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We numerically investigate the supercooled dynamics of two simple model liquids exploiting the parti-
tion of the multidimensional configuration space in basins of attraction of the stationary points (inherent
saddles) of the potential energy surface. We find that the inherent saddle order and potential energy are
well-defined functions of the temperature T . Moreover, by decreasing T , the saddle order vanishes at the
same temperature �TMCT� where the inverse diffusivity appears to diverge as a power law. This allows
a topological interpretation of TMCT: it marks the transition from a dynamics between basins of saddles
�T . TMCT� to a dynamics between basins of minima �T , TMCT�.

PACS numbers: 61.43.Fs, 61.20.Ja, 64.70.Pf
The study of the properties of the free energy landscape
or/and of the potential energy surface (PES) in disordered
systems is a topic of current research [1]. The universal-
ity in the dynamics of systems as different as disordered
spin glasses and structural glasses [2] supports the possi-
bility that some universal features at the landscape level
control the slow dynamics in these systems [3]. Along this
line, several recent works have attempted to connect both
dynamics and thermodynamics of glass-forming liquids to
landscape properties.

Numerical investigations of the sampled configuration
space have been performed for several models of liquids
[4–9]. An important outcome of these studies is the
demonstration that on cooling the system populates basins
of the PES associated with local minima [the so-called in-
herent structure (IS) [10] ] of deeper and deeper depth [4].
The number of distinct basins with the same depth in bulk
systems has also been evaluated [8]. This information has
been incorporated into a detailed description of the ther-
modynamics of supercooled liquids [5,6,8,11].

In the landscape framework, the dynamics of the system
in configuration space is conceptually decomposed in
a “fast” oscillatory motion (dynamics within a basin)
and a slow diffusive motion (dynamics among different
PES basins). Quantitative calculation of the diffusion
coefficient D based on landscape properties has been
formulated within the instantaneous normal mode (INM)
theory [12]. The INM approach focuses on the properties
of the local curvature of the PES sampled by the liquid,
calculated by diagonalizing the Hessian �H � matrix
of the potential energy V . Analysis of the resulting
eigenvalues and eigenvectors [13] allows one to evaluate
the number of independent directions in configuration
space associated with basin changes, i.e., to diffusion.
For the cases where such analysis has been performed,
strong evidence has been presented for the existence of
proportionality between D and the number of diffusive
directions [14–17]. It has also been shown that the num-
ber of diffusive directions decreases with T and appears
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to vanish at the so-called mode-coupling [18] transition
temperature TMCT [15,17], i.e., at the T where an apparent
divergence of the inverse diffusivity is observed.

A major difficulty in quantitatively pursuing the idea
of a connection between the diffusivity and topology of
configuration space is that no transparent mapping has
been yet proposed to associate equilibrium configurations
with the “closest” configuration on the border between
different basins.

In this Letter we propose such a mapping and present an
analysis of the properties of the closest stationary points
(saddles) of the potential energy. The proposed mapping,
which can be considered as an extension of the Stillinger-
Weber mapping [10,19], partitions the configuration space
R3N of a three-dimensional N particle system in basins
of attraction of the saddles, characterizing the saddle with
their order and their potential energy. The dynamics of the
system is then described as dynamics between different
saddles’ basins. We apply the proposed mapping to two
different models of simple liquids and find that (i) the
order of the sampled saddle is a well-defined function of
T , (ii) on cooling the liquid populates basins associated
with saddles of lower and lower order, (iii) the location
in potential energy of the saddles is much smaller than
the system potential energy, providing evidence that the
diffusion process is entropy driven, even below TMCT, and
(iv) at TMCT, the saddle order appears to vanish, indicating
that, at this T , the system populates the basins of potential
energy minima, confirming that TMCT marks the crossover
between two different dynamical processes.

To partition R3N in basins of saddles we search for
the basins of attraction of an auxiliary potential function,
namely, W �

1
2 j

�=V j2 [20] (for a similar approach, see also
[21]). The function W is never negative and it is zero at
all saddle points, i.e., at all points where all forces are
zero (stationary point configurations). The saddle points
are classified according to their order ns (the number of
negative eigenvalues of H ) and their potential energy es.
Saddles of order zero coincide with the local minima of the
© 2000 The American Physical Society
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PES (i.e., with IS). The complete description of the energy
landscape would require the calculation of the densities of
states for each n. However, by investigating two model
systems we find that, similar to the case of minima [8],
the saddle’s energy and order are well-defined functions
of T . Hence, all relevant information is contained in the
functions es�T � and ns�T �.

We investigate numerically two simple model liquids:
(i) the monatomic modified Lennard-Jones (MLJ) [22],
and (ii) the standard Lennard-Jones 80�20 binary mixture
(BMLJ) [23]. Both models are able to support strong
supercooling without the occurrence of crystallization.
Standard LJ units are used hereafter. Equilibrium
configurations are prepared by standard microcanonical
molecular dynamics simulations at constant density
(r � 1 for MLJ and r � 1.2 for BMLJ) and at Ts
ranging from the normal liquid phase �T � 1.6� down to
TMCT. (TMCT � 0.475 for MLJ and 0.435 for BMLJ.)
The systems are composed of N � 256 (MLJ) and
N � 1000 (BMLJ) particles enclosed in a cubic box with
periodic boundary condition. Truncated (Rc � 2.6 and
2.5, respectively) and shifted LJ potentials are used. We
analyze 20 independent equilibrium configurations for
each T . For each configuration we calculate the associated
IS and inherent saddle implementing a steepest descent
algorithm which moves in the direction of 2 �=V � �F
and 2 �=W � H ? �F, respectively (the arrows indicates
3N-d vectors). Finally, the H of the starting equilibrium
configuration (to evaluate the INM) and of the inherent
saddle (to evaluate ns) is calculated and diagonalized.

Figure 1a shows the average order of the inherent
saddle (i.e., the number ns of negative eigenvalues of H )
as a function of the equilibrium T . The average order
ns�T � is a well-defined function of T [24], indicating that
the trajectory of the system in the configuration space
samples statistically the subspace set up by basins of
saddles of a given order ns�T �. Figure 1a also shows that,
by decreasing T , ns�T � vanishes at TMCT.

This finding gives support to the following scenario:
TMCT is the T above which the system explores basins
of saddles of order ns . 0 and below which the system
is mostly confined in a local minimum �ns � 0�. The
existence of a quantity, ns�T �, that vanishes at TMCT is
remarkable. Indeed, this makes ns�T � a good candidate
for the description of supercooled dynamics, for instance,
the computation of ns�T � is an alternative way of deter-
mining TMCT.

For comparison with the previous INM studies, Fig. 1b
also shows the number of directions characterized by
negative eigenvalues ni as a function of T . As discussed
in Ref. [13], a nonzero value of ni is found at TMCT,
when the system is trapped in basins of minima, a clear
signature of the presence of nondiffusive unstable modes.
Hence, the introduction of the inherent saddle concept
offers a way to overcome the difficulties associated with
the presence of nondiffusive modes in the standard INM
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FIG. 1. Temperature dependence of the fraction of the nega-
tive eigenvalues of the Hessian calculated at the inherent saddle
configurations ns�3N (a), and at the instantaneous configura-
tions, ni�3N (b). Open symbols refer to MLJ and solid ones
refer to BMLJ. The dashed lines in (a) are the best fit to the
data with the function A�T 2 Tx�g (MLJ: Tx � 0.48 6 0.01,
g � 0.78 6 0.02. BMLJ: Tx � 0.435, g � 0.94 6 0.1).

approach. The order of the saddle ns appears to be a well-
defined indicator of the number of diffusive directions.

Next we discuss the location in energy of the inherent
saddles as a function of the equilibrium T . Figure 2 re-
ports the average instantaneous potential energy, ei , the
average potential energy of the saddle, es, and the average
potential energy of the IS, eo , as a function of T for the
MLJ potential model. Similar results hold for the BMLJ
case. The quantity eo�T � shows a rapid increase between
TMCT and T � 0.8, reaching a constant value for higher
T (see inset of Fig. 2, where eo is reported in an expanded
scale). We notice that the overall variation of eo is very
small on the scale of the variation of es and ei . The quan-
tity es�T � shows an intermediate behavior between ei and
eo . In agreement with the observation that around TMCT
the system explores the basin of attraction of saddles of
order zero, we find that at T � TMCT the inherent saddle
energy curve merges on the IS curve. The data reported
in Figs. 1 and 2 allow one to conclude in an unambiguous
way that TMCT marks the crossover between two dynamic
regimes: at T , TMCT the system spends most of the
time trapped in the local minima, while at T . TMCT the
system explores basins pertaining to saddle points of in-
creasingly higher —but well-defined —energy and order.
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FIG. 2. Temperature dependence of the instantaneous energy
[ei �±�], the inherent saddle energy [es �¶�], and the inherent
minima energy [eo ���] for the MLJ potential model. The ver-
tical dashed line indicates TMCT as derived from the apparent
divergence of the inverse diffusivity. The inset shows, in an en-
larged energy scale, the T dependence of eo . A very similar
behavior is found for the BMLJ system (not reported here for
clarity reasons).

This conclusion is consistent with the INM finding that at
TMCT the fraction of diffusive directions explored by the
liquid goes to zero [14,15,17]. It is also consistent with the
interpretation of the transition between different dynami-
cal regimes at TMCT proposed in Ref. [9] and based on
the analysis of the decay of the density-density correlation
functions evaluated along an inherent structure trajectory.

An important observation stems from the data reported
in Figs. 1 and 2: the saddle energies are located well below
the instantaneous values. This finding clearly shows that
the system trajectory is never close to a saddle point, and
dynamics should not be described as saddle-to-saddle mo-
tion, but, more correctly as dynamics between basins of
attractions of the corresponding saddles. In this respect,
one should not discuss the dynamics of the system for
T . TMCT as activated dynamics [25]. It is worth not-
ing that the value ei at TMCT is larger than es�T � for a
wide T range. In other words, even at TMCT, the instan-
taneous potential energy is much larger than the energy
value at which saddles are located. Nevertheless at TMCT
the system spends a very large fraction of time in a local
minimum and only rarely performs jumps between min-
ima. Hence, the diffusion events at low T are not limited
by the presence of an energy barrier that must be over-
come by thermal activated processes; they are rather con-
trolled by the limited number of directions leading from a
basin of a minimum to another basin at (almost) constant
potential energy.

Figure 3a shows the relation between ns and the eleva-
tion (in potential energy) with respect to the correspond-
ing local minima �es 2 eo�. We discover a remarkable
linear relationship between these two quantities. This in-
dicates that —given a minimum— the energy landscape
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FIG. 3. (a) Saddle elevation energy es 2 eo as a function of
the saddle’s order fraction ns�3N for MLJ (open symbols) and
BMLJ (solid symbols). The dashed line, with a slope of �11
is the best fit to the MLJ data. (b) The mean square distance d2

n
between minima (IS) reached by quenching the inherent saddle
of order ns is plotted as a function of ns�3N for MLJ. The
dashed line is the best fit to the data

above it is organized in families of equally spaced energy
saddle points [to rise one step in the saddle order, the re-
quested energy is 3ND�es 2 eo��Dns � 11 for both sys-
tems]. Moreover, this simply linear dependence suggests
that the aspects of the landscape above a local minimum
is independent from the energy of the minimum itself. We
also find a linear relation between the mean square distance
d2

n between minima that have been reached by quenching
the inherent saddles of order ns and the order of the cor-
responding saddle [26], as shown in Fig. 3b This linear
relation suggests that the descent path from a saddle of
order ns towards the surrounding minima can be inter-
preted as a sequence of independent random steps, each of
them decreasing the order of the saddle by 1 and increasing
the (squared) distance between the associated local minima
by a fixed amount (random walk among saddle points). It
is worth noting that these properties of the energy land-
scape (i.e., the linear dependence between es 2 eo , d2

n,
and ns) are ingredients of a model for the landscape in-
troduced by Madan and Keyes [27] and recently revisited
[28]. This similarity deserves further investigation.

In conclusion, by the numerical investigation of two
different systems, we have pointed out the relevance of
the concept of inherent saddle in describing the dynam-
ics of supercooled liquids and we have highlighted same
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important characteristics of the energy landscape. In par-
ticular we have (I) shown that the inherent saddles’ prop-
erties (energy and order) are well-defined functions of T ;
(II) demonstrated the validity of the conjecture that TMCT
marks the transition between dynamics among minima
�T , TMCT� and dynamics where the systems spend time
nearby on high order stationary points; (III) found that
ns�T � is a quantity that can be efficiently used to measure
numerically TMCT; (IV) provided evidence that the dif-
fusion processes are entropy driven; and (V) shown that
the aspect of the energy landscape “seen” by a given local
minimum is highly regular (as demonstrated by the linear
dependence of es 2 eo and of d2

n from ns) and indepen-
dent from the specific minimum.
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