of the formation of a percolating CI“Sterstable region as one infinite cluster of up and down spins, Eq.
In this paper we have shown that this is not the case and th:&l) coincides with Eq(24).

the divergence in the connectivity length is more subtle, be- A gimjjar situation may characterize the application of the

lbng associated f\.N'.th tr;e devel(:pment_of a cross correlatiogy mapning to off-lattice systems for realistic interparticle
etween two Infinite clusters of opposite sign. potentials. The presence of a hard-core region around each

By solving the percolation problem defined by the CK ), qicie may again be visualized as a persistent anticorrela-
mapping on the Bethe lattice, we have explicitly calculate ion to be taken into account properly.

the contributions to the connectivity arising from finite clus-
ters and from the two infinite clusters of opposite spin. In-
d_eed, in _th_e _metastable region of the p_ha_sg diagram, two APPENDIX

different infinite clusters coexidi4]. Both infinite clusters

are well beyond the percolation threshold at the spinodal. This appendix is aimed at deriving E¢L2) for G, (1)
Thus only the critical point can be associated with a percofrom Eq.(11). The two terms in Eq(11) reduce either to the
lation point in the CK approach. We have shown that thegeometrical sum or to sums solvable by recursion. We first
equivalence between the thermal correlation and connectivcalculate the first term on the right-hand si@tes of Eag.

ity is lost in the metastable region due to the presence of théll), starting by sums with indicelsj, namely[using Egs.
two coexisting infinite clusters. As shown in EQ1), a dif-  (10) and(8)],

S=PL—Pl, (24)
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s n
2 > G
i=0 j=t

S
Prst m(1—m)?
i=0

ns,tij—

X(l—QTqTq})JE:t 71— )

X(1-Qa;97 ). (A1)
The factorg of Eq. (Al) is computed by dividing the sum in
O<i<s into the two parts &i<s—1 (which is a geometri-
cal sum plus the single terni=s, and analogously for the
factor ¢+, which is computed by dividing the sum fs<j<n
into the sunt+ 1< j=<n plus the single termi=t. The same

argument works for the sums in the second term of rhs of Eq.

(12). After executing all sums in andj of Eq. (11) we
obtain

n-2

Gn(1)= aoZ 2 Pnsdai+(mqp)®l[a+ (mq)"” i

s=0 t=s

n

+P(11)"[by+bym"+bs(q;m)"+byn(g;m)"].
(A2)

Theag,a;,a,,bq, .. .,
only via P(1),P(7]1).Q;,q; ,7 (see below. We now sub-
stitute Eq.(7) into Eq. (A2) and define the new variables
t'=t—(s+2) andn’=n—(s+1). We can write the first
term on rhs of Eq(A2) as

n—1

PN Y [a+

n'=0

(mg)" " " HagRy + (7)) R,]
(A3)

with a new coefficienta; (see below and with the defini-
tions

LPu(L]])
3 (A4)

2: P(1[1)"

"o Pu(llD
Ro= t’—, A5
’ Zo[mlww (A9

The sumsR, and R, may be calculated by recursion using
Eqg. (1). The result is

CJ1tiaPa (L)

1~ ’ [ (AG)
P(TIT)"
ki +kyPp/
Ro=kot ————— n(“ﬁ,), (A7)
[P(1]1)7q;]
with jg, .. .,Kq, . .. defined below. The remaining sum over

n’ in Eq. (A3) can be evaluated in a very similar way. Sub-
stituting Egs.(A6) and (A7) into Eq. (A3), this reduces to

1
P(TIT)”'

Por(1]1)
*P(TI1)"

PO 2 | 1a(may)™

PADOA SCHIOPPA, SCIORTINO, AND TARTAGLIA

b, are suitable coefficients, expressed

1
SR LN P —
e (1) "

Po(L]])
P11 ma,]™

with Ig, ... defined below. Three of the terms in E@\8)

can be calculated as geometrical sums: One is trivial and the
other two(with coefficientsl; andl;) exactly reduce t6R;
andR,, respectivelyfsee Eqs(A4) and(A5)]. The first term

on the rhs of Eq(A2) is thus completely calculated

hiPa(117)+haP(T1)"+hg[P(1]7)7q;]"
+h[P(1]7)7q;]"n+hs.

(mqp)"

(mqy)" (A8)

(A9)

In order to obtain the final expressida2) for G,(7) we
only have to add the second term on rhs of ER).

We now list the coefficients previously defined in Secs. Il
and lll and in this Appendix: coefficients defined by evalu-
ating the sums in the variablésandj of Egs.(11)—(A2),

X1=(1=m)Q;/(1—mqy),

(A10)
Xo=Q(1—q)/[q;(1—mqy)],
aOZWqT(qsz)Z.
a;=(gyx1—1)/q;x2, (Al1)

ay= (1 x.— 1)/ gl mx,,
by=P(+)(1—ax)[1~(1-m)q;Q; /(1 ma))],
b2=—P(T)[(l—qmw(1—w>q%x2/<1—qT)],(A12)
bs=—P(D[(1~m)(—q;Q;+afQ;x1)/ (1~ mqy)
—(1=maixa/(1-qp)],
bs=P(1)(1-m)a?Q Xz,

and coefficients defined by evaluating the sums in the vari-
abless andt of Egs.(11)—(12),

P(LIDP(TID

0=2aoP(T) P (A13)
F=[P(LID=PUIDIPIN, (A1)
G=[P(LIN=PILIP(IT)7a;),
j1=1(1-7), A5
jo=—1(1-5),
o L[, PUID
©71-6\" 1-P(i[D)ma;)’
1 PUID

k1=

1-G1-P(1[1)ma;’ (A16)
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_1 h4:|5,
k2:_,
1-6
) ~ 1LP(T[T) - 1sP(1[1)mq,
l,=agaiko, hs—mﬂslﬁmﬂﬂﬁ
l,=apa;(azj1+kq), . P(l)—P(T)
. +(|3J2+|7k2)—P(l) ,
l3=agai(azj+ky), (A17)
|5:a6k07TqT, Alzhla
le=ag(azj1+ky) 7m0, A,=b;+h,,
l7=ay(azj+ k),
As=bz, (A19)
hy=(l3j2+17k)P(T)/P(]),
P . Gl Aa=baths,
2 1-ma; 1-P(I1)
dy | As=h,,
1 l6P(1]1)7q,
hs,= — +1-kq,
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