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We report recent progress on the test of mode coupling theory for molecular li@d€T) for molecules
of arbitrary shape. The MMCT equations in the long time limit are solved for supercooled water including all
molecular degrees of freedom. In contrast to our earlier treatment of water as a linear molecule, we find that the
glass-transition temperatufe is overestimated by the theory as was found in the case of simple liquids. The
nonergodicity parameters are calculated from the “full” set of MMCT equations truncated-al. These
results are compardd with the nonergodicity parameters from MMCT with,=2 in the “dipole” approxi-
mation n=n’=0 and the diagonalization approximatior=n’=0,l=1" and (ii) with the corresponding
results from a MD simulation. This work supports the possibility that a reduction to the most prominent
correlators may constitute a valid approximation for solving the MMCT equations for rigid molecules.

PACS numbdps): 61.25.Em, 64.70.Pf, 61.43.Fs, 61.20.Ja

I. INTRODUCTION The fundamental MMCT quantities are the time-
dependent correlation functions

The mode coupling theorfMCT) for supercooled simple
liquids proposed by Bengtzelius, @e, and Sjtander[1] .
interprets the glass transition as a dynamical transition. This Sin7nr(4,M ) =i (A, M, ) pyrns (0, m)) (1)
picture has been supported by many experiments on several
glass formergsee, e.g.[2] and references thergiand more of the tensorial density modes
recently by detailed analysis of computer simulations for
Lennard-Jones systensee, e.g.[3] and references thergin
The signature of the dynamical transition, i.e., the asymptoti- N
cal power laws, has been discovered also via neutron scat-  p,(q,m,t)=i'(21+1)¥2>, 4 XOD (Q;(1). (2)
tering, light scattering, dielectric relaxation, and NMRmo- =1
lecular glass formers(see [2] and references thergin
stimulating the extension of MCT to molecular liquids.

Two approaches for such an extension have been pra
posed recently for rigid molecules. Chong and Hirpdd
introduced a theory based on a site-site description of thé
molecules. Their approach offers the advantage to be cIoseF’
related to neutron scattering experiments. The structural |n
formation — which is a necessary input of the theory —
be readily obtained from theories of molecular liquids able t
predict partial structure factors, like the reference interaction-
site model(RISM) [5] approximation. The second approach
is based on the expansion of the orientational density into a
complete set of functions, in analogy to the Fourier expan-
sion of the density related to the translational degrees of
freedom. To distinguish the second approach from the site-
site theory, it is called molecular mode coupling theorywhich we calculated using the following set of equations
(MMCT). MMCT was derived for a single linear molecule in [10]:

a simple liquid[6], for liquids of linear molecule$7] (for

some application, sef8]), and for molecules of arbitrary

shape[9,10]. MMCT allows us to calculate the glassy dy- F(d.m)=[S"*(q,m)+S *(q,mK(q,m)S *(q,m)] %,
namics for all orientational degrees of freedom, and it is (4)
closely connected to dielectric and NMR experiments. As

reorientational motion is also very important in light scatter-

ing experiment$11,12, it may also be helpful in their inter- a’p'x —1qyyema w
pretation. The connection of MMCT to neutron scatteringKln (M) g E Qin" (@ = (@) MDimn,17mer
experiments has been discussed recdri8]. (5)

Here it isq=(0,0q) and| runs over all positive integers
mcludlng zerom andn take integer values betweenl and
and D denotes the Wigner functionl4]. The reader
hould note that the correlatot$) are diagonal irm for q
(0 0g). The MMCT equations of motion for the Laplace
piransformS(q,m ,2)=i[55S(q,m,t)e'? (Im z>0) have been
0presented in a preceding paper. Here we focus omimer-
malizedmolecular nonergodicity parameters

F(gq,m)=Ilim S(q,m,t)=—lim zS(q,m,z) 3

t—o z—0
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a+ay TABLE |I. Comparison of the critical temperaturds for the

mﬁ#ﬁ‘l‘:ﬁ:n,(q): p—023fwd%f dg, >, > > MD simulation and the theoretical calculations in the diagonal-
' (879)°Jo la—q)  mym, 131} ngn! dipole approximation, the dipole approximation, and for the “full”
11} non) theory.
vafllnl,lznz(quqZ;mmlmZ) MD MMCT diag MMCT dipole  MMCT “full”
o ' , T. 200 K 206 K 208 K 279 K
X0t 120y (A0102; M My M)
><F|1nly|in1(q1,ml)F|2n2_|éné(q2,m2). (6) In Ref. [10], we have also studied the stronggingonal-

dipole approximationwhich makes the further assumption
The memory function matrixn in Eq. (6) represent the that structure factors, nonergodicity parameters, and memory
mode coupling approximation for the correlation function of functions are diagonal with respect to the angular indices
fluctuating forces. The index labels the translationalo( ~ @ndl’. Itis the main purpose of the present paper to present
=T) and rotational ¢=R) currents, each of them consisting "€sults obtained by solving th&ull” set of MMCT equa-
of three (spherical vector componentgce{—1,0,1}. The t|on_s up tol.,=2 without any further approxn_nauon. The
vertex functionsy are determined only by the matrix of the Main difference from the approach in R¢10] is that we
static molecular structure facto®(q,m) and the number take the nonlinear character of the water molecule seriously.

densitypo. Their explicit form has been given in RéL0]. In particular, this means that the rotational motion of both
The coefficientsy™“(q) appearing in Eq(5) are protons around the dipolar axis is taken into account. There-
n

fore, we can study the influence of this degree of freedom on

2 0, a=T,u=+1 the ideal glass-transition temperatuT_g an(_j on the noner-
godicity parametersq,/o(q,m) obtained in Ref[10]. In
a. a=T,u=0 addition, we also obtain the new paramet€ig, /(q,m)
qe(q)=4 1 with n and/orn’ different from zero.
n EJ|(|+1)—n(n+m, a=R,u+1
Il. RESULTS
n, a=R,u=0.
) 7 We have solved Eq4$4)—(6) iteratively on a grid of 100
(7

equispaced wave vectors, up to 110.7 mOne complete

Sinceqﬁflzo [due to the choice ofj=(0,0q)], the trans- iteration requires 4 days of cpu time on a 533 MHz alpha
versal translational componentsa£T,u=+1) of the workstation. The entire calculation to locate the critical tem-
memory functions enter only indirect[yia the inversion of perature and the corresponding nonergodicity parameter,
m(q)] and thus shall be neglected in the following. with a tolerance of 2.5 10" “ per point, requested more than

The given set of equation&)—(6) includes all interac- 250 iterations. On a dedicated four-node parallel machine it
tions between translational and rotational degrees of freedotiequired about 250 days. The number of iteration at the criti-
in molecular liquids and thus this set is rather involved. Ob-cal temperature was 54. We found thatTat 282 K, the
viously its numerical solution poses a formidable task. MMCT equations predict a liquid phase, while &t

As a model system for our analysis, we have chosens272 K unambiguously a glassy state is predicted. Within
SPC/E watef15]. The water molecule possesses a twofoldthe chosen tolerance, we locatf©T at TV“T=279 K.
rotational symmetry €,,) around the axis given by its di- Table | summarizes the critical temperatures at which a
pole moment, which has been chosen asZlexis of the transition from ergodic to nonergodic behavior is found.
body fixed frame. The axis and thex axis define the plane While T, is almost equal for both approximations used in
which is spanned by the molecule. As discussed in detail ifRef.[10] and quite close to the result of the MD simulation,
Ref. [10], the C,, symmetry can be used to simplify the we find that the critical temperature is overestimated by al-
equations of motion by the restriction thaaindn’ are even. most 50% using the “full” theory. Thus we confirm our
Preceeding publications on long time MD simulatidd$]  supposition in10] that the agreement foF, between simu-
for this strong glass former showed that the center-of-masktion and both approximation schemes was fortuitous. Such
dynamics is in good agreement with the predictions of thea finding could also be expected from the static structure
asymptotic laws of MCT. Recent worKl7] demonstrated factors used as input. Besides the dominating diagonal struc-
that the signature of the dynamic transition can also be obture factorsSyg odq,m=0) andS;, ;4 dq,m), the most promi-
served for the orientational degrees of freedom of the molnent peaks are displayed byS;g,.,(q,m) and
ecule. S,+02:2(0,m) (see the figures in Ref18]), which were

A first approach to solving Eq$4)—(6) has been given in neglected irf10]. The overestimation of the critical tempera-
Ref.[10]. Apart from the necessary truncation of the range ofture is common to the MCT for simple liquidi8] and seems
| by a cutoffl ., for which we have chosel,=2, we intro-  to be a general deficiency of the mode coupling approxima-
duced in[10] two more approximations. In thdipole ap-  tion. Thus we see that —although the overestimation of the
proximation water was treated as a linear molecule orientectritical temperature is not desired — it is necessary to in-
in the direction of its dipole moment. This approximation clude all static structure factors with large amplitude to get a
corresponds to setting in Eq&l)—(6) the angular indices, concise description in the MMCT framework.
n’ and the corresponding summation indicgsn; to zero. Figure 1 shows the comparison of thenormalizedcriti-
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FIG. 1. Critical nonergodicity parametefyodd,m=0) for FIG. 2. Diagonal critical nonergodicity parametérsg, ;¢ d,m)

the center of mass. The results from the MD simulatisymbol3 as calculated from the MD simulatiqggymbols compared with the
are compared with the theoretical predictions of MMCT in the theoretical predictions of MMCT in the diagonal-dipole approxima-
diagonal-dipole approximatiofshort dashed linein the dipole ap- ~ tion (short dashed line in the dipole approximatiortsolid line),
proximation (solid line), and the results obtained using the “full” and the results obtained using the “full” set of MMCT equations
set of MMCT equationglong dashed ling (long dashed ling

. _ the vicinity of the maximum the approximations perform
I =0) for th -
cal nonergodicity parameteFs ofd,m=0) for the center better than the “full” theory.

of-mass correlations. The oscillations of the MD result are™™ _ . -
Figure 3 shows the comparison for the critical nonergod-

captured well by all of our MMCT results. As for the critical . . .
temperature, we can also observe for the critical nonergool-Clty parameters- s, q,m). Apart from the region of large
' wave vectors, the “full’” theory shows better agreement with

ic_ity parameters that _the_ dipole approximation and thethe simulation than the two approximations. Thus one ob-
diagonal-dipole approximation lead to nearly the same resultserves that the approximations, which neglect terms with

In the vicinity of the maximum of the structure factor, the #0 and consequently=2, have a stronger effect on the
agreement between theory and simulation is improved by 5 ~qrelators than on those foe1 or | =0. Further, one
removing the additional approximations, but for the prepeakypseryes that the agreement between theory and simulation
as well as for largegy both approximation schemes perform s jess good for thé=2 correlators than for those with
better than the “full” theory. In the region of the prepeak —q or|=1. The reader should note that the good agreement

and especially for the minimum between prepeak and maiRt |arge q for the |=2 correlators must be considered as
peak, we observe that the oscillations are less pronounced
and the peak positions are slightly shifted. Exactly the same
behavior can be found by a comparison of the static structure__
factors at the different critical temperatures. Thus the worse% 5 oS

- DN e Ty

performance of the “full” theory in comparison with the 7§ RESEEREEERE S
approximation schemes can be attributed at least partly to thet ST
overestimation of the critical temperature because of which

the static input of the calculations does not reflect accurately
the static structure at the “trueT. of the simulation. Apart :‘._
from that, it also has to be taken into account that in spite of 05T

the computational effort we have made, the fixed point ofhﬁ"

Egs.(4)—(6) cannot be determined with very high precision. 0

Therefore, the result for the critical nonergodicity parameters 1 ' « o MD data

after 54 iterations may overestimate the exact one by a fewey _ ---- MMCT diag
percent. The latter reason may also be responsible for thZ 0.5 :'_'T_T:j \\\\\\ —_ xmg{ﬁﬁ"“ 1
worse performance of the “full” theory at the minima of § ________________

Fooodd,m=0) as Naurott19] found that the convergence = o % = h

of the iteration is extremely slow in these parts. Finally, we
want to mention that the disagreement at lacgbetween
simulation ancall theoretical calculations was also found for £, 3. piagonal critical nonergodicity parametdis, »((q, m)
simple liquids[3] and was considered as a shortcoming ofas calculated from the MD simulatidsymbolg compared with the
the mode coupling approximation. theoretical predictions of MMCT in the diagonal-dipole approxima-

As in the case of the center-of-mass correlators, dhe tion (short dashed line in the dipole approximatiorsolid line),
dependence of the nonergodicity parametrg ;4q,m) and the results obtained using the “full” set of MMCT equations
(see Fig. 2 is reproduced well by the theory. Here even in (long dashed ling
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FIG. 4. Off-diagonal critical nonergodicity parameters
Fio0170(0,m) with I #1" as calculated from the MD simulatigaym-
bols) compared with the theoretical predictions of MMCT in the
dipole approximatiorisolid line) and the results obtained using the
“full” set of MMCT equations (long dashed ling

FIG. 5. Diagonal critical nonergodicity parametéts, ,{q,m)
with n# =0 as calculated from the MD simulatigeymbolg com-
pared with the results obtained using the “full” set of MMCT-
equationglong dashed ling

fortuitous because the overestimation of the nonergodicityheory. The difference between the dipole approximation and
parametergseen forl =0,1) is compensated by a generally “full” theory is relatively small.

too small amplitude of thé=2 correlators. The reason for ~ Figures 5 and 6 show the comparison between the new
the worse agreement of the=2 correlators is their higher cfitical nonergodicity parameters with#0 and/orn’#0
sensibility to the cutoff at,,=2, which can be understood and the simulation results. Since those terms are neglected
on a mathematical level by a closer examination of the verby the approximations, they can only be calculated using the
tices which have been given in R€10]. Let us pick out one  “full” set of MMCT equations. The agreement between
special example to illustrate this point. The vertex factortheory and simulation is satisfactory for almost all correla-
V06'20.249,01,02;0,0,0) is responsible for the coupling of tors.

two correlators involving=0 andl =2, respectively. Itis of In the discussion of theannormalizectritical nonergodic-

the form ity parameters, we have seen that the worse performance of
the “full” theory is partly due to the fact that the static input

U0b20269,91,92;0,0,0 has to be taken at the “wrong” temperature. This influences

the nonergodicity parameters in two ways.S (q,m) is the

« initial value of the correlation functioB(q, m,t) whose limit
= Ui 20 0,01.210.0.001n 26 01.0) + (1:2), ©® Sa.m.1)

0.1 T 0.2 T

whereuggi, »o(d,d1,92;0,0,0) contains Clebsch-Gordan co-
efficients of the fornC(1,2,0;m’,—m’,0), which enforces$
=2. Therefore, the contribution to the memory function ma-
trix caused by the vertex factor in E) is exact, even for
lee=2. The vertex factow 3} 24d.91,92:0,0,0) instead,
which describes the coupling of two correlators involving ¢4

0

_0'2 i Fzz,z_z(q’o)

Fm’zz(q’o)

-04

; 0.2 - F,,. (ql) 1
=2 andl=2, respectively, has the form . on,zi(q’l) o L1 2224 |
au 0.0 02 I o—o MDdata ]
U26.20,269,91,92;0,0,0 or . 0’4 =+ MMOT ful
:% U54in.2009,01,02;0,0,0)C 20(01,0) +(1=2). (9) 0.0 0 e
-0.25

Fy2(q,2)

The corresponding Clebsch-Gordan coefficiéit,2,2;m’, -0 Fp22(Q:2)

—m’,0) allowsl €{0,1,2,3,4. Thus forl ,=2 this vertex is - -0.5 :

not entirely taken into acount, although it is responsible for 0 0, 1000 50, 100
q(mm) q (nm )

the coupling of =2 correlations. From this example we can
see that the =2 quantities are more sensitive to the cutoff  F|G. 6. Diagonal critical nonergodicity parametés, ., (d,m)
than those fof=0. with n#0 and/orn’#0 as calculated from the MD simulation

The off-diagonal critical nonergodicity parameters with (symbol$ compared with the results obtained using the “full” set
n=n"=0 shown in Figure 4 are reproduced well by the of MMCT equations(long dashed ling
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FIG. 7. Normalized critical nonergodicity parametégs o4 d,0) FIG. 8. Diagonal normalized critical nonergodicity parameters
for the center of mass. The results from the MD simulaiigym- fo0,0dd,m) as calculated from the MD simulatigsymbolg com-
bols) are compared with the theoretical predictions of MMCT in the pared with the theoretical predictions of MMCT in the diagonal-

diagonal-dipole approximatiofshort dashed lingin the dipole ap-
proximation(solid line), and the results obtained using the “full”
set of MMCT equationglong dashed ling

dipole approximatior(short dashed line in the dipole approxima-
tion (solid ling), and the results obtained using the “full” set of
MMCT equations(long dashed ling

for t—e is the unnormalized nonergodicity parameters does not reflect properly the structure of the liquid at the true
Finirnr(q,m). (ii) In the mode coupling approximation, the glass-transition temperature. These deviations still exist for
static structure factors determine the vertices which describthe normalized nonergodicity paramete(is.) Approxima-
the coupling between the tensorial density modes in the sysion schemes taking into account only part of the correlators
tem. This influence can partly be eliminated by calculatinglike the dipole and the diagonal-dipole approximation can
the normalizedcritical nonergodicity parameters already give a reasonable descriptiov). The essential cor-
relation functions can be selected on the basis of the static
structure factors. That is, for supercooled water, the most
important static correlators are those witk* 0 and/orn’
#0, and forn=n’=0 those which are diagonal Inrand|’.

We think that in combination with suitable approxima-

Fln,l’n’(q-m)
\/Sln,ln(Q1m)Sl’n’,l’n’(qvm) .

A selection of the normalized diagonal nonergodicity param-
eters is shown in Figg7-9. Due to the normalization, the
variation with g is less pronounced. We observe that the
difference in amplitude between the “full” theory and the
approximations is reduced as the initial valg@y,m,t=0)

of the time-dependent correlation functions is set to 1 at all
wave vectors and all temperatures. Nonetheless, the dipol*
and diagonal-dipole approximation still provide the better
description of the normalized critical nonergodicity param- _
eter. In part this may be explained by the better convergenc&:‘«_ 0.5
of the iteration for the approximation schemes, but the wrong~g
critical temperature also has its influence as can be seen frors
the fact that the peak positions for the “full” MMCT results

are still slightly shifted.

fln,l’n’(qvm): (10

1

0.5 P —ST=—

20, zo(q’o)

_— e

0
1

o—— MD data

Q ---- MMCT diag
T 0.5 T —— —— MMCT dipole |
I1l. SUMMARY AND CONCLUSIONS 2 T T ——- MMCT full
g TS
From our analysis we can state the following conclusions:* :
(i) The mode coupling theory for molecular liquids overesti- q (ns;?l-l) 100

mates the critical temperatufie. in the same fashion as its

counterpart for simple liquidgii) The g dependence of the FIG. 9. Diagonal normalized critical nonergodicity parameters
critical nonergodicity parameters is well reproduced in thef20'2dq’m) as calculated from the MD simulatidsymbol$ com-
vicinity of the main peaks. Systematic differences exist forpared with the theoretical predictions of MMCT in the diagonal-
large wave vectors(iii) Deviations between theory and dipole approximatior(short dashed lingin the dipole approxima-
simulation are partly due to the overestimation of the criticaltion (solid line), and the results obtained using the “full” set of
temperature. Therefore, the structural input of the theoryMMCT equations(long dashed ling
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