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Kinetic Arrest Originating in Competition Between
Attractive Interaction and Packing Force
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We discuss the situation where attractive and repulsive portions of the interpar-
ticle potential both contribute significantly to glass formation. We introduce the
square-well potential as prototypical model for this situation, and reject the
Baxter model as a useful model for comparison to experiment on glasses, based
on our treatment within mode coupling theory. We present explicit results for
various well widths, and show that, for narrow wells, there is a useful analytical
formula that would be suitable for experimentalists working in the field of
colloidal science. We raise the question as to whether, in a more exact treat-
ment, the sticky-sphere limit might have an infinite glass transition temperature
or a high but finite one.

KEY WORDS: Colloidal systems; Baxter model; disordered systems; glass
transition; mode coupling theory.

1. INTRODUCTION

Kinetic arrest phenomena at a transition temperature 7, occurring just
prior to the thermodynamic glass transition, T,, are well known and have
been studied extensively using the mode-coupling theory and simulation
methods. Without being exhaustive, we can point to a number of
reviews'"? and papers®>) in the literature. There has also been con-
siderable experimental work on this field.(*'® Typically such phenomena
are considered to be driven primarily by packing effects where the repulsive
part of the potential is of primary importance, with the attraction provid-
ing merely a modulation of the overall phenomena. In this case the hard
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sphere system exhibits most of the relevant phenomena and may be viewed
as the prototypical model of this type of kinetic arrest.!*)

However, there has recently been interest!™ !®) in cases where the
attractive part of the potential, or rather its interplay with repulsion, is
more deeply implicated in the arrest phenomenon. This can lead to glasses
with much richer structure, including long-ranged density correlations that
are frozen into the system. New dynamical phenomena might also be
expected in such systems, especially where there is subtle interplay between
attraction and repulsion near the glass transition. As in the repulsive case,
it is natural to seek a prototypical model that can be conveniently studied
within mode-coupling theory with the aim of elucidating the special
features of such a system. It is in particular desirable to consider those
aspects that represent more than simple modulations of hard-core
behaviour. One such choice is represented by the Baxter model!” which
has been studied by some of the authors">!® in previous publications
using the Percus—Yevick approximation!® for the static structure factor,
and the mode-coupling theory. The results are promising in that novel
dynamical phenomena do emerge, and also it is possible to create kinetic
arrest where a long correlation length scale is quenched into the system.

Of course, some of the limitations of a model with hard-core potential
and delta-function like attractive potential, as treated by Percus—Yevick'®
are evident. For example, it is believed that such a potential would lead
only to disordered and crystalline phases, rather than the liquid-gas phase
separation implied by the P-Y approximation."® On the other hand, it
may still be possible to make some progress with this approach. For
example, in the disordered phase the P-Y approximation is reasonably
good for the structure factor,®” so in those cases where the kinetic arrest
arises, prior in temperature or time to a crystallization, we may expect
reasonable results. It may even be the case that the capability to study
arrest near what is believed to be a “metastable” liquid-gas transition may
be of some practical interest.?’*¥ Here we discuss some unsatisfactory
features originating from the large-g-tail of the static structure factor, in
conjunction with the study of the ideal glass transition in the frame of the
mode coupling theory (MCT).

It is perhaps prudent to mention at this stage that the use of Mode
Coupling Theory (MCT) for such questions is itself not without controver-
sial aspects. There are numerous criticisms of MCT, and in any case, even
if one does accept it as a viable mean-field-type theory, there remains the
criticism that it neglects such effects as “hopping” and other phenomena.®
These may be relevant in square-well systems.

However, we shall further argue that, within the MCT, the P-Y
approximation and possibly even the exact structure factor of the Baxter
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model, leads to very high or infinite glass transition temperature for a
broad range of packing fractions in the region where attractive interactions
dominate. The outcome of our deliberations shall be that we shall propose
as our prototypical model the “narrow” square well potential, treated by
P-Y and MCT. We shall show that, for this case, the structure factor is
damped at large-g due to the finite well width, and that this leads to finite
values of 7., the effective transition temperature, throughout the phase-
diagram. Moreover, the “narrow” square well potential seems to share
most of the features of the kinetic arrest discussed in earlier works.> 9 We
shall conclude that the underlying phenomena reported there are therefore
robust and likely to be observed experimentally, even though the Baxter
model is flawed.

The organization of these observations is as follows. We shall first con-
sider the static structure factor of the square well potential as the input to
the MCT. This will permit us to explain new features introduced by a finite
well-width. Next we shall consider the effects of these features on the MCT
prediction of the transition. Finally we shall discuss the general behaviour
of the arrest phenomenon as a function of well-width.

2. THE PY APPROXIMATION TO THE SQUARE-WELL
POTENTIAL

We consider a square well potential with repulsive core of diameter R
and total range R’. The well width is therefore parametrized by &=
(R'— R)/R', and the well depth by u. Note that by taking the appropriate
limit of well depth to width we may recover the Baxter model which pos-
sesses an analytical solution for the structure factor. By the Baxter sticky
sphere model'” we mean ¢ — 0 and the well depth becomes infinite accord-
ing to (1/f)In(12z¢), T being an effective temperature and f=1/kzT. To
solve the Baxter model within PY an external parameter A is introduced to
define A(r) within the range of the attraction. It is then easily calculated
through a second order equation arising from the matching conditions that
have to be verified. Since the limit A — 0 corresponds to the hard sphere
limit, it may be thought as an attractive energy scale.

Although no analytic solution exists for the square well problem, this
model potential is simple enough to be exhaustively studied. Thus the
integral equation for the square well problem is readily derived using
Baxter’s approach. The equations are

rer) =~ Q1) +21p [ di Q'(1) Q1 —r) (1)
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for 0<r<R’, and

rhir) = —Q'(r)+2mp | ditr—h(lr— 1)) Q1) 2)

for r >0, where c¢(r) is the direct correlation function, A4(r) is the indirect
correlation function and Q' is the derivative of Q(r).*® The function Q(r)
is related to S(g) via

S(q)~'=0(q) O(—q) (3)

and

Otg)=1-2mp [ dr 00 4)

This equation can be solved numerically using the P-Y approximation as
closure, and it is via this expression that the potential enters the formula-
tion. Of course, the PY closure has many limitations. However, it is quite
acceptable for hard spheres, and it is expected to be reasonable for short-
ranged potentials.®?

Instead of a numerical solution, the P-Y theory may be solved in a
series expansion for small well-width, ¢, a program that was partially
carried out by Menon et al.?*” The result for the structure factor is,

1 ! 1
S 1= 240 | ahl) + B0+ 3t | + a2 {fz“q) )

2;7}

+2°°L 1) — fi(e)] === [/1(@) — (1 —&)* fi((1 —&) )]

=245 () — (1—2)* fo((1—¢) 9)] (5)

where §=qR’, n=(n/6) pR’®> and «, B and u are given by

_(=2p—p)y
(1—n)*
39(2 +1)? —2u(1 + T +n?) + p*(1
fe — n(2+n)"—2p(1 + ntn)ﬂt( +1) 6)

2(I=n)

w=7n(1—n)
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and f,(x) are defined as:

1—cosx
Silx)=—F—
X
sin X — X COS X
fHlx)=——F—
X
, . (7)
2xsin x — (x*—2)cos x — 2
filx)= =

, (4x3 —24x) sin x — (x*— 12x% + 24) cos x + 24
Ss(x) = 6

X

a formula that was derived by Liu et al.® Note that 7 is the effective
volume fraction calculated according to the large length, R’, that defines
the full range of the potential. Sometimes we shall also use the real volume
fraction calculated with R, the hard core diameter, and this is named ¢.
The two quantities are the same in the limit of Baxter spheres.

In fact, one can push this asymptotic theory a little further than has
been done previously. That is, we can solve all parts of the theory to order
&, including the A-equation, obtaining the following,

3en T 1 1—(11/4) n+7?
<1+1—>_12/1L7+1—77_8 -1 }

6 2
+(1_;7)2<’7+1—126(1—7’])>=0 (8)

where the physical solution A(¢) is now of the form:

e
el
E R I

It is fairly straightforward then to compare the results of Eq.(5) where
A=A(¢) with numerical solution of Egs.(1)—(4). It is also possible to
illustrate differences between the Baxter sticky sphere and the square well
model. We shall here present a representative selection of results from three
values of ¢ (¢=0.01, ¢=0.03, and ¢=0.09), chosen to illustrate various
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aspects of the mode-coupling calculations. The smallest value of ¢ is repre-
sentative of sticky-sphere type behaviour, but with a finite temperature
transition. The largest value (¢ =0.09) already exhibits properties closer to
that of a square well. We note first that, for ¢ =0.01, the agreement between
the numerical calculation of Egs. (1)-(4) and the leading order in the well-
width expansion is essentially perfect (Fig. 1), and we may accept Eq. (5)
as defining the P-Y approximation to the small well-width problem. As one
might expect for such small ¢, the moderately small-¢ (corresponding to the
nearest neighbour distances) behaviour of the structure factor in Eq. (5) is
in good agreement also with the Baxter model. However there are some
very important differences for the large-g behaviour of S(g) as illustrated in
Fig. 2. There are two points to note here that relate to later MCT calcula-
tions. Firstly the MCT calculations are sufficiently delicate at large-¢q for it
to be necessary to include many momentum points on the numerical grid.
It is therefore highly advantageous to have a formula such as Eq. (5),
rather than a numerical solution. Secondly from Fig.2 (and later com-
parison of Fig. 4) we see that beyond ¢, the structure factor of the square
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Fig. 1. (a) Square well plotted versus ¢-expansion for ¢ =0.01. (b) Detail of the first peak of
the structure factor (the dotted line is the square well, the continuous line is the e-expansion).
(c) Detalil of the small-q region of the structure factor. ¢ =0.35 and 7= 1.0.
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Fig. 2. Structure factor at large-g of the Baxter model and ¢-expansion for £=0.01. The
value g, =n/eR’ and by the examination of Fig. 4 it is evident that much beyond this point
there is little contribution to the transition temperature. ¢ =0.35 and 7 =0.5.

well model decreases more rapidly than that of the Baxter model. In fact
consideration of finite well-width leads, for many purposes, to the effective
introduction of a cut-off at a momentum corresponding to twice the well
width,

%ZL (10)

(R'—R)

It is this reduction of the range of S(g) that leads ultimately to
meaningful mode-coupling calculation.

Further comparisons between the e-expansion and the numerical
results from Eq. (1) are also possible. As might be expected, at ¢ =0.09 the
deviation between the two results becomes significant (Fig. 3), both for
small-g and the first peak, and thereafter one must rely on the numerical
solution. Even so, it is interesting to note that the large-¢ behaviour is still
quite well represented by Eq. (5).

We now turn to the thermodynamic aspects of the P-Y solution of the
finite well problem. We have noted earlier some intrinsic failings of the P-Y
approximation of the Baxter model in that liquid-gas rather than the
expected crystallization transition is produced.'” There are other unusual
features of the P-Y solution, such as the asymmetry of the phase diagram
with respect to the spinodal (see, for example, refs. 30-32) and the uncer-
tain status of the phase diagram to the left of the critical point. In fact, a
careful analysis of the expansion in square-well width leads to a few new
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Fig. 3. Square well versus g-expansion for ¢ =0.09. ¢ = 0.35 and 7'=1.0.

features, not present in the Baxter solution. Amongst them there is the
observation that the phase diagram is no longer so asymmetric with respect
to the critical point, and there is a finite region of real solution beneath the
spinodal curve, near the critical point.©** These details need not concern us
here, since we shall be interested in points of the phase diagram above the
P-Y phase separation. For our present purpose it is possible to use the P-Y
structure factors for temperatures and densities to the stable (right) side of
the high density branch of the spinodal line.

In summation, then, we believe that the P-Y approximation, and in
particularly the leading order of the small well-width expansion given by
Eq. (5) is, at least, a useful approximation to the structure factor for an
interesting range of parameters of the square well potential. We shall now
study thus range within MCT.

3. THE MODE COUPLING THEORY

The mode coupling theory provides a description of the kinetic arrest
phenomenon. For certain values of the interaction parameters the density—
density correlation function

_£9p*(q, 1) op(q,0))
N NS

Py(1) (11)

q
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possesses a long-time decay with a non-zero infinite time limit. When this
occurs, diffusion slow dramatically and the viscosity diverges: the glass
transition occurs. The Zwanzig and Mori* formalism and MCT ideas"
lead to the equations

¢4n—%Q§¢A0—%wéxzy+ggftm41—zﬁégﬂ)dﬂzo (12)

where m (1) is given by

1 d%k
my0)=5 [ Grys V(8 K 9(0) g0 (13)
the vertex function is
7(q. k) =§ (q-(q—K) cqr +0-ke)? S, S, Sy (14)

and the two quantity Q, and v, are respectively, the characteristic fre-
quency and a white noise term due to the fast part of the memory function;
they are defined as,

_q’kpT
" mS(q)
Vq: vlqz

and v, =1 in our calculations. In the limit z —> o0 we find the equation for
the static problem

fo 1 d%k .
=3 gy V0K i (15)

where f, is the Edwards—Anderson factor:

fo=1im ¢ (1) (16)

S, is the static structure factor and ¢, =(S,—1)/pS, is the Fourier trans-
form of the direct correlation function following the Ornstein—Zernike
relation.

It is clear that f, =0 is always a solution of the Eq. (16). In fact it is
possible to show® that, where the potential is purely repulsive and at low

densities, this is the stable solution, and the system is in the liquid phase.
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Above a certain ¢, (that depends on the parameters of the system) non-
zero solutions begin to appear and non-ergodic behaviour appears. The
ideal glass line, moreover, can be defined studying the behaviour of the
eigenvalues of the stability matrix of the system."” Here we have bracketed
the transition line by iteratively solving Eq.(15). Where more precise
results have been required we have studied the stability matrix. Of course,
all these calculations are subject to numerical error, particularly with
respect to the numerical momentum cut-off in the integrals. Since the
attractive glass requires consideration of both repulsive and attractive parts
of the potential, the former length scale being set to be the well-width, we
have carried out finite-size analysis of our results to check their validity.
Now we are in a position to solve the kinetic arrest temperature, 7., as a,
function of well parameters and the structure factor. From now on we shall
refer to the effective temperature 7 as introduced by Baxter and related (for
small ¢) to the temperature via: t=(1/12¢) exp(u/k zT).©*” The first point
to note is that, for the Baxter model in the region where attractions are
relevant (previously labelled as B, in refs. 15 and 16), there are, strictly
speaking, very substantial contributions from the long tail of the Baxter
solution, not taken into account in earlier works. The apparent transition
observed previously is a consequence of truncating the long tail of the
Baxter solution. Indeed, we find that the apparent 7, rises with the number
of g-vectors taken into account in the calculation.

For example, in the case of Fig. 4 (¢=0.01 and ¢ =0.3881) we see that
the 7, continues to change with the number of points in the numerical grid
until we reach a well-width cut-off equal to twice the well width (n/¢R’). Of
course, the cut-off required is somewhat dependent on the property of the
system chosen. However the general outline of the observation is clear. The
attractive glass transition is strongly finite-size dependent due to the con-
tribution to the integral Eq.(15), from momentum scales up to around
q,=mn/eR’. Thus, for very small well widths the calculations require many
thousands of points, and for the Baxter model there appears to be no useful
number of points that can ensure convergence of the transition temperature
in the attractive region of the transition. The implication is clear. It is the
(small) finite-well-width model that is the appropriate prototype of the
system we discuss rather then the literal Baxter Model. However, we make
another observation, illustrated quite well by Fig. 4. That is, paradoxically,
the Baxter model solution can be applied in the mode coupling theory to
study attractive glasses providing the appropriate well-width cut-off (¢,) is
applied. We can see this because 7, from the Baxter solution truncated at
q, is comparable to 7, from the true P-Y square well potential of width
e=m/q,R'. In some cases in the literature we have therefore the interesting
situation that the Baxter structure factor appears to work due to numerical
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Fig. 4. Behaviour of 7, in function of the cut-off as evaluated from Eq.(11). e=0.01 and
¢ =0.3881. As before ¢, =n/cR'.

cut-off, even though the full model has an unrealistic glass transition tem-
perature. The discussion is not purely academic since experimentalists fit
data to such models. In future we recommend that Eq. (5) be applied up
to around ¢ =0.03 for the case of attractive colloidal particles. Beyond this
value of ¢, more care must be taken.

We now turn to another aspect of this question. We have calculated
the asymptotic 7, as a function of ¢ for ¢ =0.2 (Fig.5). Evidently, as ¢
decreases the glass temperature rises sharply (due to the large-¢ tail) so
that at ¢ =0.001 the effective temperature 7, is very high, roughly seventeen
times higher than the Baxter gas-liquid critical temperature. For numerical
calculation, we are unable to conclusively show the asymptotic limit z,
(¢ = 0). However, we believe that the glass appears to be the stable solu-
tion for all effective temperatures where the system does not behave as a
herd-sphere fluid. This is quite a practical question. Colloidal particles with
vanishing well-width, but large well-depths would therefore not undergo
the expected fluid-solid transition,"® but would generally found to be a
glass, up to temperature where attractions are irrelevant in any case, and
the particles behave as hard spheres. Since, for finite ¢, we now have finite
values of 7_, it is natural to ask if the important dynamical features of the
model described in ref. 15 are recovered. The existence of a logarithmic
decay of density-density correlation, associated to the presence of a cusp
singularity in the parameter space in the case of “narrow” square well
potentials is under investigation.
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Fig. 5. Behaviour of 7, in function of ¢ at ¢ =0.2.

4. CONCLUSIONS

As we have noted earlier, it is of interest to identify a simple model,
and treatment of that model that exhibits the principal phenomena where
the attractive part of the potential is important in glass formation. We have
seen that one good candidate is the square well potential where, for very
narrow wells, important new properties are already evident. Thus, glasses
with frozen density fluctuations, including those where the correlation
lengths ¢ is quite large, appear beneath the attractive glass curve. In addi-
tion we have seen that well-width is quite an important parameter. Truly
sticky spheres in the Baxter sense, or experimental approximations to
these, probably are nearly always found as glasses, perhaps the powdery
precipitates found in particle glasses being examples of this. For more
moderate square-well parameters we may expect interesting glass
behaviour, and the details of the transition and attendant dynamics are
under examination. We have also noted that, from the experimental point
of view, the finite-well structure factor formula (5) represents a more
realistic approach to the dynamics of such system, though indication of this
were already clear much earlier.®® Finally, we offer the conjecture that the
exact model of Baxter spheres would be a glass for any effective tem-
perature which preserves the presence of the attractive interactions in the
potential. This could be in agreement with Stell’s"*®) clustering ideas for the
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Baxter model. In addition, however, we have illustrated how the situation
evolves away from the Baxter limit. Proof, or modification, of the Baxter
limit scenario may be an interesting challenge to some of the readers of this

paper.
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