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Coniglio-Klein mapping in the metastable region

Camillo Padoa Schioppa,* Francesco Sciortino, and Piero Tartaglia
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita` di Roma La Sapienza, Piazzale Aldo Moro 2,

I-00185 Roma, Italy
~Received 8 July 1997!

We explicitly calculate the connectivity in the percolation problem defined by the Coniglio-Klein mapping
of the Ising model on the Bethe lattice. We study the relation between thermal correlations and connectivity in
the (T,H) region where the system is metastable, with the aim of interpreting the mean-field spinodal line with
a percolation line of the same sort. We find that the extension of the mapping to the metastable region is
characterized by a nontrivial feature, i.e., the simultaneous presence of two infinite percolating clusters of
opposite spin. This feature destroys the usual equivalence between correlation and connectivity. A different
relation between thermal and percolative quantities, which reduces to the know relation in the stable region,
can be obtained if the cross correlation between the two infinite clusters is taken into account.
@S1063-651X~98!09303-9#

PACS number~s!: 64.60.My, 05.50.1q, 64.60.Fr
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I. INTRODUCTION

The geometric description of thermal quantities, initiat
by Fortuin and Kasteleyn@1# and developed by Coniglio an
Klein @2# and many others@3–6#, has contributed to a deepe
understanding of critical phenomena. Thermal variab
such as magnetization and correlation functions, have b
shown to be equivalent to percolative quantities, such as
strength of the infinite network and the pair connectivi
With a suitable choice of the percolation model, the critic
point has been exactly mapped onto a percolation point.
ing such a mapping, the critical exponents have been sh
to coincide with the percolation ones.

The mapping between thermal and percolative quanti
allows one to identify~and visualize! the paths through
which correlations propagate in the system. The suitably
fined percolation clusters act as independent units, c
pletely uncorrelated among each other. Instead, the clu
elements are infinitely strongly correlated. Under such m
ping, the thermal correlation length is connected to the av
age cluster size. The divergence of the correlation lengt
the critical point is equivalent to the formation of a spanni
cluster. According to the mapping, the critical point is t
only percolation point in the region where the system
stable. Indeed, with the exclusion of the critical isochore,
system can be partitioned in a collection of finite clust
plus one infinite cluster, the latter accounting for the infini
range correlation associated with the presence of a non
order parameter.

In the Ising model with coupling constantJ, the equiva-
lence between thermal and percolative quantities is achie
when nearest-neighbor parallel spins are connected by
dom bonds with probabilitypck512e22bJ @2#, where
b51/kBT. In the presence of an external magnetic fieldH,
visualized as an external spin~named ghost spin!
sgh5H/uHu parallel toH, spins are connected withsgh with
probability qck512e22buHu. Clusters are defined by con
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nected spins. Using this bond definition, the probability
each spin to belong to the infinite cluster exactly maps o
the magnetization and so does the probability of two spin
belong to the same cluster~the connectivity! with the thermal
correlation.

Based on such a geometric description, a cluster dynam
for the thermal Ising model has been introduced by Swe
sen and Wang@6# and recently optimized@7#. In this dynam-
ics all spins belonging to the same cluster are flipped w
probability 1/2, while spins in the infinite cluster never fli
Such artificial dynamics dramatically reduces the critic
slowing down near the critical point for Monte Carlo sim
lations. More recently@8–11,7#, the same formalism ha
been analytically extended to frustrated systems.

In mean-field models the correlation length diverges
only at the critical point, but also along the spinodal lin
which delimits the region of metastability in the phase d
gram. According to the previously discussed mapping, in
mean field one would expect to be able to associate the s
odal line with a percolation line. The equivalence betwe
the thermal correlation length and connectivity in the me
stable region is the main point of this article. Ray and Kle
@12,13# showed that in order to maintain the spinodal line
a percolation line it is necessary to redefine the bond pr
ability as 12e22bJ(12M ), whereM is the magnetization. In
the present paper we consider the consequences of usin
Coniglio-Klein mapping, i.e., we retain the definition ofpck
and qck . We study the Ising model on the Cayley tree
implement directly into the model the mean-field approa
We find that in extending the mapping to the metasta
region, an additional nontrivial feature that destroys t
equivalence between the correlation and connectivity sh
up. The thermal correlation and connectivity are not eq
anymore due to the anticorrelation that develops in the p
ence of two distinct infinite clusters. One is formed by spa
ning parallel spins and the other by isolated clusters of sp
of opposite sign connected through the ghost site. This re
is particularly interesting for its analogies to the simil
structure of the correlation and connectivity that develops
spin glasses@14#.

To explicitly calculate the connectivity in the metastab
region we first derive~Sec. II! the expressions for the con
nectivity on the Cayley tree for a very general model
s,
3797 © 1998 The American Physical Society
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3798 57PADOA SCHIOPPA, SCIORTINO, AND TARTAGLIA
correlated-site–random-bond~CSRB! percolation in the
presence of two external ghosts sites. The extension of
known CSRB model to the case where two external gho
sites are simultaneously present is required in the model
the peculiar structure of the spin system in the metasta
region, where two infinite clusters of opposite sign coexi
@4#. The reader interested only in the mapping between th
mal and percolation quantities in the stable and metasta
regions can start from Sec. III, where the general expressio
for the connectivity derived in Sec. II are specialized to th
Coniglio-Klein ~CK! mapping case and compared with th
corresponding thermal quantities.

II. CONNECTIVITY IN THE CSRB MODEL
WITH TWO GHOSTS

The calculation of percolative quantities such as the pe
colation line, connectivity, mean cluster size, and critical e
ponents on a Cayley tree is largely available in the literatu
for the random-site–random-bond model@15,16#, in the pres-
ence of a ghost@1,17–20#, and in the correlated case withou
a ghost@19,21–27#. For a very complete review see@28#.
Using Essam’s formalism we calculate the order parame
and the connectivity of a generic CSRB percolation mod
with two ghosts~see Fig. 1!.

The CSRB model with two ghosts may be generally d
fined on a lattice where the sites may be of two types, d
tributed according to an assigned probability distribution
Bonds are thrown between nearest-neighbor~NN! sites of the
same type, with a random probabilityp. Two external sites,
one for each site type, are also defined and bonds are thro
between lattice sites and the external site of the same ty
with random probabilitys. Clusters are thus defined as con
nected spins. We will focus our interest on the connectivi

FIG. 1. Connectivity of a CSRB model generally defined wit
two ghosts: Bonds are present within the lattice between NN par
lel sites with probabilityp ~full lines! and between sites↑ (↓) and
the↑ ghost (↓ ghost! with probabilitys↑ ~dashed lines! @s↓ ~long-
dashed lines!#.
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of the model, i.e., on the calculation of the probabilityCn for
two sites,n21 sites apart, to belong to the same cluster.

We solve the model on the Cayley tree of coordinationg
~i.e., g branches originate from each site!. Each site can be
either↑ or ↓. The distribution of sites in the lattice is define
by the quantitiesP(↑) and P(↑u↑), from which one can
calculate any conditional probabilityPn( u ) using the recur-
sive relations

Pn~↑u↑ !5Pn21~↑u↑ !P1~↑u↑ !1Pn21~↓u↑ !P1~↑u↓ ! ~1!

and the completeness equations

Pn~↓u↑ !512Pn~↑u↑ !,

P~↑ !Pn~↓u↑ !5P~↓ !Pn~↑u↓ !. ~2!

Let p be the probability of two parallel NN sites to b
connected ands↑ (s↓) the probability of an up~down! site
to be connected with the up~down! ghost. The probability
P↑

` for a single site, labeled 0, to belong to the infinite
cluster is

P↑
`5P~↑ !@12~12s↑!Q↑

g#, ~3!

12Q↑5P~↑u↑ !@12~12s↑!Q↑
g21#. ~4!

Q↑ can be interpreted as the probability that one bran
generated from an up site, is not connected to the up gh
An analogous expression can be obtained forP↓

` . For every
g Eq. ~4! has a unique solution that satisfiesQ↑<1.

We now calculate the generalized connectivityCn , de-
fined as the probability for two sites, separated byn21 other
lattice sites, to belong to the same cluster. The two sites
be connected either via a continuous path of bonds in
lattice @Fn(↑) or Fn(↓)], or through the ghost@Gn(↑) or
Gn(↓)] @29#. ThusCn is the sum of four contributions

Cn5Fn~↑ !1Fn~↓ !1Gn~↑ !1Gn~↓ !. ~5!

The expressions forFn(↑) andFn(↓) are straightforward;
we have

Fn~↑ !5P~↑ !@P~↑u↑ !pck#
n, ~6!

and analogously forFn(↓).
The calculation ofGn(↑) andGn(↓) requires more care

Let us start withGn(↑) by considering the path connectin
site 0 with siten. We definePn,s,t as the probability of the
site configuration in which sites 0 ,. . . ,s are up, sites11 is
down, sitet21 is down, and sitest, . . . ,n are up~see Fig. 2!
with t.s. Pn,s,t is

Pn,s,t5P~↑ !P~↑u↑ !s1n2tP~↓u↑ !Pt2~s12!~↓u↓ !P~↑u↓ !.
~7!

The probability of the configuration with exactlyi up sites
bound to the origin in the direction 02n ~and thusi<s) and
exactlyn2 j up sites bound to siten ~so thatj >t) is

Pn,s,t,i , j5Pn,s,tp
i~12p!f~12p!cpn2 j , ~8!

l-
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wheref512d i ,s andc512d j ,t take into account the oc
currence ofi 5s and j 5t cases~we use the functiond l ,m51
if l 5m and zero otherwise!.

We now evaluate the probability of sites 0 andn to be
connected to each other through the ghost in the config
tion Pn,s,t,i , j . Site 0 is connected with the ghost in one of t
following cases:~i! directly, ~ii ! through one of itsi bounded
NNs, or~iii ! if at least one of the (i 11)(g22)11 branches
originating from sites 0,. . . ,i goes to the ghost. If we defin
the quantityq↑5(12s↑)Q↑

g22 , the probability of site 0 not
to be connected with the ghost~i.e., none of the previous
conditions occurring! is

~12s↑!
i 11Q↑

~ i 11!~g22!115q↑
i 11Q↑ . ~9!

If exactly i sites in the line 0,. . . ,n are bound to site 0
and n2 j to site n, the probability of both 0 andn being
connected to the ghost is

Gn,s,t,i , j5Pn,s,t,i , j~12q↑
i 11Q↑!~12q↑

n2 j 11Q↑!. ~10!

In order to obtainGn(↑) we sum the previous expression
over all the possible values of the variablesi , j ,s,t. We also
take into account the configuration in which all the sites
the line 0 ,. . . ,n are up, but not all the bonds are present. W
thus obtain

Gn~↑ !5 (
s50

n22

(
t5s12

n

(
i 50

s

(
j 5t

n

Gn,s,t,i , j

1P~↑ !P~↑u↑ !n(
i 50

n21

(
j 5 i 11

n

p i~12p!22d i 11,jpn2 j .

~11!

The factor (12p)22d i 11,j in the second term states that on
one bond is absent wheni 115 j .

The calculation of the two terms in Eq.~11! is derived in
the Appendix. We report here only the final expression
Gn(↑):

Gn~↑ !5A1Pn~↑u↑ !1A2@P1~↑u↑ !#n1A3@P1~↑u↑ !p#n

1A4@P1~↑u↑ !pq↑#
n1A5@P1~↑u↑ !pq↑#

nn1A6 .

~12!

FIG. 2. In this configuration sites 0,. . . ,s21 are↑, sitess and
t21 are↓ (t.s), and sitest, . . . ,n are↑. Sites 0,. . . ,i are bound
by bonds within the lattice, as well as sitesj , . . . ,n. g22 branches
~other than the NN present in the figure! originate from each site
1, . . . ,n21, whileg21 branches originate from sites 0 andn. The
probability of this configuration~with no consideration of bonds
with the ghost site! is Pn,s,t,i , j .
a-

e

r

The complete expressions of the coefficientsA1 ,. . . ,A6,
which are rational function ofP(↑),P(↑u↑),Q↑ ,q↑ ,p, are
reported in the Appendix.

The calculation ofGn(↓) exactly parallels the one fo
Gn(↑). The final result forGn(↓) is an expression similar to
Eq. ~12!, with the exchange of the symbols↑ and↓. We call
B1 , . . . ,B6 the properly defined coefficients forGn(↓).

Summing the two termsGn(↑) and Gn(↓) with the two
terms Fn(↑) and Fn(↓) @see Eq.~6!#, we obtain the final
result for the connectivity:

Cn5A1Pn~↑u↑ !1A2@P1~↑u↑ !#n1@A31P~↑ !#@P1~↑u↑ !p#n

1A4@P1~↑u↑ !pq↑#
n1A5@P1~↑u↑ !pq↑#

nn1A6

1B1Pn~↓u↓ !1B2@P1~↓u↓ !#n1@B31P~↓ !#

3@P1~↓u↓ !p#n1B4@P1~↓u↓ !pq↓#
n

1B5@P1~↓u↓ !pq↓#
nn1B6 . ~13!

III. CONIGLIO-KLEIN MAPPING IN THE STABLE
AND METASTABLE REGIONS

The mean-field approximation for the Ising model, wi
the Hamiltonian H5J(NNsis j1H( isi , may be stated
@30,31# through the Bethe-Peierls equations

P~1 !5
z~zy11!

z~zy11!1z1y
, ~14!

P1~1u1 !5
zy

zy11
,

z5 f ~z!5mS zy11

z1y D g21

, ~15!

whereg is the coordination number of the lattice,y5e(2bJ),
m5e(2bH), P(1) is the probability of a single spin to be i
thes511 state, andP1(1u1) is the conditional probability
of a spin to be in thes511 state, knowing that one of its
NNs is in thes511 state.

Equations~14! and ~15! are exact on theg Cayley tree
since the mean-field approximation is equivalent to negle
ing the correlation loops present in a generic lattice. As
known for the van der Waals and Curie-Weiss equations,
~15! has one or three solutions, according to the values of
variablesH and T. When three solutions are available the
are respectively identified with stable, unstable, and me
stable states of the system. The critical point is found
imposing the collapse of the three solutions, i.e., through
conditionsH50 and f 8(1)51. The spinodal line, i.e., the
limit of existence of a metastable state, is defined by
identity of two of the three solutions of Eq.~15! or through
the condition of diverging susceptibility.

The magnetizationM and the spin-spin correlation
Sn[^s0sn& can be generally written as

M[^s0&5P~1 !2P~2 !, ~16!

Sn52P~1 !Pn~1u1 !12P~2 !Pn~2u2 !11. ~17!
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The isomorphism between the thermal Ising model a
the percolative CSRB model under the Coniglio-Klein ma
ping can be stated through the equivalences

↑→1, ↓→2, p→pck[12e22bJ512y21,

s↑→qck[12e22buHu512m21, H.0

s↓50, H.0,

s↑50, H,0s↓→qck[12e22buHu512m, H,0.
~18!

Note that since in the thermal model only one ghost
present,s↑ or s↓ is always zero.

The equivalence between thermal and percolative pro
ties in the stable regionhas been extensively discussed in t
past@2,6,3,5#. We briefly discuss here these well-known r
sults using the formalism of Sec. II.

When bonds are thrown between parallel NN pairs
spins sisj and sisgh , with probabilitiespck and qck , two
types of clusters are formed:~i! finite clusters of1 and 2
spins and~ii ! an infinite cluster of1 spins~for a positiveH)
connected to the ghost site. The infinite cluster is percola
within the lattice viapck bonds~i.e., independently of the
presence ofqck bonds! if the condition P(1u1)pck(g
21).1 is satisfied.

Under the mappingM coincides withP1
` , as can be veri-

fied by substituting in Eqs.~3! and~4! the thermal expression
for s,P(↑), P(↑u↑), andp. SinceM5P1

` , the contribution
of 1 and2 finite-size clusters to the magnetization is ze
because their size distributions are identical@4,5#. Under the
CK mapping, thermal correlations, as measured bySn , co-
incide with the connectivity, as measured byCn . Indeed, the
connectivity expression~13! coincides with the thermal cor
relation expression~17! once the values of the coefficients
Eq. ~13! are evaluated under the CK mapping@Eqs.~18!#,

A152P~↑ !,

B152P~↓ !,

A352P~↑ !,

B352P~↓ !,
~19!

A61B651,

A25A45A55B25B45B550,

and substituted into Eq.~13!.
We now discuss the CK mapping in the metastable reg

(H,0, M.0). It has already been argued@4# that in the
metastable region two infinite clusters of1 and2 spins are
present: one infinite cluster of2 spins connected to th
ghost and one infinite cluster of1 spins connected viapck
bonds through the lattice. Here we show that the presenc
two infinite clusters produces an additional effect that
stroys the equivalence between the connectivity and ther
correlation and forces one to take into account the antico
lation between the two infinite clusters.
d
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The breakdown of the equivalence betweenSn andCn in
the metastable region appears already in the relation conn
ing M and the strength of the infinite cluster. Indeed, as c
be derived under the mapping~18!, in the metastable region

M5P1
` 2P2

` , ~20!

whereP6
` is the probability that the spin is in a infinite6

cluster.
In the limit of n→`, Sn5M25P1

` 21P2
` 222P1

` P2
`

@where we have used Eq.~20!#. Because only infinite cluster
can give contributions to the connectivity forn→`, we ex-
pect to find, together with the connectivity of the cluster
spin 1 ~the P1

` 2 term! and the cluster of2 spins~the P2
` 2

term!, an additionalanticorrelationresulting from the differ-
ent signs of the spins between the two infinite clusters~the
22P1

` P2
` term!.

By using the mapping in Eq.~18! we now show that the
correct relation betweenSn andCn is

Sn5Cn22Gn~6 !, ~21!

where Gn(6) is the probability of two spins,n21 sites
apart, to belong to different infinite clusters. Using the fo
malism of Sec. II and the results derived in the Append
Gn(6) can be explicitly calculated. This computation lead
once the mapping is considered, to the expression

Gn~6 !5C̃1Pn~1u1 !1C̃2@P~1u1 !#n1C̃3@P~2u2 !#n

1C̃4@P~1u1 !pckq1#n1C̃5@P~1u1 !pckq1#nn

1C̃6 , ~22!

with C̃1 , . . . ,C̃6 properly defined in the following equation
in the metastable region under the CK mapping@Eqs.~18!#:

Ã11P~1 !/P~2 !B̃11C̃154P~1 !, ~23!

Ã21C̃250,

B̃21C̃350,

Ã31P~1 !50,
~23!

B̃31P~2 !50,

Ã41B̃41C̃450,

Ã51B̃51C̃550,

Ã61B̃61C̃61B̃1@12P~1 !/P~2 !#5324P~1 !.

Ã1 , . . . ,B̃1 , . . . are thevalues of the coefficients of Eq
~13! obtained by substituting the mapping in the metasta
region. By substituting Eq.~22! into Eq. ~21! and using the
relations of Eq.~23!, we recover Eq.~17! @32#.

Equation~21!, the main result of this paper, implies th
the spinodal line, along which the susceptivity diverges,
not a percolation line due to the presence of the22Gn(6)
term. The thermal correlation in the metastable region can
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57 3801CONIGLIO-KLEIN MAPPING IN THE METASTABLE REGION
seen as propagating via the finite clusters~of both plus and
minus spins! and via the two infinite clusters of opposi
sign. At the same time, an anticorrelation develops betw
spins belonging to the two infinite clusters, destroying
equivalence betweenSn andCn . An example of all the con-
nectivity contributions to the correlation function close to t
spinodal line is shown in Fig. 3.

IV. CONCLUSIONS

In this article we have discussed the extension of the m
ping between thermal and percolative quantities to the m
stable region in an Ising model, trying to interpret the sp
odal line in terms of geometrical quantities. Indeed, in me
field models, where the concept of spinodal line is w
defined, the scattered intensity diverges not only at the c
cal point but also along the spinodal line, the limit of the
modynamic stability. The divergence of the scattered int
sity signals the development of an infinite-range correlat
in the system, which in the percolative approach is usu
interpreted in terms of the formation of a percolating clust
In this paper we have shown that this is not the case and
the divergence in the connectivity length is more subtle,
ing associated with the development of a cross correla
between two infinite clusters of opposite sign.

By solving the percolation problem defined by the C
mapping on the Bethe lattice, we have explicitly calcula
the contributions to the connectivity arising from finite clu
ters and from the two infinite clusters of opposite spin.
deed, in the metastable region of the phase diagram,
different infinite clusters coexist@4#. Both infinite clusters
are well beyond the percolation threshold at the spino
Thus only the critical point can be associated with a per
lation point in the CK approach. We have shown that
equivalence between the thermal correlation and conne
ity is lost in the metastable region due to the presence of
two coexisting infinite clusters. As shown in Eq.~21!, a dif-

FIG. 3. Thermal correlation lengthSn in the metastable
region (M.0,H,0). Sn is the sum of finite connectivity
@Fn(1),Fn(2)#, infinite cluster connectivity@Gn(1)#, and con-
nectivity through the ghost@Gn(2)#, minus the anticorrelation
term @Gn(6)#.
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ferent relation between thermal and percolative quantit
which reduces to the known relation in the stable region,
be obtained if the cross correlation between the two infin
cluster is taken into account.

From a heuristic point of view, finite clusters can b
thought of as independent units of infinitely strongly corr
lated spins of the same sign that may stay in either of the
states (1 and2) with equal probability. The contribution to
the magnetization arising from finite clusters averages
zero. Instead, infinite clusters are responsible for the fin
magnetization of the sample and remain always in the sa
spin state. An analogous qualitative argument can be
forth for the spin-spin correlationSi j . Spins belonging to
different clusters do not contribute toSi j because they con
tribute with plus one@~1,1! ~2,2!# or with minus one@~1,
2! ~2,1!# with equal probability. This argument holds i
the stable region even when one of the two clusters is
infinite cluster, in which case the two possible states
again equiprobable. In the metastable region, the case of
never flipping infinite clusters arises. The correlation b
tween spins belonging to these two infinite clusters of op
site spin never averages out sinceSi j is always equal to21.
This ~negative! contribution to the thermal correlation has
be added to the single cluster connectivity, as expresse
the 2G6 term in Eq.~21!.

The relation between the connectivity and correlation
the metastable region, is similar to the situation encounte
in the percolative study of frustrated systems, such as s
glasses. In that case, the strongly correlated clusters are
posed of spins of opposite sign. The presence of spins
both sign in the same cluster introduces, like in the case
two infinite clusters in the metastable region, an anticorre
tion within the same cluster. This anticorrelation brea
down, even in the spin-glass case, the equivalence betw
the correlation and connectivity. Indeed, Eq.~21! matches
the more general context of the Ising spin-glass model@14#
where the correlation function is given by

Sn5Pn
i 2Pn

i” , ~24!

wherePn
i (Pn

i” ) is the probability that spinsn21 sites apart
are parallel~antiparallel! and belong to the same cluste
Considering the two infinite clusters present in the me
stable region as one infinite cluster of up and down spins,
~21! coincides with Eq.~24!.

A similar situation may characterize the application of t
CK mapping to off-lattice systems for realistic interpartic
potentials. The presence of a hard-core region around e
particle may again be visualized as a persistent anticorr
tion to be taken into account properly.

APPENDIX

This appendix is aimed at deriving Eq.~12! for Gn(↑)
from Eq.~11!. The two terms in Eq.~11! reduce either to the
geometrical sum or to sums solvable by recursion. We fi
calculate the first term on the right-hand side~rhs! of Eq.
~11!, starting by sums with indicesi , j , namely@using Eqs.
~10! and ~8!#,
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(
i 50

s

(
j 5t

n

Gn,s,t,i , j5Pn,s,t(
i 50

s

p i~12p!f

3~12Q↑q↑q↑
i !(

j 5t

n

pn2 j~12p!c

3~12Q↑q↑q↑
n2 j !. ~A1!

The factorf of Eq. ~A1! is computed by dividing the sum in
0< i<s into the two parts 0< i<s21 ~which is a geometri-
cal sum! plus the single termi 5s, and analogously for the
factor c, which is computed by dividing the sum int< j <n
into the sumt11< j <n plus the single termj 5t. The same
argument works for the sums in the second term of rhs of
~11!. After executing all sums ini and j of Eq. ~11! we
obtain

Gn~↑ !5a0(
s50

n22

(
t5s12

n

Pn,s,t@a11~pq↑!
s#@a21~pq↑!

n2t#

1P~↑u↑ !n@b11b2pn1b3~q↑p!n1b4n~q↑p!n#.

~A2!

Thea0 ,a1 ,a2 ,b1 , . . .,b4 are suitable coefficients, express
only via P(↑),P(↑u↑),Q↑ ,q↑ ,p ~see below!. We now sub-
stitute Eq.~7! into Eq. ~A2! and define the new variable
t85t2(s12) and n85n2(s11). We can write the first
term on rhs of Eq.~A2! as

a08P~↑u↑ !n (
n850

n21

@a11~pq↑!
n2n821#@a2R11~pq↑!

n8R2#

~A3!

with a new coefficienta08 ~see below! and with the defini-
tions

R15 (
t850

n821
Pt8~↓u↓ !

P~↑u↑ ! t8
, ~A4!

R25 (
t850

n821
Pt8~↓u↓ !

@P~↑u↑ !pq↑#
t8

. ~A5!

The sumsR1 andR2 may be calculated by recursion usin
Eq. ~1!. The result is

R15
j 11 j 2Pn8~↓u↓ !

P~↑u↑ !n8
, ~A6!

R25k01
k11k2Pn8~↓u↓ !

@P~↑u↑ !pq↑#
n8

, ~A7!

with j 0 , . . .,k0 , . . . defined below. The remaining sum ov
n8 in Eq. ~A3! can be evaluated in a very similar way. Su
stituting Eqs.~A6! and ~A7! into Eq. ~A3!, this reduces to

P~↑u↑ !n (
n851

n S l 1~pq↑!
n81 l 2

1

P~↑u↑ !n8
1 l 3

Pn8~↓u↓ !

P~↑u↑ !n8
q.

1 l 5~pq↑!
n1 l 6

1

@P~↑u↑ !pq↑#
n8

~pq↑!
n

1 l 7

Pn8~↓u↓ !

@P~↑u↑ !pq↑#
n8

~pq↑!
nD , ~A8!

with l 0 , . . . defined below. Three of the terms in Eq.~A8!
can be calculated as geometrical sums: One is trivial and
other two~with coefficientsl 3 and l 7) exactly reduce toR1
andR2, respectively@see Eqs.~A4! and~A5!#. The first term
on the rhs of Eq.~A2! is thus completely calculated

h1Pn~↑u↑ !1h2P~↑u↑ !n1h3@P~↑u↑ !pq↑#
n

1h4@P~↑u↑ !pq↑#
nn1h5 . ~A9!

In order to obtain the final expression~12! for Gn(↑) we
only have to add the second term on rhs of Eq.~A2!.

We now list the coefficients previously defined in Secs
and III and in this Appendix: coefficients defined by eval
ating the sums in the variablesi and j of Eqs.~11!–~A2!,

x15~12p!Q↑ /~12pq↑!,
~A10!

x25Q↑~12q↑!/@q↑~12pq↑!#,

a05pq↑~q↑x2!2,

a15~q↑x121!/q↑x2 , ~A11!

a25~q↑x121!/q↑
2px2,

b15P~1 !~12q↑x1!@12~12p!q↑Q↑ /~12pq↑!#,

b252P~↑ !@~12q↑x1!1~12p!q↑
2x2 /~12q↑!#,

~A12!

b352P~↑ !@~12p!~2q↑Q↑1q↑
2Q↑x1!/~12pq↑!

2~12p!q↑
2x2 /~12q↑!#,

b45P~↑ !~12p!q↑
2Q↑x2 ,

and coefficients defined by evaluating the sums in the v
abless and t of Eqs.~11!–~12!,

a085a0P~↑ !
P~↓u↑ !P~↑u↓ !

P~↑u↑ !
, ~A13!

F5@P~↓u↓ !2P~↓u↑ !#/P~↑u↑ !,
~A14!

G5@P~↓u↓ !2P~↑u↓ !#/P~↑u↑ !pq↑),

j 151/~12F!,
~A15!

j 2521/~12F!,

k05
1

12GS 12
P~↓u↑ !

12P~↑u↑ !pq↑
D ,

k15
1

12G
P~↓u↑ !

12P~↑u↑ !pq↑
,

~A16!
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k25
21

12G ,

l 15a08a1k0 ,

l 25a08a1~a2 j 11k1!,

l 35a08a1~a2 j 21k2!,
~A17!

l 55a08k0pq↑ ,

l 65a08~a2 j 11k1!pq↑ ,

l 75a08~a2 j 21k2!pq↑ ,

h15~ l 3 j 21 l 7k2!P~↑ !/P~↓ !,

h25
l 1

12pq↑
2

l 2P~↑u↑ !

12P~↑u↑ !
,

h35
l 1

12pq↑
2

l 6P~↑u↑ !pq↓
12P~↑u↑ !pq↓

1 l 7k0 ,
~A18!
ys

A

A

A

h45 l 5 ,

h55
l 2P~↑u↑ !

12P~↑u↑ !
1 l 3 j 11

l 6P~↑u↑ !pq↓
12P~↑u↑ !pq↓

1 l 7k1

1~ l 3 j 21 l 7k2!
P~↓ !2P~↑ !

P~↓ !
,

A15h1 ,

A25b11h2 ,

A35b2 ,
~A19!

A45b31h3 ,

A55h4 ,

A65b41h5 .
. A
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